
8078 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 11, NOVEMBER 2022

Ownership Verification of DNN Architectures
via Hardware Cache Side Channels

Xiaoxuan Lou , Shangwei Guo , Jiwei Li, and Tianwei Zhang , Member, IEEE

Abstract— Deep Neural Networks (DNN) are gaining higher
commercial values in computer vision applications, e.g., image
classification, video analytics, etc. This calls for urgent demands
of the intellectual property (IP) protection of DNN models. In this
paper, we present a novel watermarking scheme to achieve the
ownership verification of DNN architectures. Existing works all
embedded watermarks into the model parameters while treating
the architecture as public property. These solutions were proven
to be vulnerable by an adversary to detect or remove the water-
marks. In contrast, we claim the model architectures as an impor-
tant IP for model owners, and propose to implant watermarks
into the architectures. We design new algorithms based on Neural
Architecture Search (NAS) to generate watermarked architec-
tures, which are unique enough to represent the ownership,
while maintaining high model usability. Such watermarks can
be extracted via side-channel-based model extraction techniques
with high fidelity. We conduct comprehensive experiments on
watermarked CNN models for image classification tasks and the
experimental results show our scheme has negligible impact on
the model performance, and exhibits strong robustness against
various model transformations and adaptive attacks.

Index Terms— Deep neural network, watermarking, cache side
channels.

I. INTRODUCTION

DEEP Neural Networks (DNNs) have shown tremendous
progress to solve artificial intelligence tasks. Novel DNN

algorithms and models were introduced to interpret and under-
stand the open world with higher automation and accuracy,
such as image processing [1]–[3], video processing [4], [5],
natural language processing [6], [7], bioinformatics [8]. With
the increased complexity and demand of the tasks, it is more

Manuscript received 11 April 2022; revised 30 May 2022; accepted 9 June
2022. Date of publication 21 June 2022; date of current version 28 Octo-
ber 2022. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant U21A20463 and Grant 62102052;
in part by the Natural Science Foundation of Chongqing, China, under
Grant cstc2021jcyj-msxmX0744; in part by the Singapore National Research
Foundation under its National Cybersecurity Research and Development
Program under NCR Award NRF2018NCR-NCR009-0001; in part by the
Singapore Ministry of Education (MOE) under Grant AcRF Tier 2 MOE-
T2EP20121-0006 and Grant AcRF Tier 1 RS02/19; and in part by the
Nanyang Technological University (NTU) Start-Up Grant. This article
was recommended by Associate Editor S. Zhu. (Corresponding author:
Shangwei Guo.)

Xiaoxuan Lou and Tianwei Zhang are with the School of Computer Sci-
ence and Engineering, Nanyang Technological University, Singapore 639798
(e-mail: xiaoxuan001@ntu.edu.sg; tianwei.zhang@ntu.edu.sg).

Shangwei Guo is with the College of Computer Science, Chongqing
University, Chongqing 400044, China (e-mail: swguo@cqu.edu.cn).

Jiwei Li is with Shannon.AI, Beijing, China, and also with the Department
of Computer Science and Technology, Zhejiang University, Hangzhou 100080,
China (e-mail: jiwei_li@shannonai.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSVT.2022.3184644.

Digital Object Identifier 10.1109/TCSVT.2022.3184644

costly to generate a state-of-the-art DNN model: design of
the model architecture and algorithm requires human efforts
and expertise; training a model with satisfactory performance
needs a large amount of computation resources and valuable
data samples. Hence, commercialization of the deep learning
technology has made DNN models the core Intellectual Prop-
erty (IP) of AI products and applications.

Release of DNN models can incur illegitimate plagiarism,
unauthorized distribution or reproduction. Therefore, it is of
great importance to protect the IP of such valuable assets. Sim-
ilar to image watermarking [9]–[15], one common approach
for IP protection of DNN models is DNN watermarking, which
processes the protected model in a unique way such that its
owner can recognize the ownership of his model. Existing
solutions all implanted the watermarks into the parameters for
ownership verification [16]–[21]. The watermark also needs
to guarantee satisfactory performance for the protected model.
For example, Adi et al. [18] embedded backdoor images with
certain trigger patterns into image classification models for IP
protection.

Unfortunately, those parameter-based watermarking solu-
tions are not practically robust. An adversary can easily defeat
them without any knowledge of the adopted watermarks.
First, since these schemes modify the parameters to embed
watermarks, the adversary can also modify the parameters of
a stolen model to remove the watermarks. Past works have
designed such watermark removal attacks, which leverage
model fine-tuning [22]–[24] or input transformation [25] to
successfully invalidate existing watermark methods. Second,
watermarked models need to give unique behaviors, which
inevitably make them detectable by the adversary. Some
works [26], [27] introduced attacks to detect the verification
samples and then manipulate the verification results.

Motivated by the above limitations, we propose a funda-
mentally different watermarking scheme. Instead of protecting
the parameters, we treat the network architecture as the IP of
the model. There are a couple of incentives for the adversary
to plagiarize the architectures [28], [29]. First, it is costly to
craft a qualified architecture for a given task. Architecture
design and testing require lots of valuable human expertise
and experience. Automated Machine Learning (AutoML) is
introduced to search for architectures [30], which still needs a
large amount of time, computing resources and data samples.
Second, the network architecture is critical in determining
the model performance. The adversary can steal an architec-
ture and apply it to multiple tasks with different datasets,
significantly improving the financial benefit. In short, “the
industry considers top-performing architectures as intellectual

1051-8215 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 31,2022 at 01:41:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6443-5308
https://orcid.org/0000-0001-6595-6650
https://orcid.org/0000-0002-9510-1300

LOU et al.: OWNERSHIP VERIFICATION OF DNN ARCHITECTURES VIA HARDWARE CACHE SIDE CHANNELS 8079

property” [29], and “obtaining them often has high commercial
value” [28]. Therefore, it is worthwhile to treat the architecture
design as an important IP and provide particular protection
to it.

We aim to design a methodology to generate unique network
architectures for the owners, which can serve as the evidence
of ownership. This scheme is more robust than previous
solutions, as maliciously refining the parameters cannot tam-
per with the watermarks. The adversary can only remark-
ably change the network architecture with large amounts of
resources and effort in order to erase the watermarks. This will
not violate the copyright, since the new architecture is totally
different from the original one, and can be legally regarded as
the adversary’s own IP. Two questions need to be answered in
order to establish this scheme: (1) how to systematically design
architectures, that are unique for watermarking and maintain
high usability for the tasks? (2) how to extract the architecture
of the suspicious model, and verify the ownership?

We introduce a set of techniques to address these questions.
For the first question, we leverage Neural Architecture Search
(NAS) [30]. NAS is a very popular AutoML approach, which
can automatically discover a good network architecture for
a given task and dataset. A quantity of methods [31]–[36]
have been proposed to improve the search effectiveness and
efficiency, and the searched architectures can significantly
outperform the ones hand-crafted by humans. Inspired by
this technology, we design a novel NAS algorithm, which
fixes certain connections with specific operations in the search
space, determined by the owner-specific watermark. Then
we search for the rest connections/operations to produce a
high-quality network architecture. This architecture is unique
enough to represent the ownership of the model (Section V).

The second question is solved by cache side-channel analy-
sis. Side-channel attacks are a common strategy to recover
confidential information from the victim system without direct
access permissions. Recent works designed novel attacks to
steal DNN models [28], [37], [38]. Our scheme applies such
analysis for IP protection, rather than confidentiality breach.
The model owner can use side-channel techniques to extract
the architecture of a black-box model to verify the ownership,
even the model is encrypted or isolated. It is difficult to directly
extend prior solutions [28], [39] to our scenario, because they
are designed only for conventional DNN models, but fail to
recover new operations in NAS. We devise a more compre-
hensive method to identify the types and hyper-parameters of
these new operations from a side-channel pattern. This enables
us to precisely extract the watermark from the target model
(Section VI).

The integration of these techniques leads to the design of our
watermarking framework. Experiments on DNN models for
image classification show that our method is immune to com-
mon model parameter transformations (fine-tuning, pruning),
which could compromise prior solutions. Furthermore, we test
new adaptive attacks that moderately refine the architectures
(e.g., shuffling operation order, adding useless operations),
and confirm their incapability of removing the watermarks
from the target architecture. In sum, we make the following
contributions:

• It is the first work to protect the IP of DNN architectures.
It creatively uses the NAS technology to embed watermarks
into the model architectures.
• It presents the first positive use of cache side channels to

extract and verify watermarks.
• It gives a comprehensive side-channel analysis about

sophisticated DNN operations that are not analyzed before.

II. BACKGROUND

A. Neural Architecture Search

NAS [30], [40] has gained popularity in recent years, due
to its capability of building machine learning pipelines with
high efficiency and automation. It systematically searches for
good network architectures for a given task and dataset. Its
effectiveness is mainly determined by two factors:
Search space. This defines the scope of neural networks to
be designed and optimized. Instead of searching for the entire
network, a practical strategy is to decompose the target neural
network into multiple cells, and search for the optimal struc-
ture of a cell [31]. Then cells with the identified architecture
are stacked in predefined ways to construct the final DNN
models. Figure 1a shows the typical architecture of a CNN
model based on the popular NAS-Bench-201 [41]. It has two
types of cells: a normal cell is used to interpret the features and
a reduction cell is used to reduce the spatial size. A block is
composed of several normal cells, and connected to a reduction
cell alternatively to form the model.

A cell is generally represented as a directed acyclic graph
(DAG), where each edge is associated with an operation
selected from a predefined operation set [32]. Figure 1b
gives a toy cell supernet that contains four computation
nodes (squares) and a set of three candidate operations (cir-
cles). The solid arrows denote the actual connection edges
chosen by the NAS method. Such supernet enables the shar-
ing of network parameters and avoids unnecessary repetitive
training for selected architectures. This significantly reduces
the cost of performance estimation and accelerates the search
process, and is widely adopted in recent methods [35], [36],
[42], [43].
Search strategy. This defines the approach to seek for good
architectures in the search space. Different types of strategies
have been designed to enhance the search efficiency and
results, based on reinforcement learning [30]–[32], evolution-
ary algorithm [44], [45] or gradient-based optimization [35],
[36], [46]. Our watermarking scheme is general and indepen-
dent of the search strategies.

B. Cache Side Channels

CPU caches are introduced between the CPU cores and
main memory to accelerate the memory access. Two micro-
architectural features of caches enable an adversarial program
to perform side-channel attacks and infer secrets from a
victim program, even their logical memory is isolated by the
operating system. First, multiple programs can share the same
CPU cache, and they have contention on the usage of cache
lines. Second, the timing difference between a cache hit (fast)
and a cache miss (slow) can reveal the access history of the

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 31,2022 at 01:41:56 UTC from IEEE Xplore. Restrictions apply.

8080 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 11, NOVEMBER 2022

Fig. 1. Architecture of a NAS model based on cells.

memory lines. As a result, an adversary can carefully craft
interference with the victim program sharing the same cache,
and measure the access time to infer the victim’s access trace.

A quantity of techniques have been designed over the past
decades to realize cache side-channel attacks. Two represen-
tative attacks are described as below. (1) In a PRIME-PROBE

attack [47], the adversary first fills up the critical cache sets
with its own memory lines. Then the victim executes and
potentially evicts the adversary’s data out of the cache. After
that, the adversary measures the access time of each memory
line loaded previously. A longer access time indicates that
the victim used the corresponding cache set. (2) A FLUSH-
RELOAD attack [48] requires the adversary to share the critical
memory lines with the victim, e.g., via shared library. The
adversary first evicts these memory lines out of the cache using
dedicated instructions (e.g., clflush). After a period of time,
it reloads the lines into the cache and measures the access
time. A shorter time indicates the lines were accessed by the
victim.

C. Threat Model

We consider that a model owner designs an archi-
tecture using a conventional NAS method, and trains a
production-level DNN model M . An adversary may obtain an
illegal copy of M and use it for profit without authorization.
The goal of the model owner is to detect whether a suspicious
model M � plagiarizes the architecture from M . He has black-
box access to the target model M �, without any knowledge
about the architecture, parameters, training algorithms and
hyper-parameters. We consider two sorts of techniques an
adversary may employ to hide the evidence of architecture
plagiarism. (1) Parameter modification: the adversary may
alter the model parameters (e.g., fine-tuning, model compres-
sion, transfer learning) while maintaining similar performance.
(2) Architecture modification: the adversary may moderately
obfuscate the model architecture by changing the execution
behaviors of model inference (e.g., reordering the operations,
adding useless computations or neurons). However, we do not
consider the case that the adversary redesigns the model archi-
tecture completely (e.g., knowledge distillation [49], [50]),
since the new model architecture is totally different, and can
be legally regarded as the adversary’s own asset.

We further follow the same assumption in [28], [37], [38]
that the model owner can extract the inference execution

trace of the target model M � via cache side channels. This
is applied to the scenario where the suspicious application
is securely packed with countermeasures against reverse-
engineering, e.g., encryption. For instance, Trusted Execution
Environment (TEE), e.g., Intel SGX [51] and AMD SEV [52],
introduces new hardware extensions to provide execution
isolation and memory encryption for user-space applications.
However, an adversary can exploit TEE to hide their mali-
cious activities, such as side-channel attacks [53], rowhammer
attacks [54] and malware [55], [56]. Similarly, an adversary
can hide the stolen model in TEE when distributing it to the
public, so the model owner cannot introspect into the DNN
model to obtain the evidence of ownership. With our solution,
the model owner can extract watermarks from the isolated
enclaves. Note it has been quite common to adopt side-channel
techniques to monitor the activities inside TEE enclaves for
security purposes [57]–[60], which is both technically and
legitimately allowed.

III. RELATED WORKS

A. DNN Watermarking

Numerous watermarking schemes have been proposed for
conventional DNN models. They can be classified into the
following two categories:

1) White-Box Solutions: This strategy adopts redundant
bits as watermarks and embeds them into the model para-
meters. For instance, Uchida et al. [16] introduced a para-
meter regularizer to embed a bit-vector (e.g. signature) into
model parameters which can guarantee the performance of the
watermarked model. Rouhan et al. [17] found that implanting
watermarks into model parameters directly could affect their
static properties (e.g histogram). Thus, they injected water-
marks in the probability density function of the activation
sets of the DNN layers. These methods require the owner
to have white-box accesses to the model parameters during
the watermark extraction and verification phase, which can
significantly limit the possible usage scenarios.

2) Black-Box Solutions: This strategy takes a set of unique
sample-label pairs as watermarks and embeds their correlation
into DNN models. For examples, Merrer et al. [61] adopted
adversarial examples near the frontiers as watermarks to
identify the ownership of DNN models. Zhang et al. [62]
and Adi et al. [18] employed backdoor attack techniques to
embed backdoor samples with certain trigger patterns into
DNN models. Namba and Sakuma [26] and Li et al. [63]
generated watermark samples that are almost indistinguishable
from normal samples to avoid detection by adversaries.

Different from these works, we propose a new watermarking
scheme. Instead of modifying the parameters, our approach
makes the architecture design as Intellectual Property, and
adopts cache side channels for architecture verification. This
strategy can defeat all the watermark removal attacks via
parameter transformations.

B. DNN Model Extraction via Side Channels

1) Cache Side Channels: One popular class of model
extraction attacks is based on cache side channels, which

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 31,2022 at 01:41:56 UTC from IEEE Xplore. Restrictions apply.

LOU et al.: OWNERSHIP VERIFICATION OF DNN ARCHITECTURES VIA HARDWARE CACHE SIDE CHANNELS 8081

monitors the cache accesses of the inference program.
Hong et al. [39] recovered the architecture attributes by
observing the invocations of critical functions in the deep
learning frameworks (e.g., Pytorch, TensorFlow). Similar tech-
nique is also applied to NAS models [29]. However, these
attacks are very coarse-grained. They can only identify con-
volutions without the specific types and hyper-parameters.
Yan et al. [28] proposed Cache Telepathy, which monitors the
GEMM calls in the low-level BLAS library. The number of
GEMM calls can greatly narrow down the range of DNN
hyper-parameters and then reveal the model architecture. Our
method extends this technique to NAS models. Our improved
solution can recover more sophisticated operations without the
prior knowledge of the architecture family, which cannot be
achieved in [28].

2) Other Side Channels: Some works leveraged other side
channels to extract DNN models. Batina et al. [37] extracted
a functionally equivalent model by monitoring the electro-
magnetic signals of a microprocessor hosting the inference
program. Duddu et al. [64] found that models with different
depths have different execution time, which can be used as
a timing channel to leak the network details. Memory side-
channels were discovered to infer the network structure of
DNN models on GPUs [38] and DNN accelerators [65]. Future
work will apply those techniques to our scheme.

IV. PRELIMINARIES

A. Definition of a NAS Method

In this paper, we mainly focus on NAS methods using
the cell-based search space, as it is the most popular and
efficient strategy. Formally, we consider a NAS task, which
aims to construct a model architecture containing N cells:
A = {c1, . . . , cN }. The search space of each cell is denoted
as S = (G,O). G = (N , E) is the DAG representing the
cell supernet, where set N contains two inputs (a, b) from
previous cells and B computing nodes in the cell, i.e., N =
{a, b,N1, . . . ,NB}; E = {E1, . . . , EB} is the set of all possible
edges between nodes and E j is the set of edges connected to
the node N j (1 ≤ j ≤ B). Each node can only sum maximal
two inputs from previous nodes. O is the set of candidate
operations on these edges. Then we combine the search spaces
of all cells as S, from which we try to look for an optimal
architecture A. The NAS method is defined as below:

Definition 1: (NAS) A NAS method is a machine learn-
ing algorithm that iteratively searches optimal cell archi-
tectures from the search space S on the proxy dataset D.
These cells construct one architecture A = {c1, . . . , cN }, i.e.,
A = NAS(S,D).
After the search process, A is trained from the scratch on
the task dataset D to learn the optimal parameters. The
architecture A and the corresponding parameters give the final
DNN model f = train(A,D).

B. Definition of a Watermarking Scheme

A watermarking scheme for NAS enables the ownership
verification of DNN models searched from a NAS method.
This is formally defined as below:

Definition 2: A watermarking scheme for NAS is a tuple
of probabilistic polynomial time algorithms (WMGen, Mark
Verify), where

• WMGen takes the search space of a NAS method as input
and outputs secret marking key mk and verification key vk.
• Mark outputs a watermarked architecture A, given a NAS

method, a proxy dataset D, and mk.
• Verify takes the input of vk and the monitored side-channel

trace, and outputs the verification result of the watermark
in {0, 1}.

A strong watermarking scheme for NAS should have the
following properties [18], [62].
Effectiveness. The watermarking scheme needs to guarantee
the success of the ownership verification over the watermarked
A using the verification key. Formally,

Pr [Verify(vk, T) = 1] = 1, (1)

where T is the monitored side-channel trace from A.
1) Usability: let A0 be the original architecture without

watermarks. For any data distribution D, the watermarked
architecture A should exhibit competitive performance com-
pared with A0 on the data sampled from D, i.e.,

|Pr [f0(x) = y|(x, y) ∼ D] − Pr [f (x)

= y|(x, y) ∼ D]| ≤ �. (2)

where f = train(A,D) and f0 = train(A0,D).
2) Robustness: Since a probabilistic polynomial time adver-

sary may modify f moderately, we expect the watermark
remains in A after those changes. Formally, let T

� be the
side-channel leakage of a model f � transformed from f , where
f � and f are from the same architecture A with similar
performance. We have

Pr [Verify(vk, T
�) = 1] ≥ 1− δ (3)

3) Uniqueness: A normal user can follow the same NAS
method to learn a model from the same proxy dataset. Without
the marking key, the probability that this common model
contains the same watermark should be smaller than a given
threshold δ. Let T

� be the side channel leakage of a common
model learned with the same dataset and NAS method, we
have

Pr [Verify(vk, T
�) = 1] ≤ δ. (4)

V. OUR WATERMARKING SCHEME

Figure 2 shows the overview of our watermarking frame-
work, which consists of three stages. At stage 1, the model
owner generates a unique watermark and the corresponding
key pair (mk, vk) using the algorithm WMGen (Section V-A).
At stage 2, he adopts a conventional NAS method with the
marking key mk to produce the watermarked architecture
following the algorithm Mark (Section V-B). He then trains
the model from this architecture. Stage 3 is to verify the
ownership of a suspicious model: the owner collects the
side-channel information at inference, and identifies any poten-
tial watermark based on the verification key vk using the
algorithm Verify (Section V-C). Below we describe the details
of each stage, followed by a theoretical analysis (Section V-D).

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 31,2022 at 01:41:56 UTC from IEEE Xplore. Restrictions apply.

8082 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 11, NOVEMBER 2022

Fig. 2. Overview of our watermarking framework.

Algorithm 1: Marking Key Generation (WMGen)
Input: # of fixed edges ns , search space S = (G,O)
Output: marking key mk, verification key vk
Se = GetPath(G, ns)
for i from 1 to N do

se ← randomly select one path from Se

so ← randomly select ns operations from O for se

mki = {se : so}, vki = so
return mk = (mk1, …, mkN), vk = (vk1, …, vkN)

A. Watermark Generation (WMGen)

According to Definition 1, a NAS architecture is a compo-
sition of cells. Each NAS cell is actually a sampled sub-graph
of the supernet G, where the attached operations are identified
by the search strategy. To generate a watermark, the model
owner selects some edges from G which can form a path.
We select the edges in a path because the executions of their
operations have dependency (see the red edges in Figure 6).
So an adversary cannot remove the watermarks by shuffling
the operation order at inference. Then the model owner fixes
each of these edges with a randomly chosen operation. The
set of the fixed edge-operation pairs {se : so} inside a cell is
called a stamp, as defined below:

Definition 3: (Stamp) A stamp for a cell is a set of
edge-operation pairs {se : so}, where se, so denote the selected
edges in a path and the corresponding operations, respectively.

The combination of the stamps of all the cells form a
watermark for a NAS architecture:

Definition 4: (Watermark) Consider a NAS method with
a proxy dataset D and search space S. A = {c1, . . . , cN }
represents the neural architecture produced from this method.
A watermark for A is a set of stamps mk1, . . . , mkN , where
mki is the stamp of cell ci .

Algorithm 1 illustrates the detailed procedure of construct-
ing a watermark and the corresponding marking and verifi-
cation keys (mk, vk). Given the supernet G, we call function
GetPath (Algorithm 4 in Appendix B) to obtain a set Se of
all the possible paths with length ns , where ns is the predefined
number of stamp edges (1 ≤ ns ≤ B). Then for each cell ci ,
we randomly sample a path se from Se. Edges in the selected
path are attached with fixed operations so chosen by the model
owner to form the cell stamp mki = {se : so}. Finally we
can construct a marking key mk = (mk1, . . . , mkN). The

verification key is vk = (vk1, …, vkN), where vki is the fixed
operation sequence so in cell ci .

In our implementation, we randomly sample the paths and
operations for the marking key. It is also possible the model
owner crafts the stamps based on his own expertise. He needs
to ensure the design is unique and has very small probability
to conflict with other models from the same NAS method.
We do not discuss this option in this paper.

B. Watermark Embedding (Mark)

To generate a competitive DNN architecture embedded with
the watermark, we fix the edges and operations in the marking
key mk, and apply a conventional NAS method to search for
the rest connections and operations for a good architecture.
This process will have a smaller search space compared to the
original method. However, as shown in previous works [31],
[35], there are multiple sub-optimal results with comparable
performance in the NAS search space, which makes random
search also feasible. Hence, we hypothesize that we can
still find out qualified results from the reduced search space.
Evaluations in Section VII verify that the reduced search space
incurs negligible impact on the model performance.

Algorithm 2 shows the procedure of embedding the water-
mark to a NAS architecture. For each cell ci in the architecture,
we first identify the fixed stamp edges and operations {se : so}
from key mki . Then the cell search space S is updated as
(G = (N , E),O), where E is the set of connection edges
excluding those fixed ones: E = E − se. The updated search
spaces of all the cells are combined to form the search space S,
from which the NAS method is used to find a good architecture
A containing the desired watermark.
Discussion. We describe our watermarking scheme with the
NAS technique. It is worth noting that our methodology can
also be applied to the hand-crafted architectures. The model
owner only needs to inject the stamp edges to some locations
inside his designed architecture and then train the model.
We consider the evaluation of this strategy as future work.

C. Watermark Verification (Verify)

During verification, we utilize cache side channels to cap-
ture an execution trace T by monitoring the inference process
of the target model M �. Details about side-channel extraction
can be found in Section VI. Due to the existence of extra com-
putations like concatenating and preprocessing, cells in T are

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 31,2022 at 01:41:56 UTC from IEEE Xplore. Restrictions apply.

LOU et al.: OWNERSHIP VERIFICATION OF DNN ARCHITECTURES VIA HARDWARE CACHE SIDE CHANNELS 8083

Algorithm 2: Watermark Embedding (Mark)
Input: marking key mk, NAS method, proxy dataset D
Output: watermarked architecture A
S← search space of the whole model
for each cell ci do

retrieve {se : so} from mki

E = E − se

S = (G = (N , E),O)
S.append(S)

A = NAS(S,D)
return A

Algorithm 3: Watermark Verification (Verify)
Input: verification key vk, monitored trace T, # of fixed

edges ns

Output: verification result
Split T into cell windows
go_on = 1, verified_wins = 0
for each windowi in T do

if go_on == 1 then
retrieve so from vki , id ← 0

for each cluster in windowi do
if match(cluster , so[id]) = True then

id+ = 1
if id == ns then

go_on = 1, verified_wins += 1
else

go_on = 0
return (verified_wins == vk.size()) ? True : False

separated by much larger time intervals and can be identified
as sequential leakage windows. If T does not have observable
windows, we claim it is not generated by a cell-based NAS
method and is out of the consideration. A leakage window
further contains multiple clusters, each of which corresponds
to an operation inside the cell.

Algorithm 3 describes the verification process. First the
side-channel leakage trace T is divided into cell windows,
and for the i -th window, we retrieve its stamp operations
so from vki . Then the cluster patterns in the window are
analyzed in sequence. Since the adversary can possibly shuffle
the operation order or add useless computations to obfuscate
the trace, we only verify if the stamp operations exist in
the cell in the correct order, which is not affected by the
obfuscations due to their execution dependency, while ignoring
other operations. Besides, since the adversary may inject
useless cell windows to obfuscate the verification, we only
consider cells that contain the expected side-channel patterns
and skip other cells. Once the number of verified cells is equal
to the size of generated verification key, we can claim the
architecture ownership of the DNN model.

D. Theoretical Analysis

We theoretically prove that our algorithms (WMGen,
Mark, Verify) form a qualified watermarking scheme for NAS
architectures. We first assume the search space restricted by

the watermark is still large enough for the owner to find a
qualified architecture.

Assumption 1: Let S0, S be the search spaces before and
after restricting a watermark in a NAS method, S0 ⊇ S. A0 ∈
S0 is the optimal architecture for an arbitrary data distribution
D. A is the optimal architecture in S, The model accuracy of
A is no smaller than that of A0 by a relaxation of �

N .
We further assume the existence of an ideal analyzer that

can recover the watermark from the given side-channel trace.
Assumption 2: Let mk and vk be the marking and verifi-

cation keys of a DNN architecture A = {c1, . . . , cN }. For ∀
mk, vk, and A, there is a leakage analyzer P that is capable
of recovering all the stamps of {ci }Ni=1 from a corresponding
cache side-channel trace.

With the above two assumptions, we prove the following
theorem, and the proof can be found in Appendix A.

Theorem 1: With Assumptions 1-2, Algorithms 1-3 form a
watermarking scheme that satisfies the properties of effective-
ness, usability, robustness, and uniqueness in Section IV-B.

VI. SIDE CHANNEL EXTRACTION

Given a suspicious model, we aim to extract the embedded
watermark using cache side channels. Past works proposed
cache side channel attacks to steal DNN models [28], [39].
However, these attacks are only designed for conventional
DNN models and cannot extract NAS models with more
sophisticated operations (e.g., separable convolutions, dilated-
separable convolutions). Besides, the adversary needs to have
the knowledge of the target model’s architecture family (i.e.,
the type of each layer), which cannot be obtained in our case.

We design an improved methodology over Cache Telepa-
thy [28] to extract the architecture of NAS models by moni-
toring the side-channel pattern from the BLAS library. We take
OpenBLAS as an example, which is a mainstream library for
many deep learning frameworks (e.g., Tensorflow, PyTorch).
Our method is also generalized to other BLAS libraries, such
as Intel MKL. We make detailed analysis about the leakage
pattern of common operations used in NAS, and describe how
to identify the operation type and hyper-parameters.

A. Method Overview

State-of-the-art NAS algorithms [31], [33], [35], [41]
commonly adopt eight classes of operations: (1) identity,
(2) fully connected layer, (3) normal convolution, (4) dilated
convolution, (5) separable convolution, (6) dilated-separable
convolution, (7) pooling and (8) various activation functions.
Note that although zeroize is also a common operation in NAS,
we do not consider it, as it just indicates a lack of connection
between two nodes and is not actually used in the search
process.

These operations are commonly implemented in two steps.
(1) The high-level deep learning framework converts an oper-
ation to a matrix multiplication: C = αA × B + βC , where
input A is an m × k matrix and B is a k × n matrix,
output C is an m × n matrix, and both α and β are scalars;
(2) The low-level BLAS library performs the matrix multipli-
cation with the GEMM algorithm, which divides matrix A and

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 31,2022 at 01:41:56 UTC from IEEE Xplore. Restrictions apply.

8084 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 11, NOVEMBER 2022

Fig. 3. Side-channel patterns of four operations in NAS.

B into smaller ones with size of P × Q and Q × R, so that
they can be loaded into the cache for faster computations.
Constants of P , Q and R are determined by the host machine
configuration. More details about GEMM can be found in
Appendix C.

Following Cache Telepathy [28], we take the itcopy and
oncopy APIs in OpenBLAS as the monitoring targets. Since
these two APIs are used to load matrix data into the cache,
we can analyze the access pattern to them to reveal the dimen-
sion information of computing matrix. Besides, the variance
of API access pattern also leaks the type of running operation.
Figure 3 illustrates the leakage patterns of four representative
operations with a sampling interval of 2000 CPU cycles.
Different operations have distinct patterns of side-channel
leakage. By observing such patterns, we can identify the type
of the operation.

Finally, we derive the hyper-parameters of each operation
based on the inferred matrix dimension. The relationships
between the hyper-parameters of various operations and the
dimensions of the transformed matrices are summarized in
Table I. We present both the general calculations of the
hyper-parameters as well as the ones specifically for NAS
models. Below we give detailed descriptions on the recovery
of each NAS operation.

B. Recovery of NAS Operations

1) Fully Connected (FC) Layer: This operation can be
transformed to the multiplication of a learnable weight matrix
γ (m×k) and an input matrix in (k×n), to generate the output
matrix out (m × n). m denotes the number of neurons in the
layer; k denotes the size of the input vector; and n reveals the
batch size of the input vectors. Hence, with the possible values
of (m, n, k) derived from the iteration counts of itcopy and
oncopy, hyper-parameters (e.g., neurons number, input size)
of the FC layer can be recovered. The number of FC layers
in the model can also be recovered by counting the number
of matrix multiplications. Figure 3(a) shows the pattern of a
classifier with two FC layers, where two separate clusters can
be easily identified.

2) Normal Convolution: Although this operation was
adopted in earlier NAS methods [31], [44], recent works [35],
[36], [46] removed it from the search space as it is hardly used
in the searched cells. However, this operation is the basis of the

Fig. 4. Implementing a convolution operation as matrix multiplication.

following complex convolutions. So it is necessary to perform
detailed analysis about it.

Figure 4 shows the structure of a normal convolution at the
i -th layer (upper part), and how it is transformed to a matrix
multiplication (lower part). Each patch in the input tensor is
stretched as a row of matrix ini , and each filter is stretched as a
column of matrix Fi . Hence, the number of filters Di+1 can be
recovered from the column size n of the filter matrix Fi . The
kernel size Ri can be revealed from the column size k = R2

i Di

of the matrix ini , as we assume Di has been obtained from
the previous layer. With the recovered Ri , the padding size
Pi can be inferred as the difference between the row sizes of
outi−1 and ini , which are Wi × Hi and (Wi − Ri + Pi + 1)
(Hi − Ri + Pi + 1), respectively. The stride can be deduced
based on the modification between the input size and output
size of the convolution. In a NAS model, the convolved feature
maps are padded to preserve their spatial resolution, so we
have Pi = Ri − 1. A normal cell takes a stride of 1, while a
reduction cell takes a stride of 2.

In terms of the leakage pattern, a normal convolution is
hard to be distinguished from a FC layer, as both of their
accesses to the itcopy and oncopy functions can be denoted as
x I − yO − z I , where (x, y, z) indicate the repeated times of
the functions, determined by the operation hyper-parameters.
This is why Cache Telepathy [28] needs to know the architec-
ture family of the target DNN to distinguish the operations.
Figure 3(b) shows the leakage pattern of a normal convolution.
In the NAS scenario, since the normal convolution is generally
used at the preprocessing stage, while the FC layer is adopted
as the classifier at the end, they can be distinguished based on
their locations.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 31,2022 at 01:41:56 UTC from IEEE Xplore. Restrictions apply.

LOU et al.: OWNERSHIP VERIFICATION OF DNN ARCHITECTURES VIA HARDWARE CACHE SIDE CHANNELS 8085

TABLE I

MAPPING BETWEEN OPERATION HYPER-PARAMETERS AND MATRIX DIMENSIONS

3) Dilated Convolution: This operation is a variant of the
normal convolution, which inflates the kernel by inserting
spaces between each kernel element. We use the dilated
space d to denote the number of spaces inserted between
two adjacent elements in the kernel. The conversion from
the hyper-parameters of a dilated convolution to the matrix
dimension is similar with the normal convolution. The only
difference is the row size m of the input matrix ini , i.e., the
number of patches. Due to the inserted spaces in the kernel,
although the kernel size is still R2

i , the actual size covered by
the dilated kernel becomes R�2i , where R�i = Ri + d(Ri − 1).
This changes the number of patches to (Wi − R�i + Pi +
1)(Hi − R�i + Pi + 1). As a dilated convolution is normally
implemented as a dilated separable convolution in practical
NAS methods [35], [36], the leakage pattern of the operation
will be discussed with the dilated separable convolution.

4) Separable Convolution: According to [28], the number
of consecutive matrix multiplications with the same pattern
reveals the batch number of a normal convolution. However,
we find this does not hold in the separable convolution,
or precisely, the depth-wise separable convolution used in
NAS. This is because the separable convolution decomposes a
convolution into multiple separate operations, which can incur
the same conclusion that the number of the same patterns
equals to the number of input channels.

A separable convolution aims to achieve more efficient com-
putation with less complexity by separating the filters. Figure 5
shows a two-step procedure of a separable convolution. The
first step uses Di filters (Filters ①) to transform the input to an
intermediate tensor, where each filter only convolves one input
channel to generate one output channel. It can be regarded
as Di normal convolutions, with the input channel size of 1
and the filter size of R2

i × 1. These computations are further
transformed to Di consecutive matrix multiplications with the
same pattern, which is similar as a normal convolution with
the batch size of Di . But the separable convolution has much
shorter intervals between two matrix multiplications, as they
are parts of the whole convolution, rather than independent
operations. In the second step, a normal convolution with Di+1
filters (Filters ②) of size 12×Di is applied to the intermediate
tensor to generate the final output.

In summary, the leakage pattern of the separable convolution
is fairly distinguishable, which contains Di consecutive clus-
ters and one individual cluster at the end. Note that in a NAS
model, the separable convolution is always applied twice [31],
[35], [36], [44], [66] to improve the performance, which makes
its leakage pattern more recognizable. Figure 3(c) shows the

Fig. 5. Procedure of separable convolutions.

trace of a separable convolution. There are clearly two parts
following the same pattern, corresponding to the two occur-
rences of the operation. Each part contains 12 consecutive
same-pattern clusters to reveal Di = 12, and an individual
cluster denoting the last 1× 1 convolution.

5) Dilated Separable (DS) Convolution: This operation is
the practical implementation of a dilated convolution in NAS.
The DS convolution only introduces a new variable, the dilated
space d , from the separable convolution. Hence, this operation
has similar matrix transformation and leakage pattern as the
separable convolution, except for two differences. First, Ri is
changed to R�i = Ri + d(Ri − 1) in calculating the number
of patches m = (Wi − Ri + Pi + 1)(Hi − Ri + Pi + 1)
in Step One. Second, a DS convolution needs much shorter
execution time. Figure 3(d) shows the leakage pattern of a DS
convolution with the same hyper-parameters as a separable
convolution depicted in Figure 3(c), except that the dilated
space d = 1. It is easy to see the performance advantage of
the DS convolution (8400 intervals) over the separable con-
volution (10000 intervals) under the same configurations. The
reason is that the input matrix in a DS convolution contains
more padding zeroes to reduce the computation complexity.
Besides, the DS convolution does not need to be performed
twice, which also helps us distinguish it from a separable
one.

6) Skip Connect: The operation is also called identity in the
NAS search space, which just sends outi to in j without any
processing. This operation cannot be directly detected from the
side-channel leakage trace, as it does not invoke any GEMM
computations. While [28] argues the skip can be identified as
it causes a longer latency due to the introduction of an extra
merge operation, it is not feasible in a NAS model. This is
because in a cell, each node has an add operation of two inputs
and the skip operation does not invoke any extra operations.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 31,2022 at 01:41:56 UTC from IEEE Xplore. Restrictions apply.

8086 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 11, NOVEMBER 2022

So there is no obvious difference between the latency of skip
and the normal inter-GEMM intervals.

7) Pooling: We assume the width and height of the pool-
ing operation is the same, which is default in all practical
implementations. Given that pooling can reduce the size of
the input matrix ini from the last output matrix outi−1, the
size of the pooling layer can be obtained by performing
square root over the quotient of the number of rows in outi−1
and ini . In general, pooling and non-unit striding cannot be
distinguished as they both reduce the matrix size. However,
in a NAS model, non-unit striding is only used in reduction
cells which can double the channels. This information can be
used for identification. Pooling cannot be directly detected as
it does not invoke any matrix multiplications in GEMM. But it
can introduce much longer latency (nearly 1.5× of the normal
inter-GEMM latency) for other computations. Hence, we can
identify this operation by monitoring the matrix size and
execution intervals. While monitoring the BLAS library can
only tell the existence of the pooling operation, the type can
be revealed by monitoring the corresponding pooling functions
in the deep learning framework.

8) Other DNN Components: Besides the above operations,
other common components like batch normalization, dropout
and activation functions are also critical to the model perfor-
mance. Our method can be generalized to watermark these
components as well, by just changing the monitored library
targets. For instance, to protect activation functions, e.g., relu
and tanh, we can monitor accesses to the corresponding
function APIs in Pytorch. In Appendix E, we give more
details about the monitored code lines in Table IV and an
example side-channel trace of monitored activation functions
in Figure 17.

VII. EVALUATION

A. Experimental Setup

1) Testbed: Our approach is general for different deep
learning frameworks and libraries. Without loss of generality,
we adopt Pytorch (1.7.0) and OpenBLAS (0.3.13), deployed
in Ubuntu 18.04 with a kernel version of 4.15.0. Evaluations
are performed on a workstation of Dell Precision T5810
(6-core Intel Xeon E5 processor, 32GB DDR4 memory). The
processor has core-private 32KB L1 caches, 256KB L2 caches
and a shared 15MB last level cache.

2) NAS Implementation: Our scheme is independent of the
search strategy, and can be applied to all cell-based NAS
methods. We mainly focus on the CNN tasks, and select a
state-of-the-art NAS method GDAS [36], which can produce
qualified network designs within five GPU hours. We follow
the default configurations to perform NAS [31], [36]: the
search space of a CNN cell contains: identity (skip), 3×3 and
5 × 5 separable convolutions (SC), 3 × 3 and 5 × 5 dilated
separable convolutions (DS), 3 × 3 average pooling (AP),
3×3 max pooling (MP). The discovered cells are then stacked
to construct DNN models. We adopt CIFAR10 as the proxy
dataset to search the architecture, and train CNN models
over different datasets, e.g., CIFAR10, CIFAR100, ImageNet.
Technical details about cell search and model training can be
found in Appendix D.

TABLE II

AN EXAMPLE OF THE MARKING KEY mk

3) Side Channel Extraction: To capture the side-channel
leakage of CNN models, we monitor the itcopy and oncopy
functions in OpenBLAS. We adopt the FLUSH+RELOAD side-
channel technique [48], but other methods can achieve our goal
as well. We inspect the cache lines storing these functions at a
granularity of 2000 CPU cycles to obtain accurate information.
Details about the monitored code locations can be found in
Table IV in Appendix E.

B. Effectiveness

1) Key Generation: A NAS method generally considers two
types of cells. So we set the same stamp for each type. Then
the marking key can be denoted as mk = (mkn, mkr), where
mkn = {sen : son} and mkr = {ser : sor } represent the stamps
embedded to the normal and reduction cells, respectively. Each
cell has four computation nodes (B = 4), and we set the
number of stamp edges ns = 4 for both cells, indicating four
causal edges in each cell are fixed and attached with random
operations. We follow Algorithm 1 to generate one example
of mk (Table II). The verification key vk = (vkn, vkr) is also
recorded, where vkn = son and vkr = sor .

2) Watermark Embedding: We follow Algorithm 2 to
embed the watermark determined by mk to the DNN architec-
ture during the search process. Figure 6 shows the architectures
of two cells searched by GDAS, where stamps are marked
as red edges, and the computing order of each operation is
annotated with numbers. These two cells are further stacked
to construct a complete DNN architecture, including three
normal blocks (each contains six normal cells) connected by
two reduction cells. The pre-processing layer is a normal
convolution that extends the number of channels from 3 to 33.
The number of filters is doubled in the reduction cells, and
the channel sizes (i.e., filter number) of three normal blocks
are set as 33, 66 and 132. We train the searched architecture
over CIFAR10 for 300 epochs to achieve a 3.52% error rate
on the validation dataset. This is just slightly higher than
the baseline (3.32%), where all connections participate in the
search process. This shows the usability of our watermarking
scheme.

3) Watermark Extraction and Verification: Given a suspi-
cious model, we launch a spy process to monitor the activities
in OpenBLAS during inference, and collect the side-channel
trace. We conduct the following steps to analyze this trace.

First, we check whether the pattern of the whole trace
matches the macro-architecture of a NAS model, i.e., the trace
has three blocks, each of which contains six similar leakage
windows, and divided by two different leakage windows.

Second, we focus on the internal structure of each cell and
check if it contains the fixed operation sequence given by

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 31,2022 at 01:41:56 UTC from IEEE Xplore. Restrictions apply.

LOU et al.: OWNERSHIP VERIFICATION OF DNN ARCHITECTURES VIA HARDWARE CACHE SIDE CHANNELS 8087

Fig. 6. Architectures of the searched cells. ci−1 and ci−2 are the inputs from the previous cells.

Fig. 7. A side-channel trace of the first normal cell.

Fig. 8. Execution time of the operations in a cell.

vk. Here we only demonstrate the pattern of the first leakage
window (i.e., the first normal cell) as an example (Figure 7).
Other cells can be analyzed in the same way. Recall that in the
figure the blue node denotes an access to itcopy and red node
denotes an access to oncopy. From this figure, we can observe
four large clusters, which can be easily identified according
to their leakage patterns that ①, ③ and ⑦ are SCs while ⑤ is
a DS. Figure 8a shows the measured execution time of these
four GEMM operations. An interesting observation is that 5×5
convolution takes much longer time than 3 × 3 convolution,
because it computes on a larger matrix. Such timing difference
enables us to identify the kernel size when the search space
is limited. Besides, we can also infer that the channel size is
33, since each operation contains C = 33 consecutive sub-
clusters.1 Figure 8b gives the inter-GEMM latency in the cell.
The latency of ② and ④ is much larger, indicating they are
pooling operations. Particularly, the latency of ⑧ contains two
parts: skip and interval between two cells. The three small
clusters at the beginning of the trace are identified as three
normal convolutions used for preprocessing the input. Finally,
after identifying the fixed operation sequences (so) in all cells,
we can claim the architecture ownership of the DNN model.

The above analysis can already give us fair verification
results. To be more confident, we further recover the remaining

1The value of C can be identified if we zoom in Figure 7, which is not
shown in this paper due to page limit.

Fig. 9. Extracted values of the matrix parameters (m, n, k).

hyper-parameters (in particular, the kernel size) based on their
matrix dimensions (m, n, k), according to Table I. Figure 9
shows the values of (m, n, k) extracted from i tern in the nor-
mal cell, where each operation contains two types of normal
convolutions. For certain matrix dimensions that cannot be
extracted precisely, we empirically deduce their values based
on the constraints of NAS models. For instance, m is detected
to be between [961, 1280]. We can fix it as m = 1024 since
it denotes the size of input to the cell and 32 × 32 is the
most common setting. The value of n can be easily deduced
as it equals the channel size. Deduction of k is more difficult,
since the filter size k in a NAS model is normally smaller
than the GEMM constant in OpenBLAS, it does not leak
useful messages in the side-trace trace. However, an interesting
observation is that 5× 5 convolution takes much longer time
than 3×3 convolution, because it computes on a larger matrix.
Such timing difference enables us to identify the kernel size
Ri when the search space is limited. Analysis on the reduction
cells is similar.

C. Usability

To evaluate the usability property, we vary the number of
stamp edges ns from 1 to 4 to search watermarked architec-
tures. Then we train the models over CIFAR10, CIFAR100
and ImageNet, and measure the validation accuracy. Figure 10
shows the average results on CIFAR dataset of five experi-
ments versus the training epochs.

We observe that models with different stamp sizes have
quite distinct performance at epoch 100. Then they gradually
converge along with the training process, and finally reach a
similar accuracy at epoch 300. For CIFAR10, the accuracy of

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 31,2022 at 01:41:56 UTC from IEEE Xplore. Restrictions apply.

8088 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 11, NOVEMBER 2022

Fig. 10. Top-1 validation accuracy.

the original model is 96.53%, while the watermarked model
with the worst performance (ns = 3) gives an accuracy of
96.16%. Similarly for CIFAR100, the baseline accuracy and
worst accuracy (ns = 4) are 81.07% and 80.35%. We also
check this property on ImageNet. Since training an ImageNet
model is quite time-consuming (about 12 GPU days), we only
measure the accuracies of the original model and two water-
marked models (ns = 2 and 4), which are also roughly
the same (73.97%, 73.16% and 72.73%). This confirms our
watermarking scheme does not affect the usability of the
model.

1) Selection of the Stamp Size: The setting of the stamp
size is a trade-off between model usability and watermark
reliability. Since our watermark scheme requires the stamp
edges to form a dependent path to be robust against operation
shuffling attacks (Section VII-D), the largest number of stamps
is restricted by the number of nodes in the NAS cell. For
conventional NAS architectures, the range of stamp size is
[0, 4]. Our evaluation results (Figure 10) indicates that 4 stamp
edges incur negligible performance degradation. Therefore,
we recommend to adopt this setting in our watermark scheme.

D. Robustness

We consider the robustness of our watermarking scheme
against four types of scenarios.

1) System Noise: It is worth noting that the noise in the
side-channel traces (e.g., from the system activities, interfer-
ence with other applications) could possibly make it difficult
for the model owner to identify the watermarks. To evaluate
this, we follow previous works [38] to inject up to 30% scales
of Gaussian noise into the time interval between events in the
side-channel trace, which can well simulate the system noise.
We find that it is still feasible to extract the watermarking
operations with high fidelity. We conclude that the impact of
system noise on operation extraction is actually negligible. The
reason behind is that the most important operation features,
such as the operation class, channel size and kernel size, are
all revealed by analyzing the holistic pattern of side-channel
leakage traces. System noise that just disturbs local patterns
will not mislead the inference of these operation features. The
recovery of matrix dimensions (m, n, k) is indeed affected
by side-channel noise, but as we only need to deduce a
range of these parameters, such impact is acceptable. Besides,
according to our threat model in Section II-C, the model owner

Fig. 11. Side-channel traces of weighting pruned models.

takes control of the host TEE platform, so he can disable
other applications on the same machine to further improve
the verification reliability.

2) Model Transformation: Prior parameter-based solu-
tions [18]–[20] are proven to be vulnerable against model
fine-tuning or image transformations [22]–[25]. In contrast,
our scheme is robust against these transformations as it only
modifies the network architecture. First, we consider four types
of fine-tuning operations evaluated in [18] (Fine-Tune Last
Layer, Fine-Tune All Layers, Re-Train Last Layer, Re-Train
All Layers). We verify that they do not corrupt our watermarks
embedded to the model architecture. Second, we consider
model compression. Common pruning techniques set certain
parameters to 0 to shrink the network size. The GEMM
computations are still performed over pruned parameters,
which give similar side-channel patterns. Figures 11(a)-(c)
show the extraction trace of the first normal cell after the
entire model is pruned with different rates (0.3, 0.6, 0.9) using
L2-norm. Figure 11(d) shows one case where we prune all the
parameters in the first normal cell. We observe that a bigger
pruning rate can decrease the length of the leakage window,
as there are more zero weights to simplify the computation.
However, the pattern of the operations in the cell keeps
unchanged, indicating the weight pruning cannot remove the
embedded watermark.

3) Model Obfuscation: An adversary may also obfuscate the
inference execution to interfere with the verification results.
(1) He can shuffle the orders of some operations which can be
executed in parallel. However, since the selected stamp oper-
ations are in a path, they have high dependency and must be
executed in the correct order. Hence, we can still identify the
fixed operation sequence from the leakage trace of obfuscated
models. (2) The adversary can add useless computations (e.g.,
matrix multiplications), operations or neurons to obfuscate the
side-channel trace. Again, the critical stamp operations are still
in the trace, and the owner is able to verify the ownership
regardless of the extra operations. (3) The adversary may add
useless cell windows to obfuscate the watermark verification.

Figure 12 illustrates the leakage pattern of the original cell
as well as the cells after being obfuscated by above two
techniques. Specifically, in Figure 12(b), the attacker shuffles

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 31,2022 at 01:41:56 UTC from IEEE Xplore. Restrictions apply.

LOU et al.: OWNERSHIP VERIFICATION OF DNN ARCHITECTURES VIA HARDWARE CACHE SIDE CHANNELS 8089

Fig. 12. Traces of obfuscated models.

Fig. 13. Influence of useless cell windows.

the operation execution order, which first executes ②, ④, ⑥
and ⑧ and then runs the watermarked path. We can see that
the watermark (i.e., fixed operations) can still be identified in
the sequence. In Figure 12(c), the attacker adds an unused
3× 3 separable convolution (red block) in the pipeline, which
does not affect the watermark extraction, as the fixed sequence
of stamp operations remains. In short, the stamp operations
must be executed sequentially and cannot be removed in a
lightweight manner. This makes it difficult to remove the
watermarks in the architecture.

Figure 13 shows the influence of injected useless cell
windows. In the side-channel trace, it contains three cell
windows, where ① and ③ are NAS cell windows and② is
the injected useless cell window. We just need to check if the
monitored side-channel trace contains N identical cells and
identify if the watermark exists in the cells. Even there are
other cells, we can also claim that this model is watermarked
and then require for further arbitration.

4) Structure Pruning: We further consider the structured
pruning, which can explicitly modify the model structure.
This technique is indeed possible to remove our watermark
embedded into the network architecture. However, it has two
drawbacks: (1) since the watermarking key is secret, the
adversary does not know which operation should be pruned;
(2) Pruning the stamp operation can cause significant perfor-
mance drop. To validate this, we random prune 1 to 4 stamp
operations in the normal cell, and Table III shows the predic-
tion accuracy of pruned models on CIFAR10. For the case of
pruning one stamp operation, we give four prediction accuracy
values corresponding to four possible pruning scheme (pruning
one operation from ②, ③, ⑤ and ⑦ in Fig. 6a). For models with
more than one stamp operations pruned, we give the average
accuracy of pruned models. We observe that even only pruning
one stamp operation can lead to great accuracy drop (96.53%
to 55.62%). Hence, removing the watermark with structured
pruning is not practical.

Note that an adversary can leverage some powerful meth-
ods (e.g., knowledge distillation [49], [50]) to fundamentally
change the architecture of the target model and possibly erase
the watermarks. However, this is not flagged as copyright
violation, since the adversary needs to spend a quantity of

TABLE III

ACCURACY OF STRUCTURED PRUNED MODELS ON CIFAR10

Fig. 14. Influence of parameter binarization.

effort and cost (computing resources, time, dataset) to obtain
a new model. This model is significantly different from the
original one, and is regarded as the adversary’s legitimate
property.

5) Parameter Binarization: This technique [67] is used
to accelerate the model execution by binarizing the model
parameters. If corresponding Binary Neural Network (BNN)
still adopts the BLAS library to accelerate the matrix mul-
tiplications, the side-channel leakage pattern keeps similar.
Only the time interval between each monitored API access
becomes shorter, as the parameter binarization would cause
much faster model execution. Figure 14 shows the comparison
of side-channel traces between the original NAS cell and bina-
rized cell. We observe that although parameter binarization
achieves about 20 times faster inference (2.8e5 vs. 1.4e4 inter-
vals), the leakage trace still keeps the similar pattern. Hence,
our scheme can still be applied to verify BNN models. If the
BNN model adopts other acceleration libraries, we can also
switch to monitor that library to perform similar analysis.

E. Uniqueness

Given a watermarked model, we expect that benign users
have very low probability to obtain the same architecture
following the original NAS method. This is to guarantee small
false positives of watermark verification.

The theoretical analysis assumes each edge selects various
operations with equal probability, and shows the collision rate
is less than 0.03% (see Appendix A). We further empirically
evaluate the uniqueness of our watermarking scheme. Specifi-
cally, we repeat the GDAS method on CIFAR10 for 100 times
with different random seeds to generate 100 architecture pairs
for the normal and reduction cells. We find our stamps have no
collision with these 100 normal models. Figure 15 shows the
distribution of the operations on eight connection edges in the
two cells. We observe that most edges have some preferable
operations, and there are some operations never attached to
certain edges. This is more obvious in the architecture of
the reduction cell. Such feature can help us to select more
unique operation sequence as the marking key. Besides, the
collision probability is decreased when the stamp size ns is
larger. A stamp size of 4 with fixed edge-operation selection
can already achieve strong uniqueness.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 31,2022 at 01:41:56 UTC from IEEE Xplore. Restrictions apply.

8090 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 11, NOVEMBER 2022

Fig. 15. Operation distributions for a normal cell (left) and reduction cell
(right). The connection index is the index of the connection edge in the NAS
cell.

VIII. CONCLUSION

In this paper, we propose a new direction for IP protection of
DNNs. We show a carefully-crafted network architecture can
be utilized as the ownership evidence, which exhibits stronger
resilience against model transformations than previous solu-
tions. We leverage Neural Architecture Search to produce the
watermarked architecture, and cache side channels to extract
the black-box models for ownership verification. Evaluations
indicate our scheme can provide great effectiveness, usability,
robustness, and uniqueness, making it a promising and prac-
tical option for IP protection of AI products.

APPENDIX

A. Proof Sketch of Theorem 1

Proof: [Proof Sketch] We prove that our algorithms
(WMGen, Mark, Verify) form a qualified watermarking
scheme for NAS models.
Effectiveness. The property is guaranteed by Assumption 2.
Usability. Let Sci ,0, Sci be the architecture search spaces
before and after restricting the stamp ki of ci . Aci ,0 and Aci are
the two architecture searched from Sci ,0 and Sci , respectively.
fci ,0 and fci are the corresponding models trained on the same
data distribution D. From Assumption 1, we have

Pr [fci ,0(x) = y|(x, y) ∼ D] − Pr [fci (x)

= y|(x, y) ∼ D] ≤ �

N
. (5)

Let f0, f are the DNN models that are learned before
and after restricting their architecture search spaces by a
watermark. One can easily use the mathematical induction to
prove the usability of our watermarking scheme, i.e.,

Pr [f0(x) = y|(x, y) ∼ D] − Pr [f (x)

= y|(x, y) ∼ D] ≤ �. (6)

Robustness. We classify the model modification attacks into
two categories. The first approach is to only change the
parameters of f using existing techniques such as fine-tuning
and model compression. Since the architecture is preserved,
the stamps of all cells are also preserved. According to
Assumption 2, the idea analyzer can extract the stamps and
verify the ownership of the modified models.

The other category of attacks modifies the architecture of
the model. Since the marking key (watermark) is secret, the
adversary can uniformly modify the operation of an edge or

Algorithm 4: GetPath From Cell Supernet
Input: cell supernet G, # of fixed edges ns

Output: set Se of all the possible paths with length ns

Se = {},
P1 = {a, b} ◦N1
for i from 2 to B do

Pi = (Pi−1 ∪ . . . ∪ P1 ∪ {a} ∪ {b}) ◦Ni

for p in PB do
if |p| ≥ ns then

Se = Se ∪ GetSubPath(p, ns)
return Se

delete an edge in a cell. The probability that the adversary
can successfully modify one edge/operation of a stamp is
not larger than ns|ci | , where |ci | is the number of connected
edges in ci . Thus, the expected value of the total number of
modification is δ× N×ns∑N

i=1 |ci |
τ×Ns . However, since the adversary

cannot access the proxy and task datasets, he cannot obtain
new models with competitive performance by retraining the
modified architectures.
Uniqueness. Given a watermarked model, we expect that
benign users have a very low probability to obtain the same
architecture following the original NAS method. Without loss
of generality, we assume the NAS algorithm can search the
same architecture if the search spaces of all cells are the same.
Thus, the uniqueness of the watermarked model is decided
by the probability that the adversary can identify the same
search spaces. Because the marking key is secret, the adversary
has to guess the edges and the corresponding operations of
each stamp if he wants to identify the same search spaces.
Assume the selection of candidate operations is independent
and identically distributed, the probability that an operation is
chosen on an edge is 1

|O| . For a DNN model that contains
B computation nodes, there are 2B connection edges, from
which we select ns causal edges. There are

(2B
ns

)
combinations.

Hence, the probability of the stamp collision in a cell can be
computed as

(2B
ns

)× (1
|O|)

ns . In our experiment configurations,
the collision rate is smaller than 1.7%. Considering both the
normal and reduction cells, the collision rate is smaller than
(1.7%)2 ≈ 0.03%, which can be neglected.

B. Get Path From Cell Supernet

Algorithm 4 illustrates how to extract consecutive paths
from the cell supernet G. The operation {set} ◦ Ni appends
the node Ni to each element in the set, generating a set Pi of
possible paths from the cell inputs to node Ni . Specifically, PB
contains all the candidate paths in the cell supernet G. Given
the number of fixed stamp edges ns , our goal is to identify a
path of length ns from G. Note that the longest consecutive
path in G contains B edges, so that it has 1 ≤ ns ≤ B. For each
candidate path p in PB, if its length is larger than ns , we would
extract all the subpaths with length ns from it (GetSubPath),
and save them to Se.

C. Details About GEMM in OpenBLAS

BLAS realizes the matrix multiplication with the function
gemm. This function computes C = αA × B + βC , where

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 31,2022 at 01:41:56 UTC from IEEE Xplore. Restrictions apply.

LOU et al.: OWNERSHIP VERIFICATION OF DNN ARCHITECTURES VIA HARDWARE CACHE SIDE CHANNELS 8091

Fig. 16. The procedure of GEMM.

Algorithm 5: GEMM in OpenBLAS
Input: matrice A, B, C; scalars α, β
Output: C = αA × B + βC
for j in (0:R:n) do // Loop 1

for l in (0:Q:k) do // Loop 2
call itcopy
for jj in (j:3UNROLL:j+R) do // Loop 4

call oncopy
call kernel

for i in (P:P:m) do // Loop 3
call itcopy
call kernel

TABLE IV

MONITORED CODE LINES IN OPENBLAS AND PYTORCH

A is an m × k matrix, B is a k × n matrix, C is an m × n
matrix, and both α and β are scalars. OpenBLAS adopts
Goto’s algorithm [68] to accelerate the multiplication using
modern cache hierarchies. This algorithm divides a matrix into
small blocks (with constant parameters P, Q, R), as shown in
Figure 16. The matrix A is partitioned into P × Q blocks
and B is partitioned into Q × R blocks, which can be fit
into the L2 and L3 caches, respectively. The multiplication
of such two blocks generates a P × R block in the matrix C.
Algorithm 5 shows the process of gemm that contains 4 loops
controlled by the matrix size (m, n, k). Functions itcopy and
oncopy are used to allocate data and functions. kernel runs the
actual computation. Note that the partition of m contains two
loops, loop3 and loop4, where loop4 is used to process the
multiplication of the first P × Q block and the chosen Q× R
block. For different cache sizes, OpenBLAS selects different
values of P, Q and R to achieve the optimal performance.

D. Details About the NAS Algorithms

1) Architecture Search: We adopt GDAS [36] to search
for the optimal CNN architectures on CIFAR10. We set the
number of initial channels in first convolution layer as 16, the
number of the computation nodes in a cell as 4 and the number
of normal cells in a block as 2. Then we train the model for

Fig. 17. The side-channel trace of a recurrent cell.

240 epochs. The setting of the optimizer and learning rate
schedule is the same as that in [36]. The search process on
CIFAR10 takes about five hours with a single NVIDIA Tesla
V100 GPU.

2) Model Retraining: After obtaining the searched cells,
we construct the CNNs for CIFAR and ImageNet. For the
CIFAR, we form a CNN with 33 initial channels. We set
number of computation nodes in a cell as 4 and the number
of normal cells in a block as 6. Then we train the network for
300 epochs on the dataset (both CIFAR10 and CIFAR100),
with a learning rate reducing from 0.025 to 0 with the cosine
schedule. The preprocessing and data augmentation is the same
as [36]. The training process takes about 11 GPU hours. For
the CNN on ImageNet, we set the initial channel size as 52,
and the number of normal cells in a block as 4. The network
is trained with 250 epochs using the SGD optimization and
the batch size is 128. The learning rate is initialized as 0.1,
and is reduced by 0.97 after each epoch. The training process
takes 12 days on a single GPU.

E. Monitored Functions in Pytorch and OpenBLAS

Table IV gives the monitored code lines in the latest Pytorch
1.8.0 and OpenBLAS 0.3.15. To identify computationally
intensive operations (i.e., convolutions), we need to monitor
accesses to functions itcopy and oncopy. To protect other DNN
components like activations, we turn to monitor corresponding
activation APIs in the library. Figure 17 shows an example
side-channel leakage trace of activation functions monitored
from a NAS cell. We observe that the trace contains 9 separate
clusters, each of which represents the existence of activation
functions in a DNN model layer.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions or recommenda-
tions expressed in this article are those of the authors and
do not reflect the views of the National Research Foundation,
Singapore.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), vol. 25, Dec. 2012, pp. 1097–1105.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[3] S. Guo, T. Zhang, G. Xu, H. Yu, T. Xiang, and Y. Liu, “Topology-aware
differential privacy for decentralized image classification,” IEEE Trans.
Circuits Syst. Video Technol., vol. 32, no. 6, pp. 4016–4027, Jun. 2022.

[4] Y. Wang, X. Fan, R. Xiong, D. Zhao, and W. Gao, “Neural network-
based enhancement to inter prediction for video coding,” IEEE Trans.
Circuits Syst. Video Technol., vol. 32, no. 2, pp. 826–838, Feb. 2022.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 31,2022 at 01:41:56 UTC from IEEE Xplore. Restrictions apply.

8092 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 11, NOVEMBER 2022

[5] L. Li, Y. Zhang, S. Tang, L. Xie, X. Li, and Q. Tian, “Adaptive spatial
location with balanced loss for video captioning,” IEEE Trans. Circuits
Syst. Video Technol., vol. 32, no. 1, pp. 17–30, Jan. 2022.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” 2018,
arXiv:1810.04805.

[7] T. B. Brown et al., “Language models are few-shot learners,” 2020,
arXiv:2005.14165.

[8] A. W. Senior et al., “Improved protein structure prediction using
potentials from deep learning,” Nature, vol. 577, no. 7792, pp. 706–710,
2020.

[9] L. Luo, Z. Chen, M. Chen, X. Zeng, and Z. Xiong, “Reversible image
watermarking using interpolation technique,” IEEE Trans. Inf. Forensics
Security, vol. 5, no. 1, pp. 187–193, Mar. 2010.

[10] A. Roy and R. S. Chakraborty, “Toward optimal prediction error
expansion-based reversible image watermarking,” IEEE Trans. Circuits
Syst. Video Technol., vol. 30, no. 8, pp. 2377–2390, Aug. 2020.

[11] H. Fang et al., “Deep template-based watermarking,” IEEE Trans.
Circuits Syst. Video Technol., vol. 31, no. 4, pp. 1436–1451, Apr. 2021.

[12] Q. Li et al., “Concealed attack for robust watermarking based on gener-
ative model and perceptual loss,” IEEE Trans. Circuits Syst. Video Tech-
nol., early access, Dec. 27, 2021, doi: 10.1109/TCSVT.2021.3138795.

[13] L. Xiong, X. Han, C.-N. Yang, and Y.-Q. Shi, “Robust reversible
watermarking in encrypted image with secure multi-party based on
lightweight cryptography,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 32, no. 1, pp. 75–91, Jan. 2022.

[14] J. You, Y.-G. Wang, G. Zhu, and S. Kwong, “Truncated robust natural
watermarking with Hungarian optimization,” IEEE Trans. Circuits Syst.
Video Technol., vol. 32, no. 2, pp. 483–495, Feb. 2022.

[15] F. Peng, B. Long, and M. Long, “A general region nesting-based
semi-fragile reversible watermarking for authenticating 3D mesh mod-
els,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 11,
pp. 4538–4553, Nov. 2021.

[16] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding water-
marks into deep neural networks,” in Proc. ACM Int. Conf. Multimedia
Retr., Jun. 2017, pp. 269–277.

[17] B. D. Rouhani, H. Chen, and F. Koushanfar, “DeepSigns: An end-to-end
watermarking framework for protecting the ownership of deep neural
networks,” in Proc. ACM Int. Conf. Architectural Support Program.
Lang. Operating Syst., 2019, pp. 1–12.

[18] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning your
weakness into a strength: Watermarking deep neural networks by back-
dooring,” in Proc. 27th USENIX Secur. Symp., 2018, pp. 1615–1631.

[19] J. Zhang et al., “Model watermarking for image processing networks,”
in Proc. AAAI Conf. Artif. Intell., 2020, vol. 34, no. 7, pp. 12805–12812.

[20] K. Chen, S. Guo, T. Zhang, S. Li, and Y. Liu, “Temporal watermarks
for deep reinforcement learning models,” in Proc. 20th Int. Conf. Auton.
Agents MultiAgent Syst., 2021, pp. 314–322.

[21] H. Wu, G. Liu, Y. Yao, and X. Zhang, “Watermarking neural networks
with watermarked images,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 31, no. 7, pp. 2591–2601, Jul. 2021.

[22] X. Chen et al., “REFIT: A unified watermark removal framework for
deep learning systems with limited data,” in Proc. ACM Asia Conf.
Comput. Commun. Secur., May 2021, pp. 321–335.

[23] M. Shafieinejad, J. Wang, N. Lukas, X. Li, and F. Kerschbaum,
“On the robustness of the backdoor-based watermarking in deep neural
networks,” 2019, arXiv:1906.07745.

[24] X. Liu, F. Li, B. Wen, and Q. Li, “Removing backdoor-based watermarks
in neural networks with limited data,” 2020, arXiv:2008.00407.

[25] S. Guo, T. Zhang, H. Qiu, Y. Zeng, T. Xiang, and Y. Liu, “Fine-tuning is
not enough: A simple yet effective watermark removal attack for DNN
models,” in Proc. 30th Int. Joint Conf. Artif. Intell., Aug. 2021, pp. 1–7.

[26] R. Namba and J. Sakuma, “Robust watermarking of neural network with
exponential weighting,” in Proc. ACM Asia Conf. Comput. Commun.
Secur., Jul. 2019, pp. 228–240.

[27] W. Aiken, H. Kim, and S. Woo, “Neural network laundering: Removing
black-box backdoor watermarks from deep neural networks,” 2020,
arXiv:2004.11368.

[28] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leveraging
shared resource attacks to learn DNN architectures,” in Proc. USENIX
Secur. Symp., 2020, pp. 2003–2020.

[29] S. Hong, M. Davinroy, Y. Kaya, D. Dachman-Soled, and T. Dumitraş,
“How to 0wn NAS in your spare time,” 2020, arXiv:2002.06776.

[30] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 2016, arXiv:1611.01578.

[31] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[32] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural
architecture search via parameter sharing,” 2018, arXiv:1802.03268.

[33] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
“Hierarchical representations for efficient architecture search,” 2017,
arXiv:1711.00436.

[34] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “SMASH:
One-shot model architecture search through HyperNetworks,” 2017,
arXiv:1708.05344.

[35] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” 2018, arXiv:1806.09055.

[36] X. Dong and Y. Yang, “Searching for a robust neural architecture in four
GPU hours,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 1761–1770.

[37] L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: Reverse engi-
neering of neural network architectures through electromagnetic side
channel,” in Proc. 28th USENIX Secur. Symp., 2019, pp. 515–532.

[38] X. Hu et al., “DeepSniffer: A DNN model extraction framework based
on learning architectural hints,” in Proc. 55th Int. Conf. Architectural
Support Program. Lang. Operating Syst., 2020, pp. 385–399.

[39] S. Hong et al., “Security analysis of deep neural networks operating in
the presence of cache side-channel attacks,” 2018, arXiv:1810.03487.

[40] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search:
A survey,” J. Mach. Learn. Res., vol. 20, no. 55, pp. 1–21, 2019.

[41] X. Dong and Y. Yang, “NAS-Bench-201: Extending the scope of
reproducible neural architecture search,” 2020, arXiv:2001.00326.

[42] X. Chu, B. Zhang, and R. Xu, “FairNAS: Rethinking evaluation fairness
of weight sharing neural architecture search,” 2019, arXiv:1907.01845.

[43] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le,
“Understanding and simplifying one-shot architecture search,” in Proc.
Int. Conf. Mach. Learn., 2018, pp. 550–559.

[44] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proc. AAAI Conf. Artif.
Intell., vol. 33, 2019, pp. 4780–4789.

[45] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective neural
architecture search via Lamarckian evolution,” 2018, arXiv:1804.09081.

[46] X. Chu, T. Zhou, B. Zhang, and J. Li, “Fair DARTS: Eliminating unfair
advantages in differentiable architecture search,” in Proc. Eur. Conf.
Comput. Vis., 2020, pp. 465–480.

[47] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Proc. IEEE Symp. Secur. Privacy,
May 2015, pp. 605–622.

[48] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,” in Proc. USENIX Secur. Symp.,
2014, pp. 1–15.

[49] L. J. Ba and R. Caruana, “Do deep nets really need to be deep?” 2013,
arXiv:1312.6184.

[50] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015, arXiv:1503.02531.

[51] F. McKeen et al., “Innovative instructions and software model for
isolated execution,” in Proc. 2nd Int. Workshop Hardw. Architectural
Support Secur. Privacy, vol. 10, 2013, pp. 1–8.

[52] D. Kaplan, J. Powell, and T. Woller, “AMD memory encryption,” Adv.
Micro Devices, (AMD), Santa Clara, CA, USA, White Paper, 2016.

[53] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, “Mal-
ware guard extension: Using SGX to conceal cache attacks,” in Proc. Int.
Conf. Detection Intrusions Malware, Vulnerability Assessment. Cham,
Switzerland: Springer, 2017, pp. 3–24.

[54] D. Gruss et al., “Another flip in the wall of Rowhammer defenses,” in
Proc. IEEE Symp. Secur. Privacy (SP), May 2018, pp. 245–261.

[55] M. Schwarz, S. Weiser, and D. Gruss, “Practical enclave malware with
Intel SGX,” in Proc. Int. Conf. Detection Intrusions Malware, Vulnera-
bility Assessment. Cham, Switzerland: Springer, 2019, pp. 177–196.

[56] M. Marschalek, “The wolf in SGX clothing,” Intel Corp. (Intel), Santa
Clara, CA, USA, Tech. Rep., 2018.

[57] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, “Software grand exposure: SGX cache attacks are prac-
tical,” in Proc. USENIX Workshop Offensive Technol., 2017, pp. 1–12.

[58] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on
Intel SGX,” in Proc. 10th Eur. Workshop Syst. Secur., Apr. 2017, pp. 1–6.

[59] M. Hähnel, W. Cui, and M. Peinado, “High-resolution side channels for
untrusted operating systems,” in Proc. USENIX ATC, 2017, pp. 1–15.

[60] L. Zhou, X. Ding, and F. Zhang, “SMILE: Secure memory introspection
for live enclave,” in Proc. IEEE Symp. Secur. Privacy (SP). Washington,
DC, USA: IEEE Comput. Soc., 2022, p. 1536.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 31,2022 at 01:41:56 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCSVT.2021.3138795

LOU et al.: OWNERSHIP VERIFICATION OF DNN ARCHITECTURES VIA HARDWARE CACHE SIDE CHANNELS 8093

[61] E. Le Merrer, P. Perez, and G. Trédan, “Adversarial frontier stitching for
remote neural network watermarking,” Neural Comput. Appl., vol. 32,
pp. 9233–9244, Aug. 2019.

[62] J. Zhang et al., “Protecting intellectual property of deep neural networks
with watermarking,” in Proc. Asia Conf. Comput. Commun. Secur.,
May 2018, pp. 159–172.

[63] Z. Li, C. Hu, Y. Zhang, and S. Guo, “How to prove your model belongs
to you: A blind-watermark based framework to protect intellectual
property of DNN,” in Proc. 35th Annu. Comput. Secur. Appl. Conf.,
Dec. 2019, pp. 126–137.

[64] V. Duddu, D. Samanta, D. V. Rao, and V. E. Balas, “Stealing neural
networks via timing side channels,” 2018, arXiv:1812.11720.

[65] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional
neural networks through side-channel information leaks,” in Proc. 55th
ACM/ESDA/IEEE Design Autom. Conf. (DAC), Jun. 2018, pp. 1–6.

[66] C. Liu et al., “Progressive neural architecture search,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 19–34.

[67] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or −1,” 2016, arXiv:1602.02830.

[68] K. Goto and R. A. V. D. Geijn, “Anatomy of high-performance matrix
multiplication,” ACM Trans. Math. Softw., vol. 34, no. 3, pp. 1–25,
May 2008.

Xiaoxuan Lou received the B.S. and mas-
ter’s degrees from Zhejiang University, China, in
2017 and 2020, respectively. He is currently pur-
suing the Ph.D. degree with Nanyang Technological
University, Singapore. His research interests include
machine learning security and system security.

Shangwei Guo received the Ph.D. degree in
computer science from Chongqing University,
Chongqing, China, in 2017. From 2018 to 2020,
he was a Post-Doctoral Research Fellow at Hong
Kong Baptist University and Nanyang Technological
University. He is currently an Associate Professor
with the College of Computer Science, Chongqing
University. His research interests include machine
learning security, cloud/edge computing security,
and database security.

Jiwei Li received the Ph.D. degree in computer
science from Stanford University, USA, in 2017.
He is currently a Researcher with the Department of
Computer Science and Technology, Zhejiang Uni-
versity, China. He has published over 60 papers
on top-tier AI conferences and journals, including
ICLR, ICML, NeurIPS, ACL, EMNLP, NAACL, and
eLife. He was a recipient of the 2020 MIT TR35
Global Innovator Award and Forbes 40 under 40.

Tianwei Zhang (Member, IEEE) received the bach-
elor’s degree from Peking University in 2011 and
the Ph.D. degree from Princeton University in
2017. He is currently an Assistant Professor with
the School of Computer Science and Engineer-
ing, Nanyang Technological University. His research
focus is on computer system security. He is par-
ticularly interested in security threats and defenses
in machine learning systems, autonomous systems,
computer architecture, and distributed systems.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on October 31,2022 at 01:41:56 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

