
On the (In)Security of Secure ROS2
Gelei Deng

Nanyang Technological University
Singapore

gdeng003@e.ntu.edu.sg

Guowen Xu∗
Nanyang Technological University

Singapore
guowen.xu@ntu.edu.sg

Yuan Zhou
Nanyang Technological University

Singapore
y.zhou@ntu.edu.sg

Tianwei Zhang
Nanyang Technological University

Singapore
tianwei.zhang@ntu.edu.sg

Yang Liu
Nanyang Technological University

Singapore
yangliu@ntu.edu.sg

ABSTRACT
Robot Operating System (ROS) has been the mainstream platform
for research and development of robotic applications. This plat-
form is well-known for lacking security features and efficiency for
distributed robotic computations. To address these issues, ROS2 is
recently developed by utilizing the Data Distribution Service (DDS)
to provide security support. Integrated with DDS, ROS2 is expected
to establish the basis for trustworthy robotic ecosystems.

In this paper, we systematically study the security of the cur-
rent ROS2 implementation from three perspectives. By abstracting
the key functions from the ROS2 native implementation, we first
formally describe the ROS2 system communication workflow and
model it using a concurrent modeling language. Second, we ver-
ify the model with some key security properties through a model
checker, and successfully identify four security vulnerabilities in
ROS2’s native security module: Secure ROS2 (SROS2). To validate
these flaws, we set up simulation and physical multi-robot testbeds
running different real-worldworkloads developed byOpen Robotics
and Amazon AWS Robotics. We demonstrate that an adversary can
exploit these vulnerabilities to totally invalidate the security protec-
tion offered by SROS2, and obtain unauthorized permissions or steal
critical information. Third, to enhance the security of ROS2, we
propose a general defense solution based on the private broadcast
encryption scheme. We run different workloads and benchmarks to
show the efficiency and security of our defense. Our findings have
been acknowledge by ROS2 official, and the suggested mitigation
has been implemented in the latest SROS2 version.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560681

KEYWORDS
Robot Operating System, Protocol Vulnerability, Verification

ACM Reference Format:
Gelei Deng, Guowen Xu, Yuan Zhou, Tianwei Zhang, and Yang Liu. 2022.
On the (In)Security of Secure ROS2. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’22), November
7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3548606.3560681

1 INTRODUCTION
The robotics technology is playing an important role in the in-
tellectualization of industry and our daily life. Its development is
accelerated by the Robot Operating System (ROS). As the most
popular robotic platform, ROS provides great ease for developing
and managing robotic devices and applications [25]. However, ROS
has its limitations by design. It lacks basic security features, leaving
ROS-based systems extremely vulnerable [57, 58, 67]. Besides, it is
not suitable for multi-robot systems (MRS) in real-time processing.
All the robots have to connect to one master node for communica-
tion, which makes the system inflexible and inefficient.

To address these problems, ROS2 is developed as an upgrade to
ROS. ROS2 uses the Data Distribution Service (DDS) as the com-
munication middleware instead of the traditional master-based
communication method, which brings two main advantages. First,
DDS allows participants to work in a distributed fashion, which
efficiently extends the ROS2-based applications to various multi-
robot scenarios [15, 38, 50, 56, 87, 91]. Second, ROS2 develops its
native security tool, SROS2, on top of DDS’s built-in security mod-
ules. SROS2 provides many security features which are missing in
ROS, such as network traffic encryption, authentication and access
control. With these benefits, ROS2 rapidly gains huge popularity.
An increased number of IT and robotic companies adopt ROS2
to develop their robotic products (e.g., Amazon Robomaker [80],
iRobot [8], etc.)

While ROS2 aims to provide better protection than ROS, there
are still unsolved security concerns about it. (1) The security of the
new features in ROS2 is not thoroughly verified. These features may
contain loopholes, which could be exploited to cause severe security,
privacy and safety hazards. (2) The multi-robot scenario supported
by ROS2 can bring new security challenges. A large quantity of
heterogeneous robots from different parties and locations can be
coordinated by the cloud service (e.g., Amazon RoboMaker) to
complete complex tasks, which could potentially enlarge the attack

https://doi.org/10.1145/3548606.3560681
https://doi.org/10.1145/3548606.3560681

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Gelei Deng, Guowen Xu, Yuan Zhou, Tianwei Zhang, and Yang Liu

surface of the entire system. With the fast adaption of ROS2, a
comprehensive study on its security is urgently needed.

In this paper, we present the first systematic investigation about
the security of SROS2 with the following contributions. First, we de-
sign a method based on the model checking technique [28] for ROS2
verification (Section 4). Modeling every detail of the ROS2 system
can be extremely challenging, because it involves multiple layers
with thousands of functions, and the corresponding model can con-
tain a huge number of states that may cause the state explosion
issue [27]. To overcome this problem while accurately modeling
the system, we leverage the code property graph [93] to represent
the ROS2 client library and its DDS middleware implementation,
and efficiently identify the key functions involved in inter-robot
communication. We further eliminate the non-related components
from the key function CPG representations, and analyze them to
abstract the events describing the ROS2 inter-node communica-
tion workflow. Based on this, we model two key ROS2 components
(nodes and DDS participants) and the communication environments
as processes driven by those events. We formulate a set of desired
security properties based on the official ROS2 Robotic Systems Threat
Model [5], and leverage a model checker to automatically identify
vulnerabilities that can lead to violations of these properties.

Second, with the aforementioned methodology,we successfully
identify four vulnerabilities existing across multiple ROS2
versions, which can invalidate the SROS2 security mechanisms
(Section 5). By exploiting those vulnerabilities, the adversary can
(1) bypass access control to send arbitrary malicious messages to
unauthorized ROS2 nodes, (2) receive confidential messages from
unauthorized topics, or (3) extract sensitive information about the
system security settings. We validate the exploitability and prac-
ticality of those vulnerabilities using four real-world workloads
developed by Open Robotics [61] and Amazon AWS Robotics [80]
through both simulation and physical experiments (Section 6). We
confirm that a single malicious actor can easily terminate the en-
tire system, mislead other benign robots to crash, and steal users’
private information. These vulnerabilities have been reported to
Open Robotics, the official maintainer of ROS2, and acknowledged
by them. Following our suggestion, temporary mitigation methods
have also been integrated into the ROS2 testing version.

Third, to thoroughly address the implementation flaws, we pro-
pose a general defense solution customized for ROS2 (Section 7).
Patching these vulnerabilities separately requires careful modifica-
tions of the ROS2 source code to re-design the SROS2 access control
functions, which can be a tremendous and tedious task. Instead,
we propose to adopt the private broadcast encryption (PBE) primi-
tive [16] to fundamentally address the security flaws in the SROS2
design. Our solution guarantees to provide secure access control
as PBE is proved to have key indistinguishability under chosen-
ciphertext attacks (IK-CCA). It can work with ROS2 as an individual
security module without additional infrastructure support or modi-
fication of the ROS2 source code. We implement our solution as a
lightweight Python library that can be imported directly by ROS2
applications. We deploy various workloads in our physical testbed
to show that our solution can mitigate the discovered vulnerabili-
ties with acceptable performance and resource overhead. We have
open-source our solution on our submission website [9] to benefit
the robotics community.

2 BACKGROUND
2.1 Robot Operating System
Robot Operating System (ROS) adopts a node-based structure, where
each node is an independent process that executes certain functions.
A typical robot application comprises many nodes distributed in
one or multiple robot devices. These nodes exchange messages with
each other to finish the task cooperatively. The node communica-
tion follows a publish-subscribe mode through a topic: each node
can publish messages with a customized data structure to a topic,
and all the nodes subscribed to that topic will receive the messages.

With more emerging scenarios, the design of ROS exhibits two
fundamental drawbacks. First, ROS is not suitable for distributed
MRS development. All the network trafficsmust go through amaster
node, and every robot needs to keep continuous network connec-
tion with this node. This makes the master node a single-point-of-
failure and performance bottleneck. Second, ROS lacks the basic
security mechanisms, and contains many security loopholes. While
new security modules were developed by the community to patch
these issues, they are not widely adopted in real-world applications.
Up to now, the latest official ROS distributions have not included
those extensions yet, making the majority of ROS-based systems
vulnerable to various attacks [57, 58, 67, 86].

To thoroughly solve these issues, Open Robotics [61] proposed
the new Robot Operating System 2 (ROS2) in 2014. ROS2 has the
similar client library and user-level API structure as ROS, so pre-
viously developed ROS applications can be easily migrated to the
ROS2 platform. At the network transport layer, ROS2 adopts the
Data Distribution Service (DDS) protocol [30], which has the dis-
tributed communication capability and built-in security modules.
Therefore, ROS2 enjoys all the functionalities from the original ROS,
with new support for distributed computing, better performance
and security enhancements. With the increased number of pack-
ages and projects migrating from ROS to ROS2, ROS2 is expected
to establish the basis for the future robotic ecosystems.

2.2 Data Distribution Service
DDS is a mature middleware protocol adopted in ROS2 for real-
time connectivity. It supports a publish-subscribe protocol called
Data-Centric Publish-Subscribe (DCPS) [63]. The basic structure
of DCPS is illustrated in Figure 1. A global data space is created
to contain all the data objects (i.e., DDS topics). These DDS topics
are similar as the topic objects in ROS, and can be accessed by
DDS processes. A process that publishes or subscribes to a topic is
called a participant. The communication between participants are
regulated by a series of configurable parameters that control the
behaviors of DDS, namely Quality of Service (QoS).

ROS2 interacts with DDS by calling the abstract DDS APIs (Fig-
ure 1). The userland code defines the function logic in the app, e.g.,
how the nodes communicate with others through topics, and how
the received messages are processed. The code is then interpreted
by the ROS2 Client Library (RCL) to form the node-based com-
munication structure. This structure is further processed by the
ROS2 DDS Middleware (RMW) to generate the corresponding DDS
structure and configuration parameters. Finally, the DDS configura-
tions are passed to the DDS APIs to build the DDS system structure.
With these steps, ROS2 nodes and DDS participants establish a

On the (In)Security of Secure ROS2 CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Figure 1: ROS2 DDS architecture with the DCPS protocol.

one-to-one relationship1. At runtime, when an ROS2 node tries to
publish a message, ROS2 translates such behavior into a series of
DDS API calls, and the actual communication is achieved through
DDS. In this process, ROS2 works as a middleware and does not
handle protocol-level details.

2.3 DDS Security
DDS has its native security specification [40] that adds security
protections by defining a series of Service Plugin Interfaces (SPIs).
The DDS SPIs provide five security features: authentication, access
control, cryptography, logging and data tagging. They can be en-
abled and configured through the QoS parameters. ROS2 adopts
the first three features from DDS as summarized below:
Authentication. This plug-in uses the Public Key Infrastructure
(PKI) [59]: each participant has a public-private key pair and an
x.509 certificate that binds its public key to its name. Through the
PKI, a DDS participant can verify other participants’ identity by
checking their certificates. Each x.509 certificate must be signed
by (or have a signature chain to) one trusted Certificate Authority
(CA), which is typically set up by the robotic system owner.
Access control. This plug-in defines and enforces restrictions on
the DDS-related capabilities of a given domain participant. It re-
quires two XML files per domain participant, signed by the CA.
(1) A governance file specifies the domain properties, e.g., if the
domain can be joined by other participants, if it can be discovered
in the network, etc. (2) A permission file specifies the permissions
of the domain participant. It declares if a participant can publish or
subscribe to specific topics. This permission file is used to configure
the access control policies for system participants.
Cryptography. This plug-in declares the cryptography-related
operations, e.g., encryption, decryption, signature, etc. Both the
authentication and access control plug-ins utilize these primitives
to achieve their functions. By default, enabling this plug-in will
encrypt all the DDS network traffics using the established Advanced
Encryption Standard in Galois Counter Mode (AES-GCM) [79].

2.4 Secure ROS2
ROS2 builds its security mechanisms based on the DDS security
specification. The system owner declares the security configura-
tions in the ROS2 userland code, which will be interpreted and
passed to the DDS security plug-ins. This set of security features
are collectively named “Secure ROS2” (SROS2).

1For performance optimization, ROS2 maps multiple nodes to one participant if
these nodes share the same configurations. The design rationale is disclosed in [3].

Specifically, SROS2 provides command line integration [76] to
enable the SROS2 features. It includes a key generation tool that
helps the system owner act as the CA and generate the certifi-
cate/key files for the nodes in the system. SROS2 standardizes the
security file formats, and specifies how the system owners should
distribute those files to the robots. These files need to be put in
a specific keystore folder following the pre-defined structure and
naming rules, so that they can be loaded by SROS2 and passed
to DDS as QoS parameters. Enabling SROS2 features brings the
following security mechanisms to the system:
Traffic encryption. In the default settings of ROS and ROS2, traf-
fics between nodes are in plaintext. Once SROS2 is enabled, the
messages are encrypted by the DDS cryptography plug-in.
Access control. SROS2 enforces access control on the nodes by
restricting the underlying DDS participants’ capabilities. The sys-
tem owner provides the governance and permission files for all the
nodes. Then each node can only publish/subscribe to the topics
declared in its corresponding permission file.
Topic information protection. In ROS, topic-related information
is public and can be retrieved by the built-in RCL tool (i.e., rostopic
[29]), which brings privacy concerns. SROS2 restricts users from
reading such information from unauthorized topics, thus protecting
the privacy of topics and relevant nodes.

3 THREAT MODEL
3.1 System Assumptions
We consider a distributed MRS where a number of robots collabo-
ratively work on one workload under the guidance of a centralized
Ground Control Station (GCS). The system is developed with ROS2
and fully secured by the SROS2 modules. We assume all the config-
urations are set correctly with the following properties: (1) There
exists one physical controller serving as the system owner of the
MRS. It defines the system functions through userland codes, and
also defines the access control policies for each robot that joins
the system. Robot users only have local privilege to control their
own robots. (2) A trusted CA is controlled by the system owner and
generates unforgeable digital certificates for all the nodes within
the MRS. These certificates are distributed to robots by the system
owner securely. The system owner has the capability of remotely
updating the certificate files stored on the robots at runtime. (3)
Network traffic is properly encrypted by the DDS cryptography
plug-in. (4) The system owner correctly implements the Mandatory
Access Control (MAC) [53] policies by creating the permission files
following the SROS2 standards [76].

3.2 Adversary’s Capabilities
Following previous works on robotic security [24, 31, 44], we as-
sume that one robot in the MRS is malicious and fully controlled by
the adversary. This assumption is realistic due to several reasons:
(1) there are software vulnerabilities and bugs in the robotic appli-
cations [12], which can be exploited by the adversary to intrude
into the system and take full control of a robot. (2) ROS2 has its
open-source platform that allows developers over the world to up-
load and share their function packages [69]. Unfortunately, there
is no security check on the submitted code, and an adversary can
publish malicious packages for other developers to download [92].

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Gelei Deng, Guowen Xu, Yuan Zhou, Tianwei Zhang, and Yang Liu

Figure 2: Methodology Overview

(3) Many cloud providers offer cloud-robotic services (e.g., AWS
RoboMaker [80], Google Cloud Robotics [7]) to deploy robotic ap-
plications across the cloud and local robots. Robots from different
parties and locations will be connected and coordinated by the
cloud to complete the tasks. It is highly possible that some party
is malicious and introduces an adversarial robot into the system,
which tries to attack other robots via the interaction with the cloud.

The adversarial robot attempts to invalidate the SROS2 security
features (especially the access control mechanism) and execute ma-
licious operations in the MRS. These include (1) retrieving restricted
information from unauthorized topics, (2) retrieving private node
and topic configuration information, and (3) sending malicious
messages to unauthorized topics.

The adversarial robot can perform arbitrary operations locally.
However, it has the following limited capabilities when communi-
cating with other actors in the system due to the presence of the
SROS2 security mechanisms. (1) Due to the presence of SROS2, it
can only communicates with the GCS and other robots by publish-
ing and subscribing to relevant ROS2 topics using the functions
defined by the ROS2 client library with valid security files. (2) It
cannot forge digital certificates for authentication or break the en-
cryption. However, it has the ability to read and use the certificates
installed in its own robot. (3) It can passively eavesdrop all net-
work traffics in its wireless communication range by switching its
wireless adaptor to the promiscuous mode. This is feasible on vast
majority of robots’ on-board computers.

4 METHODOLOGY OF INVESTIGATING ROS2
We introduce a methodology to thoroughly inspect the security of
ROS2 implementation. It consists of four steps (Figure 2). (1) We
first abstract the key events related to the network communication
from the ROS2 and SROS2 source code (Section 4.1). (2) We describe
the ROS2 system with the formal language CSP# [85] by modeling
the nodes, participants and their communications (Section 4.2). (3)
We formalize the desired security requirements, and perform model
checking on the constructed model under these requirements (Sec-
tion 4.3). The model checker generates possible counterexamples,
which are the system states that violate the requirements. (4) We an-
alyze the counterexamples, summarize the vulnerabilities of SROS2
modules, and further verify their exploitability (Sections 5 and 6).

4.1 ROS2 Abstraction and Modeling
A typical ROS2 workload comprises three basic entities: nodes,
participants, and the system owner. They interact with each other
through a series of function calls to take actions, including policy

updates, message communication, etc. The first step of our method-
ology is to identify the interactions between these entities and
abstract them into a series of events that can be formally described.
This approach enables formal verification of the abstracted system,
but faces two main challenges. First, it is difficult to accurately iden-
tify the function call traces related to communication from the ROS2
source code. ROS2 is a massive system at three implementation
levels (high-level API, RCL and RMW) with more than 500k lines
of code in a mix of Python, C++ and C languages. Apart from core
components for robot communication and control, it also contains
numerous feature modules such as ROS1 adaptation, user experi-
ence enhancement, etc. Second, the implementation of inter-node
communication processes also involve various inner-node func-
tions, such as validating the userland code2. These functions are
redundant in modeling the communication structure since we focus
on the security issues of ROS2 caused by the inter-node actions.

To address the above challenges, we adopt code property graph
(CPG) [93] to represent the code structure, shortlist critical func-
tions related to communication, and abstract the key events. CPG
is a graph representation that merges the abstract syntax tree, con-
trol flow graph and program dependency graph into one joint data
structure. Our strategy contains three main steps.

(1). Key Function Identification. We first locate the code sections
that process communication messages from the large ROS2 code
base. This can be achieved by tracking the data flow that involves
the message variables in the CPG.

(2). CPG Purification. Next we further purify the CPG by re-
moving the redundant function nodes that handle the inner-node
behaviors but do not contribute to inter-node communications. As
discussed previously, ROS2 implements validation mechanisms to
ensure the validity of userland code. The execution of these func-
tions results in either (a) its caller function continuing to execute if
no error is reported, or (b) terminating the caller function execu-
tion and throwing an error. Either way will not change the normal
interaction relations between the communication-related functions.
Therefore, we consider eliminating them from the graph for easier
modeling. Since these input validation components do not change
the interaction relations between the communication-related func-
tions, they exhibit the same pattern in the control flow of the CPG
representation: input validation function nodes have direct outgo-
ing edges to the error handler function nodes, which then terminate
the control flow. Leveraging this property, we can efficiently iden-
tify them by traversing the graph and examining the outgoing edges
for each node. The purified CPG can then be constructed by remov-
ing the error handling nodes and joining the other nodes together.
Figure 3(a) demonstrates an example of a code snippet in RCL for
publisher node creation (rcl_publisher_init), which has two
functions for userland code validation (rcl_node_is_valid and
rcl_node_resolve_name). By removing these nodes, we can recon-
struct the abstracted graph that only includes the communication-
related functions in Figure 3(b).

(3). Verification and Analysis. Now the CPG only contains key
functions that directly control the interactions between ROS2 sys-
tem entities. To ensure the correctness of the CPG, we locate the

2For instance, user-specified node name will be examined by both RCL and RMW
to ensure its uniqueness.

On the (In)Security of Secure ROS2 CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

(a) Initial control flow (b) Abstracted control flow

Figure 3: An example of identifying key functions in an RCL
code snippet (rcl_publisher_init).

key functions in the ROS2 source code and check if their call rela-
tions comply with the abstracted CPG callgraph. Then, wemanually
analyze these key functions to understand the ROS2 inter-node com-
munication workflow. Since the complexity of the CPG has been
greatly reduced through previous steps, it is feasible and efficient
to conduct verification and analysis manually.
Implementation. We apply a robust parser Joern [93] to parse
the source code of RCL and RMW, generate and purify the CPG.
Specifically, we first construct the CPG of the functions related to
communication, which contains 1283 nodes. We summarize the
exception keywords (“ERROR”, “err”, etc.) based on ROS2 coding
practice and use them to label the error handler functions for CPG
purification. After deleting the nodes directly connected to them,
we establish the final abstracted CPG that contains 89 function
nodes. We analyze these functions and summarize 23 key functions
which are critical for inter-node communication. More details of
our implementation are available at [9].

We further analyze the key functions and their dependencies,
and figure out the inter-node communication workflow, as briefed
below. The system owner first passes the security files to the user,
who then stores these files in a self-defined path. To create an
ROS2 node, the user initializes RCL with the security file path,
and calls the rcl_init_publisher or rcl_init_subscription
function depending on whether it is a publisher or subscriber. This
function triggers the participant initialization handler in RMW.
RMW verifies the integrity of the security files in the provided
security path, and loads the access control policies as DDS QoS
parameters. When the node publishes a message to a topic, the
corresponding DDS participant calls the DDS API with this message.
When a subscriber node subscribes to an ROS topic, its participant
subscribes to the corresponding DDS topic so that it can receive any
messages published to that topic. In this manner, ROS2 translates
userland code to a complete communication structure, while the
network-level communication is handled by DDS.

4.2 Model Construction
Following the prior works [82, 96], we use CSP# [85] to describe the
ROS2 communication system. It is an extension of CSP (Communi-
cating Sequential Processes) [42] that mixes high-level operators
with low-level programs for efficient modeling and verification of
software systems with concurrent events. This makes it suitable
for modeling the abstracted ROS2 system with concurrent node
communication processes. Based on the event abstraction in Sec-
tion 4.1, we define three types of processes: owner_proc, node_proc

Figure 4: Partial diagram of the CSP# model for the ROS2
system (node 𝑖 publishes/subscribes to topic 𝑗).

and parti_proc. Figure 4 shows the abstracted diagram of our CSP#
model. Below we breif the construction of the model for an ROS2
system with 𝑁 nodes and 𝑀 topics, while the detailed formal de-
scription of each process is available in our supporting material [9].

(1) owner_proc process models the system owner that defines
the access control policies and updates them to the nodes through
security files. Each security file stores the access control rules for
at least one node, and is modeled in an array 𝑜𝑤𝑛𝑒𝑟_𝑎𝑐𝑐𝑒𝑠𝑠: for a
giving node 𝑖 and a topic 𝑗 , the Boolean vector 𝑜𝑤𝑛𝑒𝑟_𝑎𝑐𝑐𝑒𝑠𝑠 [𝑖, 𝑗] =
[𝑥,𝑦, 𝑧] denotes if this node has publishing (𝑥) and subscription (𝑦)
permissions, and knowledge of the topic’s configurations (𝑧). Each
security file has a path (denoted as 𝑝𝑎𝑡ℎ) known by its correspond-
ing node(s). Then owner_proc stores 𝑝𝑎𝑡ℎ to the access channel,
denoted as 𝑎𝑐𝑐_𝑐ℎ𝑙 . There can be 𝑁 channels in the system, with
each one associated to a node.

Nodes and participants should obey the access control policies
defined by the system owner. For clear representation, we let 𝑝𝑢𝑏𝑖 𝑗 =
𝑜𝑤𝑛𝑒𝑟_𝑎𝑐𝑐𝑒𝑠𝑠 [𝑖, 𝑗] [0] and 𝑠𝑢𝑏𝑖 𝑗 = 𝑜𝑤𝑛𝑒𝑟_𝑎𝑐𝑐𝑒𝑠𝑠 [𝑖, 𝑗] [1] to denote
the publishing and subscription access of node 𝑖 to topic 𝑗 .

(2) 𝑛𝑜𝑑𝑒_𝑝𝑟𝑜𝑐 (𝑖) process models ROS2 node 𝑖 . It first initializes
itself by loading the security files from the user-defined path, and
initializes a participant with the loaded contents. The node does not
directly handle the contents of the security file in this step. After
initialization, the node can (i) re-initialize itself with a new security
file path and the corresponding participant; (ii) publish messages to
the participant via an internal publishing message channel; or (iii)
subscribemessages from the participant via an internal subscription
message channel. Note that while access control is defined at the
node level, SROS2 does not enforce access control over the nodes,
but relies on DDS to regulate the participants corresponding to the
nodes. Thus nodes can freely execute the publishing/subscription
functions to arbitrary topics, but the corresponding participants
will get rejected if they do not have the proper access.

(3) 𝑝𝑎𝑟𝑡𝑖_𝑝𝑟𝑜𝑐 (𝑖): this process models the participant created by
node 𝑖 . Upon initialization, the participant verifies the integrity of
the security file contents provided by the node. It then retrieves
the access control policies from the file and saves them into the
corresponding internal access channel if the security file is valid.
Then, it can (i) retrieve the messages from the internal publishing
message channels and send them to the topics in the global data
space of the DDS system; (ii) use its identity certificate to retrieve
the messages of corresponding topics from the transport protocol
and send them to the internal subscription message channels; or
(iii) update the access control rules.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Gelei Deng, Guowen Xu, Yuan Zhou, Tianwei Zhang, and Yang Liu

4.3 Model Checking
The above formal model enables the security checking of given
security requirements and identification of possible violations via
a model checker. If the model violates any security requirements,
the model checker can automatically generate a counterexample,
an execution trace that leads to the violation.
Security requirements. To identify the potential vulnerabilities
in the ROS2 implementation, we first describe the desired security
requirements for the system. These requirements are summarized
from ROS2 Robotic Systems Threat Model [5], an official document
describing the security goals, assets, and attack vectors in robotic
systems. Following the previous work [49], we adopt the require-
ment engineering [23] technique to manually interpret the docu-
ment. By mapping the security goals to the assets accessible to MRS
participants, we conclude six security requirements for the system.
Specifically,R1 andR2 are for system completeness, which ensures
that all system entities participate in the communication process.
R3 to R6 describe the security and privacy of the system entities.
For each summarized requirement, we further describe it with the
LTL (linear temporal logic) [64] formula. Let □, ^, and 𝑈 be the
temporal operators “always”, “eventually”, and “until”; ∧, ∨ and
→ be the logical operators “and”, “or”, and “implies”. The security
requirements for the ROS2 system can be formulated as below.

(R1) Each node in the system has access control rules to at least
one topic, either for publishing or subscription. Let 𝑛𝑝𝑢𝑔𝑖 𝑗 and
𝑛𝑠𝑢𝑏𝑖 𝑗 be the publishing and subscription access of node 𝑖 to
topic 𝑗 , then □ ∧𝑖=0,...,𝑁−1

∑𝑀−1
𝑗=0 (𝑛𝑝𝑢𝑏𝑖 𝑗 + 𝑛𝑠𝑢𝑏𝑖 𝑗) >= 1.

(R2) Each topic is accessible to at least one node to publish mes-
sages and at least one node to subscribemessages, i.e.,□∧𝑗=0,...,𝑀−1∑𝑁−1
𝑖=0 𝑛𝑝𝑢𝑏𝑖 𝑗 >= 1 and □ ∧𝑗=0,...,𝑀−1

∑𝑁−1
𝑖=0 𝑛𝑠𝑢𝑏𝑖 𝑗 >= 1.

(R3) The access control rules tomessage publishing of a participant
should always be the same as the one declared by the owner.Let
𝑝𝑢𝑏𝑖 𝑗 and 𝑝𝑝𝑢𝑏𝑖 𝑗 be the system-defined publishing access of
node 𝑖 to topic 𝑗 , and the access at the participant level, then
we have □ ∧𝑖=0,...,𝑁−1;𝑗=0,...,𝑀−1 𝑝𝑢𝑏𝑖 𝑗 == 𝑝𝑝𝑢𝑏𝑖 𝑗 .

(R4) The access control rules to message subscription of a partic-
ipant should always be the same as the one declared by the
owner. Let 𝑠𝑢𝑏𝑖 𝑗 and 𝑝𝑠𝑢𝑏𝑖 𝑗 be the system-defined subscription
access of node 𝑖 to topic 𝑗 , and the access at the participant level,
then we have □ ∧𝑖=0,...,𝑁−1;𝑗=0,...,𝑀−1 𝑠𝑢𝑏𝑖 𝑗 == 𝑝𝑠𝑢𝑏𝑖 𝑗 .

(R5) A participant 𝑖 can publish (resp., subscribe) to a topic 𝑗 only
when 𝑝𝑝𝑢𝑏𝑖 𝑗 == 1 (resp., 𝑝𝑠𝑢𝑏𝑖 𝑗 == 1) and the buffer of channel
𝑡𝑜𝑝𝑖𝑐 [𝑗] is not full (resp., empty). Let 𝑝_𝑚𝑠𝑔𝑖 𝑗 and 𝑠_𝑚𝑠𝑔𝑖 𝑗 be
Boolean variables denoting whether participant 𝑖 publishes and
subscribes to topic 𝑗 . Let 𝑐𝑎𝑙𝑙 (𝑥, 𝑐ℎ𝑙) be querying the buffer in-
formation of a channel 𝑐ℎ𝑙 , 𝑐 𝑓 𝑢𝑙𝑙 and 𝑐𝑒𝑚𝑝𝑡𝑦 denoting whether
the channel is full or not. Then we have □∧𝑖=0,...,𝑁−1;𝑗=0,...,𝑀−1
(𝑝_𝑚𝑠𝑔𝑖 𝑗 == 1 → 𝑝𝑝𝑢𝑏𝑖 𝑗 == 1 ∧ 𝑐𝑎𝑙𝑙 (𝑐 𝑓 𝑢𝑙𝑙, 𝑡𝑜𝑝𝑖𝑐 [𝑗]) ==

𝐹𝑎𝑙𝑠𝑒)∧(𝑠_𝑚𝑠𝑔𝑖 𝑗 == 1→ 𝑝𝑠𝑢𝑏𝑖 𝑗 == 1∧𝑐𝑎𝑙𝑙 (𝑐𝑒𝑚𝑝𝑡𝑦, 𝑡𝑜𝑝𝑖𝑐 [𝑗])
== 𝐹𝑎𝑙𝑠𝑒), where 𝑐𝑎𝑙𝑙 (𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑛𝑎𝑚𝑒) is a static method to
query the buffer information of a channel in the model checker.

(R6) When a node 𝑖 legally subscribes to a topic 𝑗 , it can only access
the messages sent to the topic by legal nodes, but no other infor-
mation of the topic’s publishers. Let 𝐼 𝑗 be the nodes that have
access to publish messages to topic 𝑗 , 𝑔(𝑖, 𝑘) be a Boolean value
denoting whether the message subscribed by node 𝑖 is equal

to the message published by node 𝑘 , and 𝑓 (𝑖, 𝑘) be a Boolean
value denoting whether node 𝑖 knows the access of node 𝑘 .
Then we have □ ∧𝑗=1,2,...,𝑀 (𝑛𝑠𝑢𝑏𝑖 𝑗 == 1 ∧∏

𝑘∈𝐼 𝑗 𝑛𝑝𝑢𝑏𝑘 𝑗 ==
1) → (∑𝑘∈𝐼 𝑗 𝑔(𝑖, 𝑘) == 1 ∧∑𝑘∈𝐼 𝑗 𝑓 (𝑖, 𝑘) == 0).

Implementation.Without loss of generality, we apply the popular
Process Analysis Toolkit (PAT) tool [84] to automatically verify
if the abstracted CSP# model in Section 4.2 satisfies the above se-
curity requirements. Particularly, we construct the system based
on the SROS2 sample project chatter [76], which has two nodes
and two topics. This project is selected for two reasons. First, it
involves the complete message publishing and subscription process
in a well-defined communication structure. Since ROS2 communi-
cation is node-to-node basis, increasing the number of nodes and
topics does not necessarily increase the complexity of the checked
model. Second, this project has the native security implementation
developed by ROS2 official. As people develop projects following
ROS2 examples, the default misconfigurations in this project can
be inherited to other community projects. Thus, we consider this
model to be adequate and suitable for identifying vulnerabilities.
We implement the concrete system model and initialize the system
state based on the project’s default security configuration.

By verifying the model against the security requirements, we
successfully identify multiple counterexamples in ROS2. Since the
formal model is constructed strictly based on the key functions from
the ROS2 implementation, all modeled processes and variables can
be mapped to concrete objects in the source code. This enables us
to quickly examine the related functions in the ROS2 implemen-
tation once a violation is detected, and identify the vulnerabilities
led by the counterexamples. We analyze these vulnerabilities and
demonstrate the exploits in Sections 5 and 6.

4.4 Discussion
While we select the chatter project in the system modeling pro-
cess, our methodology can be applied to any ROS2 project and
extended to other systems. This is because our strategy abstracts
the ROS2 client library andDDSmiddleware into formally described
processes and events. Fundamentally speaking, ROS2 projects are
different only at the userland code level, which calls the low-level
functions in different orders and quantities. We can easily model
another ROS2 project by changing the number of topics, nodes,
participants, and their publishing/subscription relationships.

We design our model checking approach to achieve soundness
(i.e., each reported violation is indeed a reachable vulnerable system
state) instead of completeness (i.e., identifying all the possible viola-
tions within the system). This is because our system modeling is pa-
rameterized by the number of nodes and topics, and it is impossible
to achieve completeness due to the undecidability of parameterized
system verification problem [13]. Thus, we follow the conventional
approaches [44, 45, 49] to aim for soundness instead of complete-
ness. The proposed model abstraction through node elimination
results in a certain level of inaccuracy and may leave some vulner-
abilities undiscovered. However, this process does not change the
interaction relations between the communication-related functions,
and thus guarantees the soundness of our approach.

Besides, we follow the official ROS2 threat model [5] to identify
the vulnerabilities caused by false interactions between entities

On the (In)Security of Secure ROS2 CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

within the system. There exist some vulnerabilities beyond the
scope of this threat model, and our methodology will fail to detect
them. For instance, we do not consider the function-level vulner-
abilities such as improper input sanitization vulnerabilities. Also,
we do not consider implicit information leakage via side channels.
During our manual analysis, we indeed find one such network side
channel in ROS2: when a message is published to a topic, the ROS2
DDS identifies the receiver participants, and sends the message to
each one separately. Since the message is the same, the network
packets to each participant have the same source IP address, similar
packet lengths, and very close timestamps. This allows an adver-
sary to infer sensitive information about other nodes and topics by
analyzing the network traffic, even it is encrypted by SROS2. How
to formally discover such kinds of vulnerabilities is orthogonal to
this work, yet an important direction to explore in our future works.

5 SECURITY VULNERABILITIES IN ROS2
We analyze ROS2 and SROS2 implementations with the proposed
methodology. Specifically, we examine the three most used and
maintained ROS2 versions according to ROS Metrics [10]: ROS2
Galactic [75], Foxy [72] and Eloquent [71]. We successfully identify
four vulnerabilities that exist across all versions of ROS2 and SROS2
implementations. In the rest of this paper, we select ROS2 Foxy [72]
distribution, the most mature and widely used ROS2 version as our
target, while our findings also apply to the other ROS2 versions.
We present the counterexamples, model checking outputs as well
as our analysis on the minor differences between ROS2 versions in
our supporting material [9].

5.1 V1: Permission File Replacement
The first vulnerability is caused by violations of security require-
ments R3 and R4 in Section 4.3, where a malicious node can bypass
the access control policies and publish or subscribe to unauthorized
topics. The root cause of this vulnerability is a ROS2 design flaw, where
the adversary can abuse the local privilege to incur synchronization
failures of access control policies.

ROS2 enforces access control policies by passing the SROS2
security files to the DDS security plug-in through APIs (Section
2.4). This requires the access control policies to be updated and
synchronized in three layers of the ROS2 architecture. (1) System
policies are created by the system owner. They are declared in the
signed permission files and distributed to the corresponding robots.
(2) SROS2 policies are loaded by the SROS2 modules. Each robot
declares the directory that contains the security files. The SROS2
modules verify the validity of these security files, and then pass
them to the DDS layer through API calls. (3) DDS QoS policies are
loaded by DDS QoS security plug-ins. It enforces access control on
the DDS participants and the ROS2 nodes.

Ideally, access control policies in the three layers should be timely
synchronized: once the system owner updates the policies during
the workload execution, the corresponding security files should be
updated on the robots; the policies declared in the security files
are then loaded by the SROS2 modules and passed to the DDS
participants immediately. However, we discover that an adversary
could abuse the design flaw of the SROS2 permission file revocation

Figure 5: Unauthorized publishing/subscription through the
vulnerabilities of V1 (❶) and V2 (❷).

process to interrupt the synchronization process, thus invalidate
the SROS2 access control and further attack the system.

As introduced in Section 2.3, the permission files store the access
control policies. When a node publishes or subscribe to a topic,
it provides the corresponding permission file stating the proper
access to the topic. SROS2 rejects the action if the permission file
does not contain a valid digital signature signed by the CA, thus
enforces access control policies. However, SROS2 does not actively
revoke the old permission files when the access control policies
are updated. Instead, it simply replaces the old files with the new
ones, or sets up a new directory to store the new files and changes
the corresponding load pointers. Since a robot has read and write
accesses to all the local files, an adversarial robot can store the
expired permission files in a backup keystore directory, and then
pass them to SROS2 instead of the updated one (❶ in Figure 5).
These expired files can pass the CA signature verification and are
loaded for policy enforcement. By doing so, the adversary can
obtain publish and subscription access to some restricted topics,
even its permissions have been explicitly denied in the updated files.
A direct mitigation towards this vulnerability is active certificate
revocation. By revocation of expired certificates and permission
files, the adversary cannot bypass the SROS2 verification with the
old permission files. ROS2 has taken our suggestion and added
documentations on manual certificate revocation methods in ROS2
rolling [77], the feature testing ROS2 version. However, an complete
and automated solution is not implemented yet.

5.2 V2: Outdated Node Service
Similar to V1, the second vulnerability also violates R3 and R4 in
Section 4.3. The root cause of this vulnerability is also the synchro-
nization failures of access control policies in different SROS2 layers
caused by a ROS2 design flaw, where the DDS QoS policies can only be
updated during participant initialization. An adversarial node can
leverage the loophole in SROS2 function calls to refuse the update
of access control policies on the corresponding participant.

Particularly in ROS2, node publishing and subscription are two
independent actions controlled by the robot.When a node publishes
or subscribes to a topic, RMW calls the DDS APIs and the SROS2
security files are loaded to the corresponding DDS participant as
the QoS policy parameters. The participant then creates a data
reader or writer following the QoS policy. When the system owner
updates the access control policies of a node, the robot is required
to relaunch the node’s publishing or subscription service so the
new policies can be updated to the DDS. This design is vulnerable
because an adversarial robot can refuse to restart the services of
its nodes (❷ in Figure 5), so it can continue accessing the topics,
which are supposed to be revoked during permission updates.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Gelei Deng, Guowen Xu, Yuan Zhou, Tianwei Zhang, and Yang Liu

5.3 V3: Default Mis-configuration
ROS2 provides a GUI plugin rqt_graph [70] to visualize the publishing-
subscription relations between nodes and topics for the debugging
purpose. To protect the recipient privacy [16], SROS2 disables this
function and allows the system owner to configure the discoverabil-
ity of each node and topic. By default, topics, nodes, and the pub-
lishers/subscribers to each topic are hidden after enabling SROS2.
However, we identify one vulnerability that allows an adversarial
robot to obtain sensitive information of other nodes and topics, i.e.,
violating the requirement R6 in Section 4.3. This vulnerability is
caused by a default misconfiguration in the SROS2 implementation
that contains insecure DDS QoS parameters.

We find that SROS2 has some default mis-configurations that
could cause cross-node information leakage. For instance, in the im-
plementation of the SROS2 settings for RTPS DDS [41], the default
option for the message communication is sign without encryption.
A signed DDS message does not hide the its publisher/subscriber
participants’ information, and the adversarial node can read them
to infer the network communication topology. This vulnerability
was also reported by other developers as CVE-2019-19625 and CVE-
2019-19627. The ROS2 community developed patches to fix them
[73]. However, they are not merged into the ROS2 mainstream,
making the current version still vulnerable.

5.4 V4: Permission File Inference
Similar to V3, this vulnerability can also cause cross-node infor-
mation leakage, but from the permission files. Its root cause is the
insecure coding practice without the consideration of the principle of
least privilege.While the integrity of an SROS2 permission file is pro-
tected by its digital signature, its confidentiality is not guaranteed.
ROS2 assumes that each node protects the confidentiality of its own
files including the permission files, so all these files are in cleartext.
Ideally, creation of the permission files should follow the principle
of least privilege [34]: every node in the system can only access the
topics necessary for its legitimate purpose. Unfortunately, we dis-
cover that a majority of permission files in the official ROS2 projects,
including the SROS2 sample publisher-subscriber system [74] and
the Open Robotics RMF Demos project [62], disobey this princi-
ple and contain excessive information. The adversary robot can
easily read the sensitive attributes of other nodes directly from its
own permission file including their security configurations and
topic access. Workloads which follow or adopt these permission file
templates from official projects could suffer severe privacy threats.

It is worth noting that this vulnerability is fundamentally differ-
ent from the previous ones. While V1 to V3 target the underlying
communication protocols, V4 originates from the owner-specified
permission files. It can be mitigated by carefully defining the per-
missions with the principle of least privilege. So in the rest of this
paper, we do not consider this vulnerability any more.

5.5 Discussion
The severity of these vulnerabilities is reflected in not only the
possible consequences, but also their stealthiness. The existing
ROS2/SROS2 mechanisms cannot effectively detect attacks from

these vulnerabilities. Specifically, (1) in the current ROS2 commu-
nication protocol design, messages do not contain publisher infor-
mation, and topics are typically designed to process homogeneous
types of message without the capability and necessity of tracking
the message sources. Therefore, when the adversarial robot exploits
the unauthorized publishing/subscription vulnerabilities (V1 and
V2) to actively send malicious messages, it is difficult to detect such
an anomaly. One possible solution is to actively inspect messages
in the network layer, log their sender/receiver IP addresses and
construct their publishing-subscription relations. By checking this
relation against the system communication graph generated by the
ROS2 built-in tool rostopic [29], we can detect if a robot is send-
ing unauthorized messages. However, as mentioned in Section 2.4,
SROS2 prohibits the use of this tool. The system owner cannot en-
able this tool by sacrificing the privacy. (2) Exploiting V3 is a passive
process, and the adversary does not need to actively communicate
with other topics. It is also hard to monitor the occurrence of this
attack. (3) SROS2 does not provide any logging features. Function
calls and communication messages are not accountable, making it
difficult to pinpoint the malicious actor after system failures.

6 VULNERABILITY EXPLOITATION
We validate the exploitability of the discovered vulnerabilities with
various real-world ROS2 workloads in both simulation environ-
ments and physical testbeds. We show that exploiting these vulner-
abilities could cause severe consequences, including but not limited
to terminating the workloads, crashing the victim robots and dam-
aging the surroundings, and stealing users’ private information.

6.1 Simulation Setup
ROS2 Workloads.We select three open-source MRS workloads
based on ROS2 from the Robotics Middleware Framework (RMF)
project [62], which is developed by Open Robotics [61]. The project
demonstrates the usage of heterogeneous robot teams (nine types of
robot in total) in 5 real-world environments with the ROS2 platform.
In each workload, robots are controlled by the GCS task planner
to collaboratively work on different types of tasks. We select three
workload environments: airport terminal, clinic world and campus.
Details about these environments are available online at [9].

By design, tasks in the three workloads are split into simpler
subtasks that can be completed by one robot to increase the overall
system efficiency. The GCS allocates tasks by considering the robot
status (e.g., location, battery life, etc.) and system goal. Therefore,
each robot works on various subtasks during the execution of the
workload, and requires different permissions to access different
system resources that vary with the task.
Configurations. We deploy the above workloads in the Gazebo
simulator [51] and ROS2 Foxy distribution. All workloads are set
up by following the default configurations listed in their project
sources. We deploy the SROS2 security features to all the workloads
based on the threat model in Section 3.

6.2 Simulation Evaluation
It is worth highlighting that each discovered vulnerability is gen-
eral to affect different ROS2 workloads with different attack con-
sequences. Without loss of generality, we adopt one workload to

On the (In)Security of Secure ROS2 CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Figure 6: Exploiting V1 to terminate the
workload (airport world).

Figure 7: Exploiting V2 to crash the vic-
tim robot (campus world).

Figure 8: Exploiting V3 to steal the vic-
tim robot’s states (clinic world).

demonstrate each vulnerability and one possible consequence. Be-
low we describe the exploitation procedures.
V1: Permission File Replacement. As described in Section 5.1,
an adversary can pass expired permission files to SROS2 to by-
pass the access control. Specifically, the adversary can backup the
permission files to a local directory which is not accessible to the
system owner. After each permission file update, it can replace
the latest permission file with any one of the old permission files
that contains the permission he needs. In this way, the adversarial
robot can bypass the system access control policy, and access the
unauthorized topics that was once assigned to it.

We implement a prototype-of-concept attack on the airport ter-
minal workload. We show one possible attack consequence, where
the adversarial robot can cause task completion failures by manip-
ulating its access permission to unauthorized environments. As
shown in Figure 6, a CleanerBot with the task of cleaning the region
zone_1 only has access to the topics related to the resources in this
region. When a robot completes this task, the GCS assigns a new
task region and updates the permission file so that it only contains
access to the topics about the new region, while previous access
permissions are revoked at the same time. A robot can exploit V1
to retain the old permissions and access topics that should only be
available to other robots. Our experiment shows that an adversarial
CleanerBot can eventually obtain the publish/subscribe access to all
the topics required by the cleaning tasks, which include the access
to control the operation of automatic doors in different cleaning
regions as shown in Figure 6. By sending the close command to the
door control topic, the adversarial robot hinders the movement of
other robots and causes workload execution failures.
V2: Outdated Node Service. To retain old permissions, the adver-
sarial robot can also refuse to re-initialize the nodes after the policy
update (Section 5.2). We design an attack on the campus workload,
where multiple robots deliver items using GPS localization. Each
robot streams its location to its corresponding adapter topic so that
the GCS can coordinate the overall delivery task accordingly. By
exploiting V2, an adversarial robot can retain the publishing access
to the previous adapter topic regardless of its current legitimate
publishers. It can then send forged GPS data to this topic for the
GCS to process. As a result, the task controller will calculate the
path based on the spoofed GPS location provided by the adversar-
ial robot as long as it sends fake messages with higher frequency
to overwhelms correct messages from the benign robot. Figure 7
shows one possible attack consequence from our simulation exper-
iment: the adversary carefully selects a spoofed location so that
the GCS generates a wrong path (blue) and assigns it to the benign
robot. The benign robot will follow the trajectory (red) but from its
actual location, and crash into the obstacles.

V3: Default Mis-configuration. The adversary can leverage the
default mis-configuration in DDS to obtain critical information
(Section 5.3). In the default DDS (eProsima Fast DDS), the variable
rtps_protection_kind defines whether the RTPSmessage is protected
by encryption, which is ‘SIGN‘ by default. Therefore, we can exploit
the vulnerability of CVE-2019-19625 [2] with the ROS2 robot finger-
printing tool Aztarna [88] to list all nodes and topics. By regularly
examining the map resource topics subscribed by each robot, the
adversarial robot can record the locations of all other robots and
infer their tasks. For example, Figure 8 shows the attack result in
the RMF clinic world workload. The adversarial robot captures the
location of other robots every minute. Based on such information,
it can infer that robot 2 is patrolling between the nurse rooms at
level1 and level2; robot 3 is performing guidance tasks between
the counter and the waiting area; robot 4 is delivering items be-
tween different locations. In real-world scenarios, robot tasks can be
closely related to users’ personal information. Various works have
highlighted that robotic systems (e.g., surgical robots) in hospitals
are vulnerable to cyber attacks [26, 35] and have critical privacy
issues [81, 83]. Exploiting V3 provides a new attack opportunity to
steal personal information in such sensitive scenarios.

6.3 Physical Evaluation
We further validate these vulnerabilities in a physical testbed, which
proves it is practical to exploit them to cause severe consequences.
Physical testbed setup.We set up a cloud-based MRS workload
from Amazon RoboMaker [14], developed by AWS Robotics [80]
and JdeRobot [46]. It considers the operation environment in the
Amazon warehouse. We implement this environment with three
physical Turtlebot 3Waffle Pi robots [68] and AWS Elastic Compute
(EC2). More details of our physical setups and configurations can
be found online at [9].
Evaluation results. Following the attack processes described in
Section 5, we implement the exploits toV1,V2 andV3, respectively.
After gaining unauthorized access to different resources through
the exploitation, the adversarial robot can cause various attack
outcomes. Here we only demonstrate some possible consequences.

For V1 and V2, we observe that the adversarial robot can directly
cause system failures and robot crashes similar to the simulation
results in Section 6.2. Particularly, the GCS relies on the real-time
position information provided by robots to calculate their trajecto-
ries and ensure no collisions during the workload. However, The
adversarial robot can easily trick the GCS to design a wrong trajec-
tory by constantly sending spoofed location messages to the topic
belonging to other robots. In practice, we observe that the victim
robot crashes into walls and other robots when the local obstacle
avoidance function is not enabled. When we manually enable this

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Gelei Deng, Guowen Xu, Yuan Zhou, Tianwei Zhang, and Yang Liu

function, the victim robot just stops functioning because obstacle
avoidance contradicts the commands given by the GCS. For V3,
we find that it leads to sensitive information leakage similar to
the results in Section 6.2. Exploiting V3 allows us to generate the
nodes and topics communication topology, which directly reveals
the number of robots, current tasks and system control structure.

7 A GENERAL DEFENSE SOLUTION
It is necessary to fix the above threats andmake SROS2 really secure.
While changing the ROS2 underlying protocol from DDS to other
established ones seems to be feasible, it does not address the issues.
This is because V1 to V3 are rooted in SROS2 design flaws that
violate the security considerations in MRS, which are independent
of the underlying protocol. There exist straightforward solutions
to mitigate each vulnerability individually. For instance, V1 can
be mitigated by updating a node’s certificates whenever its access
policy is updated; for V2, the system owner can enforce all partici-
pants to temporarily leave the system and then rejoin during policy
update; V3 can be mitigated by correcting the default misconfigura-
tions. However, these ad-hoc solutions could bring inconvenience
for the workload execution and system maintenance. Furthermore,
V1 and V2 cannot be fully patched due to the physical limits in the
MRS scenarios. The system owner cannot constantly monitor all
robots’ security configurations and function execution at runtime
considering the unstable network in real-world workloads.

7.1 Design Rationale
We aim to design a unified defense solution, which could funda-
mentally address the identified vulnerabilities in SROS2. The main
goal is to refine the ROS2 communication process to securely and effi-
ciently distribute messages among participants. Specifically, it should
exhibit three properties. (1) Security: the ROS2 access control is
expected to be correctly enforced, and the confidentiality of nodes’
and topics’ information should be strongly preserved. (2) Efficiency:
the overhead of the solution should be acceptable in the MRS work-
load context. (3) Compatibility: the solution can be integrated to
ROS2 without any additional infrastructure. Attribute-based en-
cryption (ABE) solutions are mature and widely applied to enforce
access control in various types of systems [11, 22, 89] including
DDS [48]. However, these primitives are inefficient because they
provide fine-grained access control with redundant functionalities
in the context of ROS2.

To this end, we introduce a lightweight solution specifically
for robotic systems with the private broadcast encryption (PBE)
primitive [16] as the underlying technology. Compared with other
generalized encryption systems, our method is customized to ROS2
to meet the design requirements so that it is very efficient and fully
compatible with ROS2 without modifying its underlying source
code. If the ROS2 system is not equipped with SROS2, our method
can provide the same mandatory access control. If SROS2 is enabled,
our method can prevent all the identified vulnerabilities in Section
5. Our solution can defeat a stronger threat model than the one
in Section 3: it can protect the system even if there exist multiple
adversarial robots that collude and exchange information with each
other. We justify the security of our solution through rigorous proof,
formal verification and physical experiments (Section 7.4).

7.2 Methodology Description
We incorporate the PBE scheme into the ROS2 communication
system. This scheme uses public key encryption with key indis-
tinguishability under the chosen-ciphertext attacks (IK-CCA) [37]
to encrypt the ciphertext component for each recipient. It then
generates a random signature and verification key for a one-time,
strongly unforgeable signature scheme. It includes the verification
key in each public key encryption and then signs the entire cipher-
text with the signing key. To be precise, let 𝐺 be a group with 𝑔
as the generator, where the computational Diffie-Hellman prob-
lem (CDH) [36] is hard but the decisional Diffie-Hellman problem
(DDH)[21] is easy3. 𝐻 is a hash function mapping 𝐻 : 𝐺 → {0, 1}𝜆
for a security parameter 𝜆 modeled as a random oracle. Hence,
given a strongly correct IK-CCA public key encryption scheme
(Int,Keygen, Enc,Dec), a strongly existentially unforgeable signa-
ture scheme (SigGen, Sig,Ver), and a pair of semantically secure
symmetric key encryption and decryption algorithms (E,D), the
PBE system can be described as follows.
1. Setup(𝜆): Run 𝐼 ← Int(𝜆) to get the global parameter 𝐼 .
2. Keygen(𝐼): Given 𝐼 , generate (𝑝𝑘𝑖 , 𝑠𝑘𝑖) ← Gen(𝐼) for each node
𝑖 ∈ 𝑁 . Also generate key pairs (𝑣𝑘𝑖 , 𝑣𝑠𝑘𝑖) ← SigGen(𝐼) for each
node 𝑖 ∈ 𝑁 for signature and verification processes. Then, choose
a random exponent 𝛼𝑖 and let 𝑝𝑘 ′

𝑖
= (𝑝𝑘𝑖 , 𝑔𝛼𝑖), 𝑠𝑘 ′𝑖 = (𝑠𝑘𝑖 , 𝛼𝑖).

(𝑝𝑘 ′
𝑖
, 𝑠𝑘 ′

𝑖
) and (𝑣𝑘𝑖 , 𝑣𝑠𝑘𝑖) are sent to node 𝑖 and publish 𝑝𝑘 ′

𝑖
.

3. Encrypt(𝑃,𝑚): Consider that node 𝑘 with signature key and ver-
ification key (𝑣𝑘𝑘 , 𝑣𝑠𝑘𝑘) wants to send a message𝑚 to nodes in
a selected subset 𝑃 ⊂ 𝑁 . Node 𝑘 runs the following procedures:
3.1. Randomly choose a one-time symmetric key 𝐾 used to en-

crypt𝑚.
3.2. Randomly select a one-time exponent 𝑡 and set𝑊 = 𝑔𝑡 .
3.3. For every node 𝑖 ∈ 𝑃 , compute

𝑐𝑝𝑘𝑖 ← H(𝑔𝑡𝛼𝑖)∥Enc𝑝𝑘𝑖 (𝑣𝑘𝑘 ∥𝑔
𝑡𝛼𝑖 ∥𝐾)

3.4. Let 𝐶1 be the concatenation of the 𝑐𝑝𝑘𝑖 ordered by their
values of H(𝑔𝑡𝛼𝑖).

3.5. Encrypt𝑚 as 𝐶2 ← E𝐾 (𝑚).
3.6. Generate the signature for the above ciphertext as 𝜇 ←

Sig𝑣𝑠𝑘𝑘 (𝑊 ∥𝐶1∥𝐶2).
3.7. Broadcast ciphertext 𝐶 = 𝜇∥𝑊 ∥𝐶1∥𝐶2 to all nodes.

4. Decrypt((𝑠𝑘 𝑗 , 𝛼 𝑗) 𝑗 ∈𝑁 ,𝐶): Each node 𝑗 ∈ 𝑁 , parse𝐶 = 𝜇∥𝑊 ∥𝐶1∥𝐶2
and 𝐶1 = 𝑐1∥ ...∥𝑐𝑝 , then run the following procedures:

4.1. Calculate 𝑟 = H(𝑊 𝛼 𝑗) = H(𝑔𝛼 𝑗 𝑡).
4.2. Find 𝑐𝑙 such that 𝑐𝑙 = 𝑟 ∥𝑐 . If it does not exist, return ⊥ and

stop.
4.3. Compute 𝑑 ← Dec(𝑠𝑘 𝑗 , 𝑐). If 𝑑 is ⊥, return ⊥ and stop. Other-

wise, parse 𝑑 as 𝑣𝑘𝑘 ∥𝑢∥𝐾 .
4.4. If 𝑢 ≠𝑊 𝛼 𝑗 , return ⊥ and stop.
4.5. IfVer𝑣𝑘𝑘 (𝑊 ∥𝐶1∥𝐶2, 𝜇), return𝑚 = D𝐾 (𝐶2); otherwise, return
⊥.

The above scheme can be adopted in ROS2 with the following steps.
1. The CA generates pairs of certificates and private keys for nodes

in the ROS2 system with Gen. Then the system owner updates
the certificate/key pairs to each node.

3For formal definitions of these NP problems, please refer to [16].

On the (In)Security of Secure ROS2 CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

2. The system owner formulates the access control policies and
updates them to all nodes. It then passes access control knowl-
edge to nodes accordingly. Each node knows the topics to pub-
lish/subscribe to. A node with publishing (resp., subscription)
access is provided with the public (resp., verification) keys of its
subscribers (resp., publishers) 𝑁 .

3. When a node publishes a message𝑚 to a selected subset groups
𝑃 ⊂ 𝑁 , it encrypts the message with the public keys of the
recipient nodes in 𝑃 following the encryption function Encrypt
described above and publishes the ciphertext 𝐶 to the topic.
While all the nodes in 𝑁 can subscribe to the topic, only the
receiver nodes in 𝑃 have proper read access and can extract𝑚
from 𝐶 using the decryption function Decrypt.

4. After a node extracts𝑚 through the decryption function, it ex-
amines if the verification key 𝑣𝑘 obtained from the decryption
process is in the verification key list provided by the system
owner. Otherwise it discards the message𝑚 because it comes
from an untrusted node.

5. When the access control policies need to be updated, the system
owner updates the new access control knowledge to the related
nodes by encrypting the knowledge and publishing it to the
nodes accordingly following step 3.

6. When a new node is introduced into the system after initializa-
tion, the CA generates key pairs and the system owner updates
them to the node accordingly. The system owner then broadcasts
the public key of the new nodes together with the updated access
control policies to the existing nodes following step 3. The same
process applies to the node revocation scenario.

7.3 Implementation
We implement the proposed defense as a lightweight Python3 pack-
age [9]. The system owner can set up our defense in an existing
ROS2 workload with three steps. First, CA generates the public and
private key pairs required by the selected Elliptic Curve Cryptog-
raphy (ECC) scheme for all nodes in the system. This process is
the same as certificate/private key generation process required by
SROS2, so it is supported by the SROS2 command line tool without
additional infrastructure for implementation. Second, the system
owner installs the defense scheme. The encryption and decryp-
tion functions can be easily imported from the Python3 package.
Third, each robot encrypts the message with the public keys of the
intended receivers before sending it out. The receiver robots can
decrypt ciphertext messages as long as they are in the receivers list.

7.4 Security Evaluation
We perform the security assessment of our defense in three aspect.

7.4.1 Theoretical Analysis. Given the strongly correct IK-CCA pub-
lic key encryption scheme (Int,Keygen, Enc,Dec), a strongly ex-
istentially unforgeable signature scheme (SigGen, Sig,Ver), and a
pair of semantically secure symmetric key encryption and decryp-
tion algorithms (E,D), the aforementioned PBE system has been
proven to be secure under chosen-ciphertext attacks. We describe
how the PBE holds the requirements in Section 4.3. Specifically,
considering that node 𝑘 wants to send a message 𝑚 to nodes in
a selected subset 𝑃 ⊂ 𝑁 , we have the following two theorems,
where the first one is used to fix vulnerabilities V1 and V2, while

Figure 9: Mitigating vulnerabilities with our defense.

the second one is used to fix V3. The complete proofs are available
in our supporting materials [9].

Theorem 1. If node 𝑘 is malicious, the above PBE system holds that
node 𝑘 cannot pretend to be other honest users to send ciphertext.

Theorem 2. If node 𝑘 is benign, for any adversaryA, the above PBE
system holds that A cannot infer the identity of benign nodes in 𝑃 .
Particularly, if there is no malicious node in 𝑃 ,A cannot obtain useful
information about message𝑚.

Remark: The proposed defense scheme can protect the ROS2-based
MRS against the identified vulnerabilities, as shown in Figure 9.
For V1 and V2, the adversarial node can bypass the SROS2 access
control and publish to unauthorized topics. However according to
Theorem 1, PBE prevents it from pretending to be honest users for
sending ciphertext. Thus, the receiver nodes could identify that
the publisher is malicious. Similarly, for an adversarial node that
exploits V1 and V2 to subscribe to unauthorized topics, it cannot
decrypt the messages received from the topics and obtain any useful
information according to Theorem 2. For V3, the adversarial node
observes the network traffic and infers the secret information. With
our defense, a node can subscribe to any topics yet only retrieve
useful information from the authorized ones. Thus, the network
traffics between any two nodes do not necessarily mean that they
are exchanging valid information. So the adversary cannot gather
sensitive information with V3. With these properties, our solution
provides recipient privacy and the same mandatory access control
as ROS2, so it can be implemented individually or on top of ROS2.

7.4.2 Formal Verification. We formally verify the security of the
proposed scheme. First, we construct a formal model for the en-
cryption scheme and perform formal verification with ProVerif [19].
No protocol weaknesses are identified when verifying the model
against the security requirements. We then follow the model check-
ing approach in Section 4 to verify the security of its integration in
ROS2. Specifically, we identify the events that should be performed
by the system actors as defined in Section 7.2. We then abstract
them and describe them with CSP#, and extend the previously con-
structed CSP# model in Section 4.2 to describe the ROS2 system
with the proposed defense solution. By verifying the new model
with PAT, we confirm that the identified vulnerabilities have been
fixed with no additional counterexamples generated.

7.4.3 Empirical Validation. We repeat the physical attacks launched
in Section 6.3 with the same setups. After enabling our defense
scheme, we observe that all three identified vulnerabilities are no
longer exploitable. Specifically, for V1 and V2, our defense provides

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Gelei Deng, Guowen Xu, Yuan Zhou, Tianwei Zhang, and Yang Liu

the authentication service between the message sender and receiver.
So even the adversarial robot can retain the old access permissions
by replacing the permission files or refusing to restart the node ser-
vice, it is still not able to access the unauthorized topics. For V3, our
defense scheme prevents the adversarial robot from distinguishing
valid communications from the invalid ones when monitoring the
network traffic. Therefore, the adversary is not able to infer the
communication topology using any fingerprint tools. It is worth
noting that the proposed solution cannot defeat DoS attacks. In
fact, how to design full defenses against DoS attacks from insiders
in robotic systems is still an open problem [17, 91], because the
adversary can use system knowledge to craft DoS messages that
follow the protocol. Nevertheless, our design is less vulnerable to
DoS attacks compared to other cryptographic solutions. Specifically,
in step 4 of the scheme (Section 7.2), a node does not perform any
decryptions if the received message is from an outsider (4.1) , and
only performs partial decryption (4.3) if the message is from an
insider adversary, which increases the DoS difficulty.

7.5 Efficiency Evaluation
We evaluate the performance and resource consumption of our
solution using the physical testbed. Below we present the main
experimental results, while the physical experiment setups and
experimental data are available in our project website [9].

7.5.1 Performance Evaluation. We first measure the impact of the
additional operations (e.g., encryption, decryption) on the perfor-
mance of the MRS. We adopt the mainstream ROS2 Performance Test
benchmark [4] developed by ApexAI [6]. and make necessary mod-
ificationsto adapt to our defense scheme. We deploy two Turtlebot
robots to run the publisher node and subscriber node respectively,
connected to the same local area network.

We compare four settings. (1)Normal: ROS2 without any security
features; (2) SROS2: ROS2 with SROS2 enabled. (3) PBE: ROS2 with
the proposed defense; (4) Both: ROS2with both SROS2 and proposed
defense. For each experiment, we execute the task for 60 seconds,
and repeat it for 10 times to obtain the average results.
Evaluation results. First, we explore the average encryption and
decryption cost of our defense for different message sizes and pub-
lishing frequencies. We vary the publishing frequency from 10 Hz to
100 Hz, and the cleartext length from 8 Bytes to 4096 Bytes, covering
the common configurations in most robotic system components.
The encryption and decryption overhead of the PBE scheme is
shown in Figure 10. We observe that the cost of those operations
is slightly increased with the message length: the average encryp-
tion/decryption time of a 4KB message is 6.4%/4.9% longer than
a 8B message. We also observe the cost is slightly decreased with
a higher publishing frequency. This might be due to the CPU Dy-
namic Voltage and Frequency Scaling (DVFS) optimization feature.

Second, we compare the end-to-end latency for the entire system
with four security settings. We also select the above ranges of
message sizes and publishing frequencies. The results are shown
in Figure 11. Our solution introduces around 4𝑚𝑠 latency for each
communication. Compared with Figure 10, such cost is mainly
from the encryption/decryption operations. In real-world robotic
systems (especially the cloud-based), the network latency is much
higher (in the order of seconds). Therefore an MRS is commonly

(a) Impact of frequency (b) Impact of message size

Figure 10: Encryption/Decryption time cost under different
frequencies and message sizes

(a) Impact of frequency (b) Impact of message size

Figure 11: Communication latency of four implementations
with various message lengths and frequencies

designed to be delay-tolerant [1], and this overhead can be ignored.
We further measure the data loss rate during transmission, and
observe that our scheme causes less than 0.01% of data loss at 100Hz
frequency with the message sizes of 1KB and 4KB. It happens during
communication initialization, when the first few packets are not
delivered to the subscriber. This “initial loss” is also observed by
other works [55], and does not affect the system operation.

Third, we explore the scalability of the proposed defense. We
examine the system latency in two experiment settings: (1) one pub-
lisher publishes to multiple nodes; (2) a number of nodes connected
in series, where the intermediate nodes act as both publishers and
subscribers. For each scenario, we vary the number of subscription
nodes from 1 to 8 and message sizes of 64 and 4096 bytes. The
publishing frequency is fixed at 20 Hz. The communication latency
of different system configurations is shown in Figures 12 and 13.
We observe that the end-to-end latency does not increase signifi-
cantly when more nodes subscribe to one publisher. When nodes
are connected in sequence, the latency increases linearly with the
number of communication nodes. In practice, an intermediate node
needs to process the incoming message or control the actuators to
operate accordingly before transmitting the message to the next
one. This process can compensate the overhead incurred by our
solution. Overall, our defense does not incur significant latency
compared to SROS2, and can easily scale to large systems.

7.5.2 Resource Consumption Evaluation. We measure the resource
consumption in our defense, which is critical for robots with limited
computing capability. We select and implement two most widely
adopted MRS workloads: navigation [47] and exploration [65].
Evaluation results.We measure the runtime CPU and RAM uti-
lization of the on-board processors on the Turtlebots, as shown
in Figure 14. For the CPU usage (Figure 14(a)), the navigation and
exploration workloads require 42.5% and 45.2% of CPU resources,

On the (In)Security of Secure ROS2 CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

(a) 64-byte payload (b) 4096-byte payload

Figure 12: Communication latency of four implementations
with one publisher and various numbers of subscribers

(a) 64-byte payload (b) 4096-byte payload

Figure 13: Communication latency of four implementations
with various numbers of publisher-subscriber pairs

(a) CPU utilization (b) RAM utilization

Figure 14: Resource consumption of four implementations.

respectively, and enabling SROS2 does not increase the CPU utiliza-
tion significantly. With the proposed defense, the CPU utilization
of these two workloads are increased to 62.9% and 72.3%, respec-
tively. Such overhead is acceptable since the CPU cores are still
not saturated. In real-world workloads, on-robot processors are
under-utilized most of the time [95] because they should meet the
performance requirement of the most computational extensive sub-
task, which only takes very little operation time. Our solution only
takes the redundant computational power during the workload
execution. Also, we believe the CPU utilization can be further op-
timized by migrating the current Python implementation to C++,
which is also supported by ROS2. For RAM utilization (Figure 14(b)),
the two workloads require 279.6 MB and 326.9 MB of memory. The
defense increases the RAM consumption to 354.0 MB and 396.2 MB.
This is far lower than the capacity of common robotic processors
(e.g. 1GB RAM for the Raspberry Pi 3B+ model in our experiments).

Based on the above results, we conclude that the CPU and RAM
utilization of our defense is acceptable on commercial robots with
single-board processors. Note that it might cause performance is-
sues when we implement this scheme on tiny robots with very
limited computing resources (e.g., swarm robots). In the future, we
will further optimize our implementation for these scenarios.

8 RELATEDWORKS

Model checking. Model checking has been widely adopted to ver-
ify the correctness and security of systems [32, 33, 60, 66]. Recently,
researchers applied this strategy to verify robotic and autonomous
applications, such as DoS vulnerabilities in connected vehicle pro-
tocols [44], safety properties of ROS-based robotic applications
[20], hierarchical properties of swarm robot systems [43], security,
liveness and priority of the DDS without considering the ROS2 im-
plementation [54]. Different from the works which focus on either
applications or individual components of the ROS/ROS2 system,
we mainly target the fundamental implementations of the ROS2
security features.

Access control with cryptography. Barth et al. [16] proposed
the first private broadcast encryption scheme to achieve identity-
based access control among messages. Then, many variants (e.g.,
attribute-based encryption (ABE), puncturable encryption) were
proposed to achieve more precise access control with the attribute
of the system participants [18, 39, 52, 78]. For instance, Bethencourt
et al. [18] developed a ciphertext-policy based ABE that allows tree-
based access policies. Yu et al. [94] proposed a solution for indirect
attribute and user revocation.

ROS2 and DDS Security. Previous works including [90] explore
the efficient and automatic generation of SROS2 permission files for
ROS2 projects. Other work [54] formally verify the security of DDS
in ROS2. These works leverage existing SROS2 features and do not
consider that adversaries could bypass SROS2 through its native
vulnerabilities. Instead, we propose the first study over the security
of ROS2 implementation. The vulnerabilities discussed in this work
thus cannot be identified or patched by the previous solutions.

9 CONCLUSION
In this paper, we perform a thorough and systematic security analy-
sis about ROS2 with the DDS security features. We design a formal
method to model the ROS2 system and security requirements. We
identify four vulnerabilities in the implementation of ROS2, which
can invalidate the security mechanism of DDS, and threaten the
robotic workloads. To fundamentally address these issues, we de-
sign a practical and lightweight defense methodology with the
private broadcast encryption. We have reported our discoveries to
the ROS2 official and are working with them on possible mitigation.
We hope these vulnerabilities can be fixed very soon to advance
the secure development of robotic systems and applications.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive feedback.
We also thank Dr. Chaoshun Zuo for his comments and gener-
ous help to this work. This work was supported in part by Min-
istry of Education, Singapore under its Academic Research Fund
(AcRF) Tier 1 (RG108/19 (S)), Tier 2 (MOE-T2EP20120-0004) and Tier
3 (MOET32020-0004), NTU-DESAY SV Research Program under
Grant 2018-0980, Singapore National Research Foundation (NRF)
under its National Cybersecurity R&D Program (NRF2018NCR-
NCR005-0001).

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Gelei Deng, Guowen Xu, Yuan Zhou, Tianwei Zhang, and Yang Liu

REFERENCES
[1] 2009. Supporting Navigation in Multi-Robot Systems through Delay Tolerant

Network Communication. IFAC Proceedings Volumes 42, 22 (2009), 25–30. 1st
IFAC Workshop on Networked Robotics.

[2] 2019. CVE-2019-19625 Detail. https://nvd.nist.gov/vuln/detail/CVE-2019-19625.
[3] 2020. ROS2 Node to Participant Mapping. https://design.ros2.org/articles/Node_

to_Participant_mapping.html
[4] 2021. ApexAI ROS2 Performance Test [Online]. https://gitlab.com/ApexAI/

performance_test.
[5] 2021. ROS 2 robotic systems threat model. https://design.ros2.org/articles/ros2_

threat_model.html.
[6] 2022. Apex AI: The Vehicle OS Company. https://www.apex.ai/.
[7] 2022. Cloud Robotics Core: Kubernetes, Federation, App Management [Online].

https://googlecloudrobotics.github.io/core/.
[8] 2022. IRobot: Robot Vacuum and Mop. https://www.irobot.com/
[9] 2022. On the (In)Security of Secure ROS2. https://sites.google.com/view/secure-

sros2.
[10] 2022. ROS Metrics. https://metrics.ros.org/rosdistro_rosdistro.html
[11] Shashank Agrawal andMelissa Chase. 2017. FAME: Fast Attribute-BasedMessage

Encryption. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (Dallas, Texas, USA) (CCS ’17). Association for
Computing Machinery, New York, NY, USA, 665–682.

[12] Aliasrobotics. 2020. Robot Vulnerability Database (RVD) [Online]. https://github.
com/aliasrobotics/RVD/.

[13] Krzysztof R. Apt and Dexter Kozen. 1986. Limits for automatic verification of
finite-state concurrent systems. Inf. Process. Lett. 22, 6 (1986), 307–309.

[14] AWS-Robotics. 2021. Aws-Robotics/AWS RoboMaker Small Warehouse World.
https://github.com/aws-robotics/aws-robomaker-small-warehouse-world

[15] Agata Barciś, Michał Barciś, and Christian Bettstetter. 2019. Robots that Sync
and Swarm: A Proof of Concept in ROS 2. In 2019 International Symposium on
Multi-Robot and Multi-Agent Systems (MRS). 98–104.

[16] Adam Barth, Dan Boneh, and Brent Waters. 2006. Privacy in Encrypted Content
Distribution Using Private Broadcast Encryption. In Financial Cryptography and
Data Security, Giovanni Di Crescenzo and Avi Rubin (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 52–64.

[17] Elena Basan, Mikhail Medvedev, and Stanislav Teterevyatnikov. 2018. Analysis
of the Impact of Denial of Service Attacks on the Group of Robots. In 2018
International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC). 63–638.

[18] John Bethencourt, Amit Sahai, and Brent Waters. 2007. Ciphertext-Policy
Attribute-Based Encryption. In 2007 IEEE Symposium on Security and Privacy (SP
’07). 321–334.

[19] B. Blanchet. 2001. An efficient cryptographic protocol verifier based on prolog
rules. In Proceedings. 14th IEEE Computer Security Foundations Workshop, 2001.
82–96.

[20] Renato Carvalho, Alcino Cunha, Nuno Macedo, and André Santos. 2020. Verifi-
cation of system-wide safety properties of ROS applications. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 7249–7254.

[21] Wouter Castryck, Jana Sotáková, and Frederik Vercauteren. 2020. Breaking the
decisional Diffie-Hellman problem for class group actions using genus theory. In
Annual International Cryptology Conference. Springer, 92–120.

[22] Jie Chen, Romain Gay, and Hoeteck Wee. 2015. Improved Dual System ABE
in Prime-Order Groups via Predicate Encodings. In Advances in Cryptology -
EUROCRYPT 2015, Elisabeth Oswald and Marc Fischlin (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 595–624.

[23] Peter Chen, Marjon Dean, Don Ojoko-Adams, Hassan Osman, Lilian Lopez, Nick
Xie, and NancyMead. 2004. System Quality Requirements Engineering (SQUARE)
Methodology: Case Study on Asset Management System. (12 2004), 326.

[24] Qi Alfred Chen, Yucheng Yin, Yiheng Feng, Z Morley Mao, and Henry X Liu. 2018.
Exposing Congestion Attack on Emerging Connected Vehicle based Traffic Signal
Control.. In 25th Annual Network and Distributed System Security Symposium
(NDSS).

[25] Kun Cheng, Yuan Zhou, Bihuan Chen, Rui Wang, Yuebin Bai, and Yang Liu. 2020.
Guardauto: A decentralized runtime protection system for autonomous driving.
IEEE Trans. Comput. 70, 10 (2020), 1569–1581.

[26] Key-whan Chung, Xiao Li, Peicheng Tang, Zeran Zhu, Zbigniew T. Kalbarczyk,
Ravishankar K. Iyer, and Thenkurussi Kesavadas. 2019. Smart Malware that
Uses Leaked Control Data of Robotic Applications: The Case of Raven-II Surgical
Robots. In 22nd International Symposium on Research in Attacks, Intrusions and
Defenses, RAID 2019, Chaoyang District, Beijing, China, September 23-25, 2019.

[27] Edmund M. Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. 2012.
Model Checking and the State Explosion Problem. Springer Berlin Heidelberg,
1–30.

[28] EdmundM Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut
Veith. 2018. Model checking.

[29] Ken Conley. 2011. ROS command line tool: rostopic. http://library.isr.ist.utl.pt/
docs/roswiki/rostopic.html.

[30] DDS Foundation. 2020. Data Distribution Services. https://www.dds-foundation.
org/.

[31] Gelei Deng, Yuan Zhou, Yuan Xu, Tianwei Zhang, and Yang Liu. 2021. An
Investigation of Byzantine Threats in Multi-Robot Systems. In 24th International
Symposium on Research in Attacks, Intrusions and Defenses. 17–32.

[32] Zuohua Ding, Yuan Zhou, Mingyue Jiang, and MengChu Zhou. 2014. A new
class of Petri nets for modeling and property verification of switched stochastic
systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45, 7 (2014),
1087–1100.

[33] Zuohua Ding, Yuan Zhou, and MengChu Zhou. 2014. Stability analysis of
switched fuzzy systems via model checking. IEEE Transactions on Fuzzy Systems
22, 6 (2014), 1503–1514.

[34] Murph Finnicum and Samuel T King. 2011. Building Secure Robot Applications..
In 6th USENIX Workshop on Hot Topics in Security, HotSec’11.

[35] Eduard Fosch-Villaronga and Tobias Mahler. 2021. Cybersecurity, safety and
robots: Strengthening the link between cybersecurity and safety in the context
of care robots. Computer Law & Security Review 41 (2021), 105528.

[36] Sanjam Garg and Mohammad Hajiabadi. 2018. Trapdoor functions from the
computational Diffie-Hellman assumption. In Annual International Cryptology
Conference. Springer, 362–391.

[37] Romain Gay. 2020. A New Paradigm for Public-Key Functional Encryption for
Degree-2 Polynomials.. In Public Key Cryptography (1). 95–120.

[38] Shreyas Gokhale. 2020. JdeMultiBot: Multi-Robot exercises for Robotics Academy
In ROS2. (2020).

[39] Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai. 2008. Bounded
Ciphertext Policy Attribute Based Encryption. In Automata, Languages and Pro-
gramming, Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórs-
son, Anna Ingólfsdóttir, and Igor Walukiewicz (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 579–591.

[40] Object Management Group. 2018. DDS security [Online]. https://www.omg.org/
spec/DDS-SECURITY/1.1/PDF.

[41] Object Management Group. 2018. The real-time publish-subscribe protocol
(RTPS) DDS - OMG [Online]. https://www.omg.org/spec/DDSI-RTPS/2.3/Beta1/
PDF.

[42] Charles Antony Richard Hoare. 1978. Communicating sequential processes.
Commun. ACM 21, 8 (1978), 666–677.

[43] Chi Hu, Wei Dong, Yonghui Yang, Hao Shi, and Ge Zhou. 2019. Runtime verifica-
tion on hierarchical properties of ROS-based robot swarms. IEEE Transactions on
Reliability 69, 2 (2019), 674–689.

[44] Shengtuo Hu, Qi Alfred Chen, Jiachen Sun, Yiheng Feng, Z. Morley Mao, and
Henry X. Liu. 2021. Automated Discovery of Denial-of-Service Vulnerabilities
in Connected Vehicle Protocols. In 30th USENIX Security Symposium (USENIX
Security 21). 3219–3236.

[45] Syed Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa Bertino. 2018.
LTEInspector: A systematic approach for adversarial testing of 4G LTE. In Net-
work and Distributed Systems Security (NDSS) Symposium 2018.

[46] JdeRobot. 2020. JdeRobot: Open toolkit for developing Robotics applications.
https://jderobot.github.io/.

[47] Kelin Jose and Dilip Kumar Pratihar. 2016. Task allocation and collision-free path
planning of centralized multi-robots system for industrial plant inspection using
heuristic methods. Robotics and Autonomous Systems 80 (2016), 34–42.

[48] Hwimin Kim, Dae-Kyoo Kim, and Alaa Alaerjan. 2021. ABAC-Based Security
Model for DDS. IEEE Transactions on Dependable and Secure Computing (2021).

[49] Hyungsub Kim, Muslum Ozgur Ozmen, Antonio Bianchi, Z. Berkay Celik, and
Dongyan Xu. 2021. PGFUZZ: Policy-Guided Fuzzing for Robotic Vehicles. In 28th
Annual Network and Distributed System Security Symposium, NDSS 2021, virtually,
February 21-25, 2021. The Internet Society.

[50] Misook Kim, SangGyu Kim, ByoungYoul Song, Young-sook Jeong, and
Hong Seong Park. 2021. Study on Requirements of Cloud-based Environments
for Easy Development of ROS Modules. In 2021 18th International Conference on
Ubiquitous Robots (UR). 48–51.

[51] N. Koenig and A. Howard. 2004. Design and use paradigms for Gazebo, an
open-source multi-robot simulator. In 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Vol. 3. 2149–2154 vol.3.

[52] Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. 2010. Fully Secure Functional Encryption: Attribute-Based Encryption
and (Hierarchical) Inner Product Encryption. In Advances in Cryptology – EURO-
CRYPT 2010, Henri Gilbert (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
62–91.

[53] Hakan Lindqvist. 2006. Mandatory access control. Master’s thesis in computing
science, Umea University, Department of Computing Science, SE-901 87 (2006).

[54] Yanan Liu, Yong Guan, Xiaojuan Li, Rui Wang, and Jie Zhang. 2018. Formal
analysis and verification of DDS in ROS2. In 2018 16th ACM/IEEE International
Conference on Formal Methods and Models for System Design (MEMOCODE). 1–5.

[55] Yuya Maruyama, S. Kato, and Takuya Azumi. 2016. Exploring the performance
of ROS2. 2016 International Conference on Embedded Software (EMSOFT) (2016),
1–10.

[56] Petra Mazdin, Michal Barciś, Hermann Hellwagner, and Bernhard Rinner. 2020.
Distributed Task Assignment in Multi-Robot Systems based on Information

https://nvd.nist.gov/vuln/detail/CVE-2019-19625
https://design.ros2.org/articles/Node_to_Participant_mapping.html
https://design.ros2.org/articles/Node_to_Participant_mapping.html
https://gitlab.com/ApexAI/performance_test
https://gitlab.com/ApexAI/performance_test
https://design.ros2.org/articles/ros2_threat_model.html
https://design.ros2.org/articles/ros2_threat_model.html
https://www.apex.ai/
https://googlecloudrobotics.github.io/core/
https://www.irobot.com/
https://sites.google.com/view/secure-sros2
https://sites.google.com/view/secure-sros2
https://metrics.ros.org/rosdistro_rosdistro.html
https://github.com/aliasrobotics/RVD/
https://github.com/aliasrobotics/RVD/
https://github.com/aws-robotics/aws-robomaker-small-warehouse-world
http://library.isr.ist.utl.pt/docs/roswiki/rostopic.html
http://library.isr.ist.utl.pt/docs/roswiki/rostopic.html
https://www.dds-foundation.org/
https://www.dds-foundation.org/
https://www.omg.org/spec/DDS-SECURITY/1.1/PDF
https://www.omg.org/spec/DDS-SECURITY/1.1/PDF
https://www.omg.org/spec/DDSI-RTPS/2.3/Beta1/PDF
https://www.omg.org/spec/DDSI-RTPS/2.3/Beta1/PDF
https://jderobot.github.io/

On the (In)Security of Secure ROS2 CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Utility. In 2020 IEEE 16th International Conference on Automation Science and
Engineering (CASE). 734–740.

[57] Jarrod McClean, Christopher Stull, Charles Farrar, and David Mascareñas. 2013.
A preliminary cyber-physical security assessment of the Robot Operating System
(ROS). In Unmanned Systems Technology XV, Robert E. Karlsen, Douglas W. Gage,
Charles M. Shoemaker, and Grant R. Gerhart (Eds.), Vol. 8741. International
Society for Optics and Photonics, SPIE, 341 – 348.

[58] Jarrod R. Mcclean and Charles Farrar. 2013. A Preliminary Cyber-Physical
Security Assessment of the Robot Operating System (ROS). In Proceedings of
SPIE.

[59] Michael Myers, Rich Ankney, Ambarish Malpani, Slava Galperin, and Carlisle
Adams. 1999. X. 509 Internet public key infrastructure online certificate status
protocol-OCSP. (1999).

[60] Dang Tu Nguyen, Chengyu Song, Zhiyun Qian, Srikanth V Krishnamurthy,
Edward JM Colbert, and Patrick McDaniel. 2018. IotSan: Fortifying the safety
of IoT systems. In Proceedings of the 14th International Conference on emerging
Networking EXperiments and Technologies. 191–203.

[61] Open Source Robotics Foundation. 2021. Open Robotics. https://www.
openrobotics.org/.

[62] OpenRMF. 2022. Open-RMF/RMF Demos: Demonstrations of The OpenRMF
software [Online]. https://github.com/open-rmf/rmf_demos

[63] Gerardo Pardo-Castellote, Bert Farabaugh, and Rick Warren. 2005. An introduc-
tion to DDS and data-centric communications. Real-Time Innovations (2005).

[64] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). 46–57.

[65] Robert Reid, Andrew Cann, Calum Meiklejohn, Liam Poli, Adrian Boeing, and
Thomas Braunl. 2013. Cooperative multi-robot navigation, exploration, mapping
and object detection with ROS. In 2013 IEEE Intelligent Vehicles Symposium (IV).
1083–1088.

[66] Ronald W Ritchey and Paul Ammann. 2000. Using model checking to analyze
network vulnerabilities. In Proceeding 2000 IEEE Symposium on Security and
Privacy. S&P 2000. IEEE, 156–165.

[67] Sean Rivera and Radu State. 2021. Securing Robots: An Integrated Approach for
Security Challenges and Monitoring for the Robotic Operating System (ROS). In
2021 IFIP/IEEE International Symposium on Integrated Network Management (IM).
IEEE, 754–759.

[68] Robotis. 2021. TurtleBot 3. https://www.turtlebot.com/.
[69] ROS. 2020. ROS Index package list. https://index.ros.org/packages/.
[70] Ros-Visualization. 2020. Ros-visualization/RQT_GRAPH. https://github.com/ros-

visualization/rqt_graph.
[71] ROS2. 2019. ROS 2 Foxy Elusor. https://docs.ros.org/en/eloquent/index.html.
[72] ROS2. 2020. ROS 2 Foxy Fitzroy. https://docs.ros.org/en/foxy/Releases/Release-

Foxy-Fitzroy.html.
[73] ROS2. 2020. Set rtps_protection_kind to encrypt by default pull request #171 ·

ROS2/SROS2. https://github.com/ros2/sros2/pull/171.
[74] ROS2. 2020. SROS2 Project Sample Policies. https://github.com/ros2/sros2/tree/

master/sros2/sros2/policy.
[75] ROS2. 2021. ROS 2 Galatic Geochelone. https://docs.ros.org/en/galactic/index.

html.
[76] ROS2. 2021. SROS2. https://github.com/ros2/sros2.
[77] ROS2. 2022. ROS 2 Rolling. https://docs.ros.org/en/rolling/index.html.
[78] Amit Sahai and BrentWaters. 2005. Fuzzy Identity-Based Encryption. InAdvances

in Cryptology – EUROCRYPT 2005, Ronald Cramer (Ed.). 457–473.
[79] Joseph Salowey, Abhijit Choudhury, and David McGrew. 2008. AES Galois

Counter Mode (GCM) cipher suites for TLS. Request for Comments 5288 (2008).

[80] Amazon Web Services. 2021. AWS Robotics. https://aws.amazon.com/
robomaker/.

[81] Ryan Shah and Shishir Nagaraja. 2019. Privacy with Surgical Robotics: Chal-
lenges in Applying Contextual Privacy Theory. CoRR abs/1909.01862 (2019).
arXiv:1909.01862 http://arxiv.org/abs/1909.01862

[82] Alireza Souri, Amir Masoud Rahmani, Nima Jafari Navimipour, and Reza Rezaei.
2019. A symbolic model checking approach in formal verification of Distributed
Systems. Human-centric Computing and Information Sciences 9, 1 (2019). https:
//doi.org/10.1186/s13673-019-0165-x

[83] Bernd Carsten Stahl and Mark Coeckelbergh. 2016. Ethics of healthcare robotics:
Towards responsible research and innovation. Robotics and Autonomous Systems
86 (2016), 152–161.

[84] Jun Sun, Yang Liu, and Jin Song Dong. 2008. Model Checking CSP Revisited:
Introducing a Process Analysis Toolkit. In Leveraging Applications of Formal
Methods, Verification and Validation, Tiziana Margaria and Bernhard Steffen
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 307–322.

[85] Jun Sun, Yang Liu, Jin Song Dong, and Chunqing Chen. 2009. Integrating specifi-
cation and programs for system modeling and verification. In 2009 Third IEEE
International Symposium on Theoretical Aspects of Software Engineering. 127–135.

[86] Rafael R. Teixeira, Igor P. Maurell, and Paulo L.J. Drews. 2020. Security on ROS:
analyzing and exploiting vulnerabilities of ROS-based systems. In 2020 Latin
American Robotics Symposium (LARS), 2020 Brazilian Symposium on Robotics
(SBR) and 2020 Workshop on Robotics in Education (WRE). 1–6.

[87] Andrea Testa, Andrea Camisa, and Giuseppe Notarstefano. 2021. ChoiRbot: A
ROS 2 Toolbox for Cooperative Robotics. IEEE Robotics and Automation Letters 6,
2 (2021), 2714–2720.

[88] Víctor Vilches, Gorka Olalde, Xabier Baskaran, Alejandro Cordero, Lander Juan,
Endika Gil-Uriarte, Odei Urabain, and Laura Kirschgens. 2018. Aztarna, a foot-
printing tool for robots.

[89] BrentWaters. 2011. Ciphertext-Policy Attribute-Based Encryption: An Expressive,
Efficient, and Provably Secure Realization. In Public Key Cryptography – PKC
2011, Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 53–70.

[90] Ruffin White, Henrik I. Christensen, Gianluca Caiazza, and Agostino Cortesi.
2018. Procedurally Provisioned Access Control for Robotic Systems. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[91] Yuan Xu, Gelei Deng, Tianwei Zhang, Han Qiu, and Yungang Bao. 2021. Novel
denial-of-service attacks against cloud-based multi-robot systems. Information
Sciences 576 (2021), 329–344. https://www.sciencedirect.com/science/article/pii/
S002002552100654X

[92] Yuan Xu, Tianwei Zhang, and Yungang Bao. 2021. Analysis and Mitigation of
Function Interaction Risks in Robot Apps. 24th International Symposium on
Research in Attacks, Intrusions and Defenses (2021).

[93] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and
Discovering Vulnerabilities with Code Property Graphs. In 2014 IEEE Symposium
on Security and Privacy. 590–604.

[94] Shucheng Yu, CongWang, Kui Ren, andWenjing Lou. 2010. Attribute Based Data
Sharing with Attribute Revocation. In Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security (Beijing, China) (ASIACCS
’10). Association for Computing Machinery, New York, NY, USA, 261–270.

[95] Yizhe Zhang, Lianjun Li, Michael Ripperger, Jorge Nicho, Malathi Veeraraghavan,
and Andrea Fumagalli. 2018. Gilbreth: A Conveyor-Belt Based Pick-and-Sort
Industrial Robotics Application. In 2018 Second IEEE International Conference on
Robotic Computing (IRC). 17–24.

[96] Huiquan Zhu, Jing Sun, Jin Song Dong, and Shang-Wei Lin. 2015. From verified
model to executable program: The Pat Approach. Innovations in Systems and
Software Engineering 12, 1 (2015), 1–26.

https://www.openrobotics.org/
https://www.openrobotics.org/
https://github.com/open-rmf/rmf_demos
https://www.turtlebot.com/
https://index.ros.org/packages/
https://github.com/ros-visualization/rqt_graph
https://github.com/ros-visualization/rqt_graph
https://docs.ros.org/en/eloquent/index.html
https://docs.ros.org/en/foxy/Releases/Release-Foxy-Fitzroy.html
https://docs.ros.org/en/foxy/Releases/Release-Foxy-Fitzroy.html
https://github.com/ros2/sros2/pull/171
https://github.com/ros2/sros2/tree/master/sros2/sros2/policy
https://github.com/ros2/sros2/tree/master/sros2/sros2/policy
https://docs.ros.org/en/galactic/index.html
https://docs.ros.org/en/galactic/index.html
https://github.com/ros2/sros2
https://docs.ros.org/en/rolling/index.html
https://aws.amazon.com/robomaker/
https://aws.amazon.com/robomaker/
https://arxiv.org/abs/1909.01862
http://arxiv.org/abs/1909.01862
https://doi.org/10.1186/s13673-019-0165-x
https://doi.org/10.1186/s13673-019-0165-x
https://www.sciencedirect.com/science/article/pii/S002002552100654X
https://www.sciencedirect.com/science/article/pii/S002002552100654X

	Abstract
	1 Introduction
	2 Background
	2.1 Robot Operating System
	2.2 Data Distribution Service
	2.3 DDS Security
	2.4 Secure ROS2

	3 Threat Model
	3.1 System Assumptions
	3.2 Adversary's Capabilities

	4 Methodology of Investigating ROS2
	4.1 ROS2 Abstraction and Modeling
	4.2 Model Construction
	4.3 Model Checking
	4.4 Discussion

	5 Security Vulnerabilities in ROS2
	5.1 V1: Permission File Replacement
	5.2 V2: Outdated Node Service
	5.3 V3: Default Mis-configuration
	5.4 V4: Permission File Inference
	5.5 Discussion

	6 Vulnerability Exploitation
	6.1 Simulation Setup
	6.2 Simulation Evaluation
	6.3 Physical Evaluation

	7 A General Defense Solution
	7.1 Design Rationale
	7.2 Methodology Description
	7.3 Implementation
	7.4 Security Evaluation
	7.5 Efficiency Evaluation

	8 Related Works
	9 Conclusion
	Acknowledgments
	References

