
4096 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 6, JUNE 2022

Byzantine-Resilient Decentralized Stochastic
Gradient Descent

Shangwei Guo , Tianwei Zhang , Han Yu , Member, IEEE, Xiaofei Xie, Lei Ma, Tao Xiang , Member, IEEE,

and Yang Liu , Senior Member, IEEE

Abstract— Decentralized learning has gained great popularity
to improve learning efficiency and preserve data privacy. Each
computing node makes equal contribution to collaboratively learn
a Deep Learning model. The elimination of centralized Parameter
Servers (PS) can effectively address many issues such as privacy,
performance bottleneck and single-point-failure. However, how
to achieve Byzantine Fault Tolerance in decentralized learning
systems is rarely explored, although this problem has been exten-
sively studied in centralized systems. In this paper, we present
an in-depth study towards the Byzantine resilience of decen-
tralized learning systems with two contributions. First, from the
adversarial perspective, we theoretically illustrate that Byzantine
attacks are more dangerous and feasible in decentralized learning
systems: even one malicious participant can arbitrarily alter the
models of other participants by sending carefully crafted updates
to its neighbors. Second, from the defense perspective, we propose
UBAR, a novel algorithm to enhance decentralized learning
with Byzantine Fault Tolerance. Specifically, UBAR provides a
Uniform Byzantine-resilient Aggregation Rule for benign nodes
to select the useful parameter updates and filter out the malicious
ones in each training iteration. It guarantees that each benign
node in a decentralized system can train a correct model under
very strong Byzantine attacks with an arbitrary number of
faulty nodes. We conduct extensive experiments on standard
image classification tasks and the results indicate that UBAR can
effectively defeat both simple and sophisticated Byzantine attacks
with higher performance efficiency than existing solutions.

Manuscript received April 18, 2021; revised July 5, 2021, August 25,
2021, and September 27, 2021; accepted September 27, 2021. Date of
publication October 1, 2021; date of current version June 6, 2022. This
work was supported in part by the National Natural Science Foundation
of China under Grant 62102052; in part by Singapore Ministry of Edu-
cation Academic Research Fund Tier 1 under Award RS02/19 and Award
2018-T1-002-069; in part by the National Research Foundation, Prime
Minister’s Office, Singapore, under Award NRF2018NCR-NCR009-0001,
Award NRF2018NCR-NCR005-0001, Award NRF2018NCR-NSOE003-0001,
Award NRFI06-2020-0022, and Award AISG2-RP-2020-019; in part by the
Joint Nanyang Technological University (NTU)-WeBank Research Centre
on Fintech under Award NWJ-2020-008; in part by Nanyang Assistant
Professorship (NAP); and in part by the Research, Innovation and Enterprise
(RIE) 2020 Advanced Manufacturing and Engineering Programmatic Fund,
Singapore, under Award A20G8b0102. This article was recommended by
Associate Editor L. Zheng. (Corresponding author: Tianwei Zhang.)

Shangwei Guo and Tao Xiang are with the College of Com-
puter Science, Chongqing University, Chongqing 400044, China (e-mail:
swguo@cqu.edu.cn; txiang@cqu.edu.cn).

Tianwei Zhang, Han Yu, and Yang Liu are with the School of Computer Sci-
ence and Engineering, Nanyang Technological University, Singapore 639798
(e-mail: tianwei.zhang@ntu.edu.sg; han.yu@ntu.edu.sg; yangliu@ntu.edu.sg).

Xiaofei Xie is with the School of Computing and Information
Systems, Singapore Management University, Singapore 188065 (e-mail:
xiaofei.xfxie@gmail.com).

Lei Ma is with the Department of Electrical and Computer Engineer-
ing, University of Alberta, Edmonton, AB T6G 2R3, Canada (e-mail:
ma.lei@acm.org).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSVT.2021.3116976.

Digital Object Identifier 10.1109/TCSVT.2021.3116976

Index Terms— Decentralized learning, stochastic gradient
descent, Byzantine attack, Byzantine fault tolerance.

I. INTRODUCTION

THE rapid development of edge computing and Deep
Learning (DL) technologies leads to the era of Artificial

Intelligence of Things. Nowadays, it is a trend to learn and
deploy powerful DL models on edge devices [1]–[5] for
various AI tasks (e.g., image classification, video processing).
Such collaborative learning can increase the model generaliza-
tion and achieve data privacy, since the model is trained from
different sources of data without being released. Meanwhile,
the collaboration mode enables resource-constrained devices
to train large-scale models efficiently. One typical example
is the federated learning system [6], [7], where multiple edge
devices can collaborate to train a shared DL model for different
applications and scenarios, such as healthcare [8], security
surveillance [9], intelligent transportation [10].

However, federated learning introduces a centralized para-
meter server, which can bring new security and efficiency
drawbacks [7], [11], [12]. First, federated learning suffers from
single point of failure. The functionality of the system highly
depends on the operations of the parameter server. If the server
gets crashed or hacked, then the entire system will be broken
down, affecting all the edge devices. Second, the centralized
parameter server can be the performance bottleneck, particu-
larly when a large amount of edge devices are connected to
this server.

Due to the limitations of PS-based centralized learning,
there is a growing trend towards training a DL model in a
decentralized fashion [11], [13]–[17]. Specifically, centralized
servers are eliminated from the system while each participant
plays an equal role (both training and aggregating parameters)
in learning the model [18], [19]. This decentralization mode
exhibits huge potential for DL applications in many scenarios:
in autonomous driving [20], [21], cars can capture images or
videos during the driving and collaboratively learn powerful
models for detecting traffic lights, sign, lane and pedestrians;
in video coding, users can learn faster and better video coding
mechanism by communicating with others [22], [23].

A distributed system can be threatened by the famous
Byzantine Generals Problem [24]: some nodes inside the
network can conduct inappropriate behaviors, and propagate
wrong information, leading to the failure of the entire system.
This is particularly dangerous in the distributed learning sce-
narios due to three reasons. (1) Distributed learning requires
the collaboration of thousands of edge devices from different

1051-8215 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 13,2022 at 02:12:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6443-5308
https://orcid.org/0000-0001-6595-6650
https://orcid.org/0000-0001-6893-8650
https://orcid.org/0000-0002-9439-4623
https://orcid.org/0000-0001-7300-9215

GUO et al.: BYZANTINE-RESILIENT DECENTRALIZED STOCHASTIC GRADIENT DESCENT 4097

domains and parties. It is impossible to guarantee that each
device is trusted and reliable. A single dishonest node can send
wrong parameters/estimates to affect the entire network and
final results. (2) Modern IoT devices and networks are com-
plicated and vulnerable. Recent years have witnessed many
infamous IoT attacks (e.g., Mirai Botnet [25], Stuxnet [26]),
enabling an adversary to easily compromise a large scale of
IoT devices. This facilitates the Byzantine attacks in distrib-
uted learning systems. (3) The consequences of attacks can
be very severe. Past works have shown that an adversary can
compromise the centralized distributed learning system to alter
the behaviors of the training process or final models [27].

This Byzantine Generals Problem has been extensively stud-
ied in the centralized PS-based learning systems. Attacks with
different threat models and goals [28], [29] were designed to
demonstrate this vulnerability. Meanwhile, Byzantine-resilient
defense solutions were also introduced to enhance the system.
However, very few works have focused on the Byzantine
threats in decentralized learning systems. We are particularly
interested in two questions: (1) how feasible and severe are the
Byzantine attacks in decentralized learning systems? (2) How
can we improve the Byzantine resilience of a decentralized
system?. Currently there are no satisfactory answers due to
the distinct features of centralized and decentralized systems.

In this paper, we provide an in-depth study to answer the
above two questions. First, we formally define the Byzantine
Generals Problem in the decentralized learning setting, and
theoretically analyze the corresponding vulnerabilities. We dis-
cover that the indirect connection to a malicious node cannot
reduce the attack cost and amplify the damage. We prove that
an adversary can just use one node to alter the models of all
nodes inside the system arbitrarily. This is different from the
centralized system, which only requires tampering the model
on PS for a successful attack.

Second, we explore the possible solutions to secure decen-
tralized learning systems with Byzantine Fault Tolerance
(BFT). It is challenging to apply the Byzantine-resilience
methods from PS-based systems [27], [30]–[35] to the decen-
tralized scenario due to two reasons. First, those defenses have
security and efficiency drawbacks in protecting centralized
systems. They are either vulnerable to elaborately designed
Byzantine attacks [29], [36], [37], or have large computation
overhead and scalability issue with unrealistic requirements
(e.g., the PS has extra validation dataset) [28], [29]. These
limitations still exist if the defenses were extended into
decentralized systems. The second reason lies in the huge
differences between centralized and decentralized learning
systems. Existing defenses are mainly designed for the cen-
tralized PS to make decisions. However, each participant in
decentralized learning acts as not only a worker node, but
also a PS. In addition, the number of neighbors connected
to each node varies dramatically. So some assumptions made
in the centralized defenses will not hold. To the best of
our knowledge, currently there are few research papers [38]
attempting to achieve Byzantine-resilient decentralized learn-
ing by comparing the distances among estimates, which is
vulnerable to sophisticated Byzantine attacks, as demonstrated
in the evaluation section of this paper.

We propose UBAR, a novel Uniform Byzantine-resilient
Aggregation Rule to secure decentralized learning systems.
UBAR consists of two design stages. The first stage is intro-
duced to mitigate simple Byzantine attacks (e.g., [30]) by
shortlisting a set of candidate nodes: each benign node selects
a number of potential benign nodes based on the distances
of their parameters to its own. The second stage is used to
select the final parameters and defeat advanced Byzantine
attacks [29], [36], [37]: each benign node uses its training
samples to test the performance of the parameters from the
first phase, and chooses the ones with the best training quality.

UBAR leverages the unique features of decentralized sys-
tems to overcome the limitations of prior solutions. Since
each node acts as both a worker and PS, it can use its own
parameters as the baseline (Stage 1) instead of the average
or median of neighbor nodes in PS-based systems. This can
effectively protect the baseline values from being manipulated,
and mitigate an arbitrary number of Byzantine nodes. Each
node also uses its training samples for performance evaluation
(Stage 2), which can perfectly relax the unrealistic assumption
of the server’s availability of validation datasets in PS-based
systems. Besides, since Stage 1 is vulnerable to advanced
Byzantine attacks [29], [36], [37] while Stage 2 suffers from
scalability and cost issues, the integration of these two stages
can achieve both efficiency and strong Byzantine resilience.
We conduct comprehensive experiments to show that UBAR

is tolerant against both simple and sophisticated attacks, while
all existing defense solutions fail. Besides, UBAR also achieves
8-30× performance improvement over existing methods.

The key contributions of this paper are:
• We theoretically analyze and demonstrate the vulnerabil-

ities of the Byzantine Generals Problem in decentralized
learning.

• We propose UBAR, a uniform Byzantine-resilient aggre-
gation rule, to defeat an arbitrary number of Byzantine
nodes in decentralized systems.

• We conduct extensive experiments to show UBAR outper-
forms other solutions for both security and performance.

The rest of this paper is organized as follows. Background
and related works are reviewed in Section II. Section III
gives formal definitions of decentralized systems We analyze
the Byzantine Fault of decentralized learning in Section IV.
Section V presents our novel Byzantine-resilient solution.
Section VI shows the experimental results under various
attacks and system settings. Section VII and VIII discusses
the limitations and concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Byzantine-Resilient Centralized Learning

A centralized learning system consists of a Parameter
Server (PS) and multiple distributed worker nodes, as shown
in Figure 1(a). Every worker node has its own training dataset,
but adopts the same training algorithm. In each iteration,
a worker node 1) pulls the gradient from the PS, 2) updates the
gradient based on its local data, 3) uploads the new gradient
to the PS, and the PS 4) aggregates all the received gradients
from the worker nodes into one gradient vector. The nodes

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 13,2022 at 02:12:48 UTC from IEEE Xplore. Restrictions apply.

4098 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 6, JUNE 2022

Fig. 1. Distributed learning in centralized (a) and decentralized (b) fashions.

repeat the above steps from the new gradient, until the training
process is terminated and a model is produced.

Dishonest nodes can compromise the training process and
the final model by uploading wrong gradients [29], [36], [37].
It is necessary for the PS to detect such Byzantine nodes and
discard their updates when aggregating the gradients.

Motivated by the parameter difference between benign and
malicious estimates, a number of solutions cluster the uploaded
gradients and detect the outliers based on the vector distances.
For instance, Blanchard et al. proposed Krum [27], which
chooses the gradient vector with the minimal sum of squared
distances to its neighbors as the aggregated one. Median-based
Aggregation rules [30], [39] were designed, which inspect
the gradient vectors and calculate the median values in each
dimension to defeat Byzantine attacks. Mhamdi et al.
introduced Bulyan [36], to further enhance existing
Byzantine-resilient aggregation rules by combining Krum and
Median-based aggregation rules. Although these defenses can
defeat simple Byzantine attacks such as Gaussian and bit-flip
attacks [27], [30], they were vulnerable against more sophis-
ticated attacks [29], [37]. The reason lies in the vulnerability
of distance-based strategies: the close distance between two
gradients does not imply similar performance. Thus, these
sophisticated attacks could create gradients that are malicious
but indistinguishable from benign gradients in distance.

Some solutions selects the benign nodes by evaluating the
performance of each uploaded gradient on extra validation
datasets. For instance, Xie et al. proposed Zeno [28] and
Zeno++ [40] for synchronous and asynchronous learning
systems, respectively. Both Zeno and Zeno++ calculate the
prediction accuracy of each gradient on the extra validation
datasets to identify Byzantine nodes. However, they require
that the PS has a validation dataset, which is not realistic
under some circumstances. Besides, performance evaluations
of all gradients have much more overhead than parameter
evaluations. This can significantly increase the total training
time and the computation burdens for the PS, especially when
the number of worker nodes is larger.

Some solutions select benign gradients and nodes based
on their history records. For instance, Hidden Markov Model
was utilized [41] to learn the quality of parameter updates
during distributed training. The learned profiles can improve
the efficiency and accuracy of detecting malicious nodes.
Pan et al. [42] utilized the historical interactions with the
workers as experience to identify Byzantine attacks via rein-
forcement learning techniques. However, these solutions can-

not guarantee Byzantine resilience. An adversary can easily
bypass the detection algorithms by pretending to be benign at
the beginning and only uploading malicious parameters at the
last several iterations. Then the learned profiles cannot predict
malicious behaviors in future iterations.

B. Byzantine-Resilient Decentralized Learning

Decentralized learning systems remove the PS, as every
node in the network is also responsible for model update [11],
[19], [43]. The architecture of a decentralized learning system
is illustrated in Figure 1(b). Specifically, in each iteration of the
training process, each worker node 1) broadcasts its parameter
vectors (estimates1) to its neighbor nodes, and receive the
estimates from them; 2) trains the model estimates using the
local data. 3) It then aggregates them with the neighbor nodes’
estimates and updates the model.

Compared to centralized learning, research of
Byzantine-resilient decentralized learning is still at an
early stage. Several attempts have been made to achieve
Byzantine-resilient decentralized learning [38], [44], [45].
For example, Yang and Bajwa proposed ByRDiE [38] and
BRIDGE [44], which simply apply the trimmed-median
algorithm from centralized systems [30], [39] to decentralized
systems. While ByRDiE is designed for the coordinate descent
optimization algorithm, BRIDGE is used in decentralized
learning systems with SGD. Similar to [30], [39], those
solutions are vulnerable to some Byzantine attacks [36],
[37]. In Section VI, we will demonstrate their incapability of
defeating sophisticated Byzantine attacks.

Yang and Bajwa [13] proposed RD-SVM to support dis-
tributed Support Vector Machine (SVM) against Byzantine
attacks. RD-SVM compares the losses from neighbor nodes
to identify and filter potential Byzantine nodes. It adopts the
hinge loss, and involves all the data samples at each iteration
for Byzantine identification. Hence, it is more applicable to
linear classifiers like SVM. In contrast, this paper focuses
on deep learning models with the mainstream SGD algorithm
and batch training feature. We propose UBAR to fulfill these
requirements and improving the efficiency.

III. SYSTEM MODEL OF DECENTRALIZED LEARNING

In this section, we formally define a decentralized commu-
nication system and describe the learning task.

A. Decentralized Systems

A decentralized system is defined as an undirected graph:
G = (V , E), where V denotes a set of n nodes and E denotes
a set of edges representing communication links. Specifically,
we have

• (i, j) ∈ E if and only if node i can receive information
from node j ;

• (j, i) ∈ E if (i, j) ∈ E .

Let Ni = { j |(i, j) ∈ E} be the set of the neighbors of
node i . We further assume that nb out of n nodes are benign
and the rest are malicious. We can define a subgraph that only
contains the benign nodes:

1“Parameter vector” and “estimate” are used interchangeably.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 13,2022 at 02:12:48 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: BYZANTINE-RESILIENT DECENTRALIZED STOCHASTIC GRADIENT DESCENT 4099

Definition 1 (Benign Induced Subgraph): The benign
induced subgraph, Gb = (Vb, Eb), is a subgraph of G, formed
by all the benign nodes in G and all the edges connecting
those benign nodes. Specifically,
• i ∈ Vb ⊆ V if i is a benign node and |Vb| = nb;
• (i, j) ∈ Eb ⊆ E if and only if i, j ∈ Vb;
• (j, i) ∈ Eb if (i, j) ∈ Eb.
Following the information exchange models in [18], [19],

we assume the benign induced subgraph is fully connected,
i.e., giving two arbitrary benign nodes i and j , there always
exists at least one path that connects these two nodes. We for-
mally state the assumption as below:

Assumption 1 (Connectivity of Benign Induced Subgraph):
There exists an integer τ such that for ∀i, j ∈ Vb, node j can
propagate its information to node i through at most τ edges.

B. Model Training

In a decentralized learning system, n nodes cooperatively
train a model by optimizing the loss function with SGD and
exchanging estimates with their neighbors. Let x ∈ R

d be
the d-dimensional estimate vector of a DL model; l be the
loss function. Each node i ∈ V obtains a training dataset Di ,
consisting of independent and identically distributed (IID) data
samples from a distribution D. Those n nodes train a shared
model by solving the following optimization problem.

min
x∈Rd

Eξ∼Dl(x, ξ) (1)

where ξ is a training data sample from D and l(x, ξ) is
calculated on ξ .

IV. BYZANTINE ATTACK IN DECENTRALIZED LEARNING

In this section, we theoretically demonstrate the feasibility
and severity of Byzantine attacks in decentralized learning sys-
tems. Following the decentralized network topology, the nodes
in V iteratively optimize the shared model until reaching con-
vergence or the maximum number of iterations. Specifically,
at the k-th iteration, node i has its local estimate denoted
as xk,i , and broadcasts it to its neighbors. When receiving
the estimates from the neighbors, node i will update its local
estimate according to the General Update Function (GUF):

Definition 2 (GUF): Let xk,i , ∇l(xk,i , ξk,i) be the estimate
and gradient of node i at the k-th iteration. {xk, j , j ∈ Ni } are
the estimates from its neighbors. R is an aggregation rule.
Node i updates its estimate for the (k + 1)-th iteration using
the following general update function:
xk+1,i = αxk,i + (1− α)R(xk, j , j ∈ Ni)− λ∇l(xk,i , ξk,i)

(2)

where λ is the learning rate; α is a hyper-parameter that
balances the weights of the estimates.

Without loss of generality, we assume all the nodes have
the same learning rate. The stochastic gradient can be replaced
with a mini-batch of stochastic gradients [11].

A straightforward and common way is the average aggre-
gation rule:

RAverage = 1

|Ni |
∑
j∈Ni

xk, j (3)

and α is set as 1
|Ni |+1 . However, because the average aggre-

gation in Equation 3 does not consider BFT, this training
process can be easily compromised by Byzantine attacks: an
adversary can use just one malicious node to send wrong
estimates to its neighbors and alter their aggregated estimates.
More seriously, due to the fully connectivity of benign induced
subgraph (Assumption 1), this fault will be also propagated to
other benign nodes not directly connected to this Byzantine
node after several iterations, and finally all the nodes in this
network will be affected.

Theorem 1: Consider a decentralized system under the
average aggregation rule RAverage. In this system î is a
Byzantine node, attempting to add a malicious vector x̂ to
the estimate of a benign node iτ ′ . The shortest distance (i.e.,
number of edges) between them is τ ′ and {is}τ ′−1

s=1 are the
benign nodes on the shortest trace between iτ ′ and î . The
distance between node is and î is s. Then at the k0-th iteration,
node î can broadcast to its neighbors the following estimate
to achieve this goal in τ ′ iterations:

x = xk0,î + x̂
τ ′∏

s=1

(|Nis | + 1) (4)

where |Nis | is the number of neighbors of node is .
Proof: We assume that there is only one path of τ ′ edges

from node î to iτ ′ . We prove the theorem by mathematical
induction.

If τ ′ = 1, the two nodes are neighbors. Then, the estimate
of node i1 at k0 + 1 iteration is

x̂k0+1,i1 =
1

|Ni1 | + 1
(xk0,i1 +

∑
j∈Ni1/î

xk0, j + xk0,î + x̂(|Ni1 |

+ 1))− λ∇l(xk0,i1 , ξk0,i1) (5)

= 1

|Ni1 | + 1
(xk0,i1 +

∑
j∈Ni1

xk0, j)− λ∇l(xk0,i1 , ξk0 ,i1)

+ x̂ (6)

It proves that the theorem is true when τ ′ = 1.
We now assume the theorem is true when τ ′ = k, i.e. node

î sends

x̂k0,î = xk0,î + x̂
k∏

s=1

(|Nis | + 1). (7)

to its neighbors at k0-th iteration. Then, at (k0+k)-th iteration,
node ik’s estimate is

x̂k0+k,ik = xk0+k,ik + x̂ (8)

where xk0+k,ik is the benign estimate that node î should send
to its neighbors when it was not controlled.

Consider the k + 1 case. Node î sends

x̂k0,î = xk0,î + x̂
k+1∏
s=1

(|Nis | + 1) (9)

to its neighbors at the k0-th iteration. At the (k0 + k)-th
iteration, the estimate of node ik is

x̂k0+k,ik = xk0+k,ik + x̂(|Nik+1 | + 1). (10)

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 13,2022 at 02:12:48 UTC from IEEE Xplore. Restrictions apply.

4100 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 6, JUNE 2022

Fig. 2. A decentralized learning system with UBAR.

Then, at the (k0 + k + 1)-th iteration, the estimate of node
xk+1 is affected:

x̂k0+k+1,ik+1

= 1

|Nik+1 | + 1
(xk0+k,ik+1 +

∑
j∈Nik+1 /ik

xk0+k, j

+ xk0+k,ik + x̂(|Nik+1 | + 1))− λ∇l(xk0+k,ik+1 , ξk0+k,ik+1)

= 1

|Nik+1 | + 1
(xk0+k,ik+1 +

∑
j∈Nik+1

xk0+k, j)

− λ∇l(xk0+k,ik+1 , ξk0+k,ik+1)+ x̂ (11)

�
V. BYZANTINE-RESILIENT SOLUTION

A. Byzantine-Resilient Aggregation Rule

Due to the Byzantine threat of decentralized learning,
it is necessary to design a robust aggregation rule to defeat
Byzantine nodes. This rule should guarantee that all benign
nodes converge to the optimal estimate learned without
Byzantine nodes. In the following, we propose UBAR, a novel
aggregation rule for decentralized systems to satisfy the above
requirement and uniformly defend against Byzantine attacks.

B. UBAR

The design of UBAR is motivated by three observations.
First, as introduced in Section II, existing Byzantine defenses
for centralized systems have certain security vulnerabilities
or practical limitations. Such design flaws still exist when
we extend the solutions to decentralized scenarios. Second,
a decentralized system has higher convergence requirement
than a centralized system: convergence of one parameter server
enforced by the solutions cannot guarantee the convergence of
all benign nodes in a decentralized system. Third, centralized
Byzantine-resilient solutions usually assume a fixed number
of faulty nodes connected to the parameter server, while in a
decentralized system, the number of faulty nodes connected to
each benign node varies significantly. As such, it is necessary
to have a more robust Byzantine-resilient solution that can
defeat an arbitrary number of Byzantine nodes and guarantee
convergence of each benign node in decentralized systems.

UBAR aims to achieve this goal and overcome the above
limitations. It consists of two stages for each training iteration
as shown in Fig. 2. At the first stage, each benign node
selects a candidate pool of potential benign nodes from its
neighbors. The selection is made by comparing the Euclidean
distance of the estimate of each neighbor node with its own
estimate. One innovation of this stage is the benign node uses
its own parameter as the baseline value instead of the median

or mean value of its neighbors’ parameters as in centralized
PS-based systems [27], [30], [39]. This is based on the unique
feature of decentralized systems that each node is responsible
for both training and aggregation. It gives stronger Byzantine
resilience as the baseline values trained from local datasets
can never be manipulated by Byzantine nodes, while the
aggregated parameter can be poisoned according to Theorem 1
Although after this stage, the candidate pool might still contain
Byzantine nodes as the distance-based strategies are not strict
Byzantine-resilient, it indeed reduces the scope of benign
nodes for further selection.

At the second stage, each benign node further picks the
final nodes from the candidate pool for estimate update.
It reuses the training sample as the validation set to test
the performance (i.e., loss function value) of each estimate.
It selects the estimates whose loss values are smaller than its
own estimate, and calculates the average of those estimates
as the final updated value. One novelty of this stage is the
adoption of training samples for performance evaluation of
neighbors’ parameters. In contrast, prior works in centralized
systems require the PS to have an extra validation dataset for
evaluation, which may not be applicable in certain scenarios.

It is interesting to note that the selection criteria at Stage 1 is
still vulnerable to advanced attacks [29], [36], [37], while
the strategy at Stage 2 has efficiency and scalability issues
especially when the connectivity is high. By integrating them
into one approach, Stage 2 can help Stage 1 further defeat the
advanced attacks, while Stage 1 can reduce the computation
cost at Stage 2, as it decreases the size of candidate nodes for
evaluation. UBAR can be formally described as below:

Definition 3 (UBAR): Let xk,i be the estimate of node i at
the k-th iteration; lk,i be the loss of the estimates on the sto-
chastically selected data sample, i.e., lk,i = l(xk,i , ξk,i); ρi be
the ratio of benign neighbors of node i . The proposed Uniform
Byzantine-resilient Aggregation Rule, UBAR, is define as

RUBAR =
{

1
|N r

k,i |
∑

j∈N r
k,i

xk, j , if N r
k,i �= ∅

xk, j∗, Otherwise
(12)

where

(Stage 1) N s
k,i = arg min

N ∗⊆Ni|N ∗|=ρi |Ni |

∑
j∈N ∗
||xk, j − xk,i ||,

(Stage 2) N r
k,i =

⋃
j∈N s

k,i
lk, j≤lk,i

j, and j∗ = arg min
j∈N s

k,i

lk, j .

Algorithm 1 details the training process of node i using
UBAR in a decentralized system. The algorithm begins with
the estimate x0,i = x0. At the k-th iteration, node i broadcasts
its estimate to and receives the estimates from its neighbors.
It stochastically selects a training data sample ξk,i and calcu-
lates the loss and the gradient (Lines 3-4). Then it conducts
two-stage estimate selection. First, it calculates the Euclidean
distances between xk,i and the estimates from its neighbors and
selects ρi |Ni | neighbors with lowest distances (Lines 5-7).

Second, for each estimate xk, j , j ∈ N s
k,i , node i calculates

the loss of xk, j on ξk,i . It chooses the estimates that have
similar or better performance than that of xk,i (Lines 8-14).

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 13,2022 at 02:12:48 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: BYZANTINE-RESILIENT DECENTRALIZED STOCHASTIC GRADIENT DESCENT 4101

Algorithm 1 The Training Algorithm for Each Benign
Node i Using UBAR

Input: Initial estimate x0, learning rate λ, number of
iterations K , ratio of benign nodes ρi

1 for k in [0, K) do
2 Broadcast xk,i and receive xk, j from j ∈ Ni ;
3 Stochastically sample ξk,i from Di ;
4 lk,i ← l(xk,i , ξk,i) and compute the local gradient
∇lk,i ;

5 for j in Ni do
6 di, j ← ||xk,i − xk, j ||;
7 N s

k,i ← arg min N ∗⊆Ni|N ∗|=ρi |Ni |
∑

j∈N ∗ di, j ;

8 for j ∈ N s
k,i do

9 lk, j ← lk,i ;
10 if lk,i − lk, j ≥ 0 then
11 append j to N r

k,i ;
12 if N r

k,i i s ∅ then
13 j∗ ← arg min j∈N s

k,i
lk, j ;

14 append j∗ to N r
k,i ;

15 Rk,i ← 1
|N r

k,i |
∑

j∈N r
k,i

xk, j ;

16 Update the local estimate
xk+1,i ← αxk,i + (1− α)Rk,i − λ∇lk,i ;

17 return xK ,i

Finally it calculates the average value of the selected nodes
and updates the final estimate using GUF (Lines 15-16).

C. Complexity Analysis

The training process with UBAR is performance efficient,
as proved below:

Proposition 1 (Cost of UBAR): The computational com-
plexity of UBAR is O(|Ni |d) for each node at each iteration,
where d is the dimension of the estimate vector.

Proof: For node i ∈ Vb, at each iteration, UBAR aggre-
gates the received estimates with three operations. First, UBAR

selects ρi |Ni | neighbors that are closest to its current estimate.
The cost is O(|Ni |d). Second, UBAR calculates the loss of
the selected estimates on the stochastic sample and the cost
is O(ρi |Ni |d). Finally, UBAR takes at most O(ρi |Ni |d) to
aggregate the estimates with better performance. Since ρi ≤ 1
for ∀i ∈ Vb, the overall computational complexity of UBAR

is O(|Ni |d). �
Compared to existing aggregation rules, the complex-

ity of Average aggregation, Median-based and BRIDGE is
O(|Ni |d), while Krum and Bulyan have a complexity of
O(|Ni |2d). So we conclude that UBAR maintains the same
performance efficiency as some solutions and performs much
better than others, especially when the number of connected
neighbor nodes becomes large.

VI. EXPERIMENTS

A. Experimental Setup and Configurations

1) Datasets: We evaluate our defense solution with a
DL-based image classification task. Specifically, we train a
Convolutional Neural Network (CNN) over the MNIST and
CIFAR10 datasets [46]. This CNN includes two max–pooling

layers and three fully connected layers [36]. We adopt a batch
size of 256 and a fading learning rate λ(k) = λ0

20
20+k where k

is the number of epochs and the initial learning rate λ0 = 0.05.
2) Implementation of Decentralized Systems: The network

topology of the decentralized system in our consideration is
defined by a connection rate between the nodes. A connection
rate is the probability that a node is connected to another node.
To ensure the connectivity assumption, we first generate a
decentralized network in which all the nodes strictly follow the
learning procedure. Then we randomly add Byzantine nodes
to the network. To simulate various adversarial environments,
we adopt a new parameter, Byzantine ratio, which is defined
as the number of Byzantine nodes divided by the number of all
nodes in the network. We assume that the Byzantine ratio of
node i is lower than 1−ρi . Without lose of generality, we set
ρi as 0.4 for all benign nodes. We train the deep learning
model in a synchronous mode. We simulate the operations
of the decentralized system by running the nodes serially at
each iteration. All our experiments are conducted on a server
equipped with Xeon Silver 4214 @2.20 GHz CPUs and a
NVIDIA Tesla P40 GPU.

3) Baselines: Since there are very few works focusing on
decentralized learning systems, we can extend existing aggre-
gation rules from centralized systems to the decentralized case
as our baselines, since the estimates and gradients have the
same dimensionality and network structure. We consider three
popular Byzantine-resilient solutions: Krum [27], marginal
median [30], [39], and Bulyan [36].

It is worth noting that in a centralized distributed system,
the maximal number of Byzantine workder nodes connected
to the parameter server is usually assumed. This does not
hold in a decentralized system, as the number of Byzantine
nodes connected to each benign node varies greatly. To meet
this assumption, we approximately calculate the number of
Byzantine nodes allowed for each benign node in Equation
13. In this equation, n̂i is the number of Byzantine nodes
connected to node i , ρcentral is the maximal ratio of Byzantine
nodes allowed in a centralized distributed defense, and �·� is
the ceil function.

n̂i = �|Ni | ·min{1− ρi , ρcentral }� (13)

4) DKrum: Similar to Krum, let j �= j ′ be two neighbors
of node i and we denote j → j ′ the |Ni | − n̂i + 2 closest
estimate vectors to the estimate of node j . Then, we calculate
the score of each neighbor:

s(j) =
∑
j→ j ′
||x j − x j ′ ||2

We select the estimate with the minimal score as the
aggregated estimate. Formally, the aggregated rule DKrum is
defined as

RDK rum = x j∗, j∗ = arg min
j∈Ni

s(j).

5) Dmedian: To apply the marginal median solution [30],
[39] to decentralized systems, we only need to replace the gra-
dients with the received estimates. Specifically, the aggregated
rule Dmedian is defined as

RDmedian = MarMed{x j , j ∈ Ni } (14)

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 13,2022 at 02:12:48 UTC from IEEE Xplore. Restrictions apply.

4102 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 6, JUNE 2022

Fig. 3. The worst accuracy of the benign nodes with different network sizes.

where MarMed is the marginal median function defined
in [30], [39]. Informally, the m-th dimensional value of
RDmedian is the median of the m-th dimensional elements
of all estimates in Ni .

6) DBulyan: At each iteration, node i first recursively uses
DKrum to select |Ni |−2n̂i estimates, i.e., {x j , j ∈ N DK rum

i },
where |N DK rum

i | = |Ni | − 2n̂i . Specifically, node i uses
DKrum to select one estimate from its neighbors and deletes
the corresponding node from its neighbors. Then, node i
recursively selects the remaining estimates using DKrum.
Finally, it adopts a median-based method to aggregate the
estimates in {x j , j ∈ N DK rum

i }. Formally, the m-th coordinate
of the aggregated estimate is calculated as

RD Bulyan[m] = 1

β

∑
j∈M[m]

x j [m] (15)

where β = |Ni | − 4n̂i and M[m] is the set of neighbors with
the size of β. The sum of the m-th elements to its median is
minimal among all subsets of N DK rum

i with the size β.
In addition to the above defenses from centralized sys-

tems, we also implement BRIDGE [44] for comparison,
which is designed specifically for decentralized systems,
i.e., BRIDGE [44]. For all these defenses, we set α to be 0.5 in
the GUF. For baseline, we consider the same decentralized
system configuration without Byzantine nodes, and using the
Average Aggregation rule (Equation 3). The model trained
from this setting can be regarded as the optimal one.

7) Performance Metric: For each defense deployed in the
decentralized system, we measure the testing accuracy of the
trained model on each benign node, and report the worst
accuracy among all nodes to represent the effectiveness of
this defense.

B. Convergence

As an aggregation rule in a decentralized system, the essen-
tial functionality is to achieve uniform convergence, i.e., the
model in each benign node must converge to the correct
one. We evaluate the convergence functionality of UBAR with
different configurations.

1) Network Size: We first evaluate the convergence of our
solution under different network sizes. It is more difficult
to achieve uniform convergence when there are more nodes.
In our experiments, we consider a decentralized system with
30, 40 and 50 nodes respectively [36]. The connection ratio is
set as 0.4. Fig. 3 shows the worst accuracy during the training
phase on MNIST and CIFAR10.

We can observe that only DBulyan and our proposed UBAR

have the same convergence as the baseline on both MNIST and
CIFAR10. DBulyan and UBAR converge to a slightly better
model at a higher speed. In contrast, DKrum and BRIDGE
have bad convergence performance on CIFAR10, especially
when the network size is larger. Dmedian does not converge
on both datasets when the network size is 50. We also observe
that Average Aggregation Rule does not perform better than
other methods even under the Byzantine-free setting. This is
because this baseline needs to consider all the parameters,
some of which may have poor performance even they are
not malicious. In contrast, other methods selectively aggregate
certain parameters with positive contributions to the model
convergence, thus exhibiting better robustness.

2) Network Connection Ratio: This factor can also affect
the model convergence: it takes more effort and time for all
nodes to reach the consensus when the connection is heavier.
We evaluate such impact with different connection ratio (0.2,
0.4 and 0.6), while fixing the number of nodes as 30.

Fig. 4 illustrates that most defense solutions in our consid-
eration have satisfactory convergence performance when the
connection ratio is small (0.2 and 0.4). Our proposed UBAR

has better convergence performance when the connection ratio
is 0.6. The BRIDGE and DMedian approaches cannot produce
correct models at this high connectivity.

C. Byzantine Fault Tolerance

We evaluate the performance of different defense strategies
under various Byzantine attacks. We set the connection ratio of
the evaluated system as 0.4 and the number of benign nodes as
30. We consider different Byzantine ratios (0.1, 0.3 and 0.5).

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 13,2022 at 02:12:48 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: BYZANTINE-RESILIENT DECENTRALIZED STOCHASTIC GRADIENT DESCENT 4103

Fig. 4. The worst accuracy of the benign nodes with different connection ratios.

Fig. 5. The worst accuracy of the benign nodes under the Gaussian attack.

1) Guassian Attack: We first use a simple attack to test
the Byzantine resilience. Specifically, in each iteration the
adversarial nodes broadcast to their neighbors random estimate
vectors following the Gaussian distribution. We refer to this
kind of attack as Gaussian attack.

Fig. 5 Illustrates the model training performance under
the Gaussian attack. The advantage of UBAR over other
strategies is obvious. Dmedian, DBulyan and BRIDGE do not
uniformly converge in all systems of CIFAR10. DKrum fails
to converge at the Byzantine ratio of 0.5. Only UBAR can
generate the correct model regardless of the Byzantine ratio
on both datasets.

2) Bit-Flip Attack: We also implement a bit-flip attack [30]
to evaluate these defenses, where at each iteration the adver-
sarial nodes flip the sign of the floating estimates and then
broadcast these fault estimates to their neighbors.

Fig. 6 shows the convergence results: the advantage of
UBAR over other strategies is more obvious. UBAR has the
same performance as the baseline regardless of the Byzantine
ratio on both datasets. This indicates that it is absolutely
Byzantine-resilient against the bit-flip attack. In contrast,
Dmedian (resp. DBulyan) do not converge uniformly when

the Byzantine ratio is high (0.3) on CIFAR10 (resp. MNIST).
BRIDGE performs unsatisfactory on both datasets and all
baselines fail to defeat the bit-flip attack when the Byzantine
ratio is 0.5.

3) Sophisticated Attack: To fully evaluate the BFT of our
proposed approach, we adopt a more sophisticated attack,
Mhamdi attack [36]: the adversary has the capability of
collecting all the uploaded estimates from other neighbor
nodes. Then it can carefully design its own estimate to make it
undetectable from the benign ones, while still compromising
the training process. Mhamdi attack has been shown effective
against most defenses in centralized PS-based systems [36].

The results are shown in Fig. 7. We observe that UBAR can
always succeed for different Byzantine ratios on both datasets.
In contrast, other solutions fail to defeat Mhamdi attack in
some cases: all solutions fail to converge when the Byzantine
ratio is 0.5. Dmedian and BRIDGE cannot converge even when
the Byzantine ratio is 0.1 on CIFAR10.

D. Computation Cost

To evaluate the computation cost of UBAR, we measure
the average training and aggregation time for one iteration on

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 13,2022 at 02:12:48 UTC from IEEE Xplore. Restrictions apply.

4104 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 6, JUNE 2022

Fig. 6. The worst accuracy of the benign nodes under the bit-flip attack.

Fig. 7. The worst accuracy of the benign nodes under the Mhamdi attack.

CIFAR10. We consider a decentralized system with 30 nodes
and the connectivity is 0.4. Tab. I shows the average time
of different defense solutions. We can see that the training
time for those solutions are identical, but the aggregation time
differs a lot. UBAR can finish one iteration in a much shorter
time than DKrum (8× faster) and DBulyan (30× faster). The
reason is that while UBAR only calculates the difference
between a node and its neighbors, DKrum and DBulyan
have to compare the distances among all neighbors. UBAR is
slightly worse than Dmedian and BRIDGE. But considering
the bad convergence of Dmedian and BRIDGE under Byzan-
tine attacks demonstrated in Section VI-C, we conclude that
UBAR is the optimal solution with the strongest Byzantine
resilience and acceptable computation overhead.

VII. DISCUSSION

A. Ratio of Benign Neighbors

It is worth noting that each benign node needs to know the
ratio of benign neighbors to perform robust aggregation. This
assumption is commonly adopted in prior works [27], [28],
[44]: the nodes can assess the threat of the surrounding envi-
ronment before the training process and sets ρi accordingly.

TABLE I

THE AVERAGE TRAINING AND AGGREGATION TIME OF ONE ITERATION

FOR DIFFERENT AGGREGATION RULES

In case a node does not have such knowledge, it can conserva-
tively set ρi = 1

|Ni | , where it just assumes one benign neighbor
according to Assumption 1. How to accurately estimate ρi and
aggregate the parameters in an environmental-agnostic way is
beyond of the scope of our work.

B. Non-IID Scenario

In this paper, we mainly consider the setting where
all the clients use the IID data samples for collaborative
training. This is consistent with other Byzantine-resilience

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 13,2022 at 02:12:48 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: BYZANTINE-RESILIENT DECENTRALIZED STOCHASTIC GRADIENT DESCENT 4105

works [27], [30], [36], [38]–[42], [44]. In reality, different
clients may use non-IID training data to increase the model
generalization. This will increase the difficulty of Byzantine
defense, since it is hard for a node to distinguish a malicious
neighbor from a benign neighbor using different distributions
of samples. How to design a Byzantine-resilience method
under the Non-IID scenario is a challenging task, and very few
works can achieve such protection.2 This will be an important
research direction as future work.

VIII. CONCLUSION

In this paper, we explore the Byzantine Fault Tolerance
in decentralized learning systems. We demonstrate that a
decentralized system is highly vulnerable to Byzantine attacks.
We show that existing Byzantine-resilient solutions in cen-
tralized PS-based systems cannot be used to protect decen-
tralized systems due to their security flaws and inefficiency.
Then we propose a uniform Byzantine-resilient approach,
UBAR to defeat Byzantine attacks in decentralized learning.
Experimental results reveal that UBAR can resist both simple
and sophisticated Byzantine attacks with low computation
overhead under different system configurations.

REFERENCES

[1] H. Li, K. Ota, and M. Dong, “Learning IoT in edge: Deep learning for
the Internet of Things with edge computing,” IEEE Netw., vol. 32, no. 1,
pp. 96–101, Jan./Feb. 2018.

[2] Y. Wang et al., “E2-Train: Training state-of-the-art CNNs with over
80% energy savings,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 5139–5151.

[3] J. Sun et al., “Stealthy and efficient adversarial attacks against deep
reinforcement learning,” in Proc. AAAI Conf. Artif. Intell., Apr. 2020,
vol. 34, no. 4, pp. 5883–5891.

[4] J. Chen, K. Li, Q. Deng, K. Li, and P. S. Yu, “Distributed deep
learning model for intelligent video surveillance systems with edge
computing,” IEEE Trans. Ind. Informat., early access, Apr. 4, 2020, doi:
10.1109/TII.2019.2909473.

[5] C. Zhao and A. Basu, “Dynamic deep pixel distribution learning for
background subtraction,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 30, no. 11, pp. 4192–4206, Nov. 2020.

[6] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. Y. Arcas, “Communication-efficient learning of deep networks
from decentralized data,” 2016, arXiv:1602.05629. [Online]. Available:
http://arxiv.org/abs/1602.05629

[7] K. Bonawitz et al., “Towards federated learning at scale:
System design,” 2019, arXiv:1902.01046. [Online]. Available:
http://arxiv.org/abs/1902.01046

[8] O. Rudovic et al., “Personalized federated deep learning for pain esti-
mation from face images,” 2021, arXiv:2101.04800. [Online]. Available:
http://arxiv.org/abs/2101.04800

[9] Z. Zhang, S. Wang, Y. Hong, L. Zhou, and Q. Hao, “Distrib-
uted dynamic map fusion via federated learning for intelligent
networked vehicles,” 2021, arXiv:2103.03786. [Online]. Available:
http://arxiv.org/abs/2103.03786

[10] D. M. Manias and A. Shami, “Making a case for federated learning
in the internet of vehicles and intelligent transportation systems,” 2021,
arXiv:2102.10142. [Online]. Available: http://arxiv.org/abs/2102.10142

[11] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? A case
study for decentralized parallel stochastic gradient descent,” in Proc.
Adv. Neural Inf. Process. Syst., 2017, pp. 5330–5340.

[12] X. Xie, L. Ma, H. Wang, Y. Li, Y. Liu, and X. Li, “DiffChaser: Detecting
disagreements for deep neural networks,” in Proc. 28th Int. Joint Conf.
Artif. Intell., Aug. 2019, pp. 5772–5778.

2For example, [47] evaluated the Non-IID case. However, this work still
adopted the same training set, but just distributed unbalanced samples to
different clients.

[13] Z. Yang and W. U. Bajwa, “RD-SVM: A resilient distributed support
vector machine,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., Mar. 2016, pp. 2444–2448.

[14] L. Su and N. H. Vaidya, “Fault-tolerant multi-agent optimization:
Optimal iterative distributed algorithms,” in Proc. ACM Symp. Princ.
Distrib. Comput., Jul. 2016, pp. 425–434.

[15] R. Dobbe, D. Fridovich-Keil, and C. Tomlin, “Fully decentralized
policies for multi-agent systems: An information theoretic approach,”
in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 2941–2950.

[16] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu, “Communication com-
pression for decentralized training,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 7652–7662.

[17] A. Lalitha, X. Wang, O. Kilinc, Y. Lu, T. Javidi, and
F. Koushanfar, “Decentralized Bayesian learning over graphs,”
2019, arXiv:1905.10466. [Online]. Available: http://arxiv.org/
abs/1905.10466

[18] J. N. Tsitsiklis, “Problems in decentralized decision making and com-
putation,” Ph.D. dissertation, Massachusetts Inst. Technol., 1984.

[19] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1,
pp. 48–61, Jan. 2009.

[20] T. Chen and S. Lu, “Robust vehicle detection and viewpoint estimation
with soft discriminative mixture model,” IEEE Trans. Circuits Syst.
Video Technol., vol. 27, no. 2, pp. 394–403, Feb. 2015.

[21] A. Gulati, G. S. Aujla, R. Chaudhary, N. Kumar, and M. S. Obaidat,
“Deep learning-based content centric data dissemination scheme for
internet of vehicles,” in Proc. IEEE Int. Conf. Commun. (ICC),
May 2018, pp. 1–6.

[22] A. Abou-Elailah, F. Dufaux, J. Farah, M. Cagnazzo, and
B. Pesquet-Popescu, “Fusion of global and local motion estimation for
distributed video coding,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 23, no. 1, pp. 158–172, Jan. 2013.

[23] J. Yang, L. Qing, W. Zeng, and X. He, “High-order statistical modeling
based on a decision tree for distributed video coding,” IEEE Trans.
Circuits Syst. Video Technol., vol. 29, no. 5, pp. 1488–1502, May 2019.

[24] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401,
Jul. 1982.

[25] M. Antonakakis et al., “Understanding the mirai botnet,” in Proc.
USENIX Secur. Symp., 2017, pp. 1093–1110.

[26] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Secur.
Privacy, vol. 9, no. 3, pp. 49–51, May/Jun. 2011.

[27] P. Blanchard et al., “Machine learning with adversaries: Byzantine
tolerant gradient descent,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 119–129.

[28] C. Xie, S. Koyejo, and I. Gupta, “Zeno: Distributed stochastic gradient
descent with suspicion-based fault-tolerance,” in Proc. Int. Conf. Mach.
Learn., 2019, pp. 6893–6901.

[29] M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local model poisoning attacks
to Byzantine-robust federated learning,” in Proc. USENIX Secur. Symp.,
2020, pp. 1605–1622.

[30] C. Xie, O. Koyejo, and I. Gupta, “Generalized Byzantine-
tolerant SGD,” 2018, arXiv:1802.10116. [Online]. Available:
http://arxiv.org/abs/1802.10116

[31] L. Chen, H. Wang, Z. Charles, and D. Papailiopoulos, “DRACO:
Byzantine-resilient distributed training via redundant gradients,” in Proc.
Int. Conf. Mach. Learn., 2018, pp. 903–912.

[32] C. Xie, S. Koyejo, and I. Gupta, “SLSGD: Secure and efficient dis-
tributed on-device machine learning,” in Proc. Joint Eur. Conf. Mach.
Learn. Knowl. Discovery Databases, 2019, pp. 213–228.

[33] N. Konstantinov and C. Lampert, “Robust learning from untrusted
sources,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 3488–3498.

[34] J.-Y. Sohn, D.-J. Han, B. Choi, and J. Moon, “Election cod-
ing for distributed learning: Protecting SignSGD against Byzantine
attacks,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020,
pp. 14615–14625.

[35] N. Konstantinov, E. Frantar, D. Alistarh, and C. Lampert, “On the sample
complexity of adversarial multi-source pac learning,” in Proc. Int. Conf.
Mach. Learn., 2020, pp. 5416–5425.

[36] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vulner-
ability of distributed learning in byzantium,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 3521–3530.

[37] G. Baruch, M. Baruch, and Y. Goldberg, “A little is enough: Circumvent-
ing defenses for distributed learning,” in Proc. Adv. Neural Inf. Process.
Syst., 2019, pp. 8632–8642.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 13,2022 at 02:12:48 UTC from IEEE Xplore. Restrictions apply.

4106 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 6, JUNE 2022

[38] Z. Yang and W. U. Bajwa, “ByRDiE: Byzantine-resilient distributed
coordinate descent for decentralized learning,” IEEE Trans. Signal Inf.
Process. Netw., vol. 5, no. 4, pp. 611–627, Dec. 2019.

[39] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 5650–5659.

[40] C. Xie, S. Koyejo, and I. Gupta, “Zeno++: Robust fully
asynchronous SGD,” 2019, arXiv:1903.07020. [Online]. Available:
http://arxiv.org/abs/1903.07020

[41] L. Muñoz-González, K. T. Co, and E. C. Lupu, “Byzantine-robust
federated machine learning through adaptive model averaging,” 2019,
arXiv:1909.05125. [Online]. Available: http://arxiv.org/abs/1909.05125

[42] X. Pan, M. Zhang, D. Wu, Q. Xiao, S. Ji, and M. Yang, “Justinian’s
GAAvernor: Robust distributed learning with gradient aggregation
agent,” in Proc. USENIX Secur. Symp., 2020, pp. 1641–1658.

[43] L. He, A. Bian, and M. Jaggi, “COLA: Decentralized linear learning,”
in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 4536–4546.

[44] Z. Yang and W. U. Bajwa, “BRIDGE: Byzantine-resilient decentral-
ized gradient descent,” 2019, arXiv:1908.08098. [Online]. Available:
http://arxiv.org/abs/1908.08098

[45] J. Peng and Q. Ling, “Byzantine-robust decentralized stochastic opti-
mization,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
May 2020, pp. 5935–5939.

[46] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
M.S. thesis, Univ. Toronto, 2009.

[47] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “FLTrust: Byzantine-robust
federated learning via trust bootstrapping,” in Proc. Netw. Distrib. Syst.
Secur. Symp., 2021, pp. 8635–8645.

Shangwei Guo received the Ph.D. degree in
computer science from Chongqing University,
Chongqing, China, in 2017. From 2018 to 2020,
he worked as a Post-Doctoral Research Fellow at
Hong Kong Baptist University and Nanyang Tech-
nological University. He is currently an Associate
Professor with the College of Computer Science,
Chongqing University. His research interests include
secure deep learning, secure cloud/edge computing,
and database security.

Tianwei Zhang received the bachelor’s degree from
Peking University in 2011 and the Ph.D. degree from
Princeton University in 2017. He is currently an
Assistant Professor with the School of Computer
Science and Engineering, Nanyang Technological
University. His research focuses on computer system
security. He is particularly interested in security
threats and defenses in machine learning systems,
autonomous systems, computer architecture, and dis-
tributed systems.

Han Yu (Member, IEEE) received the B.Eng.
(Hons.) and Ph.D. degrees from the School of
Computer Science and Engineering (SCSE),
Nanyang Technological University (NTU),
Singapore, in 2007 and 2014, respectively. From
2015 to 2018, he held the prestigious Lee Kuan Yew
Post-Doctoral Fellowship (LKY PDF) at the Joint
NTU-UBC Research Centre of Excellence in Active
Living for the Elderly (LILY). He is currently
Nanyang Assistant Professor (NAP) at SCSE,
Nanyang Technological University. He coauthored

the book Federated Learning—the first monograph on the topic of federated
learning. His research focuses on the ethics of artificial intelligence and
federated learning.

Xiaofei Xie received the B.E., M.E., and Ph.D.
degrees from Tianjin University. He is currently
a Presidential Post-Doctoral Fellow with Nanyang
Technological University, Singapore. He has pub-
lished some top tier conference/journal papers
relevant to software analysis in ISSTA, FSE,
IEEE TRANSACTIONS ON SOFTWARE ENGINEER-
ING (TSE), IJCAI, and CCS. His main research
interests include program analysis, loop analysis,
traditional software testing, and security analysis of
artificial intelligence. In particular, he won two ACM

SIGSOFT Distinguished Paper Awards.

Lei Ma received the B.E. degree from Shanghai
Jiao Tong University, Shanghai, China, and the M.E.
and Ph.D. degrees from The University of Tokyo,
Tokyo, Japan. He is currently an Associate Professor
and Canada CIFAR AI Chair with the University of
Alberta, Edmonton, AB, Canada. He also holds a
research fellow position, co-leading the Intelligent
Software Engineering Laboratory, Kyushu Univer-
sity, Fukuoka, Japan, and honorably affiliated with
Alberta Machine Intelligence Institute, Edmonton.
His recent research centers around the interdisci-

plinary fields of software engineering (SE) and trustworthy artificial intel-
ligence (AI) with a special focus on the quality and reliability assurance
of machine learning and AI Systems. Many of his works were published
in top-tier software engineering and AI venues, such as IEEE Transac-
tions on Software Engineering (TSE), ICSE, FSE, IEEE TRANSACTIONS
ON AUTOMATION SCIENCE AND ENGINEERING (TASE), ISSTA, ICML,
NeurIPS, ACM MM, AAAI, IJCAI, ECCV, and CAV. He was a recipient of
more than ten prestigious academic awards, including three ACM SIGSOFT
Distinguished Paper Awards.

Tao Xiang (Member, IEEE) received the B.Eng.,
M.S., and Ph.D. degrees in computer science from
Chongqing University, China, in 2003, 2005, and
2008, respectively. He is currently a Professor with
the College of Computer Science, Chongqing Uni-
versity. He has published over 100 papers on inter-
national journals and conferences. He also served
as a referee for numerous international journals and
conferences. His research interests include multi-
media security, cloud security, data privacy, and
cryptography.

Yang Liu (Senior Member, IEEE) received the
B.Comp. degree (Hons.) from the National Univer-
sity of Singapore (NUS) in 2005 and the joint Ph.D.
degree from NUS and MIT in 2010. He started
his post-doctoral work in NUS and MIT. In 2012,
he joined Nanyang Technological University (NTU).
He is currently a Full Professor and the Director of
the Cybersecurity Laboratory, NTU. He specializes
in software verification, security, and software engi-
neering. His research has bridged the gap between
the theory and practical usage of formal methods

and program analysis to evaluate the design and implementation of software
for high assurance and security. By now, he has more than 270 publications in
top tier conferences and journals. He received a number of prestigious awards,
including the MSRA Fellowship, the TRF Fellowship, Nanyang Assistant
Professor, the Tan Chin Tuan Fellowship, Nanyang Research Award, and
eight best paper awards in top conferences, such as IEEE TRANSACTIONS

ON AUTOMATION SCIENCE AND ENGINEERING (TASE), FSE, and ICSE.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 13,2022 at 02:12:48 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

