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Abstract

Cache side-channel attacks exhibit severe threats to software se-
curity and privacy, especially for cryptosystems. In this paper, we
propose CaType, a novel refinement type-based tool for detect-
ing cache side channels in crypto software. Compared to previous
works, CaType provides the following advantages: (1) For the first
time CaType analyzes cache side channels using refinement type
over x86 assembly code. It reveals several significant and effective
enhancements with refined types, including bit-level granularity
tracking, distinguishing different effects of variables, precise type
inferences, and high scalability. (2)CaType is the first static analyzer
for crypto libraries in consideration of blinding-based defenses. (3)
From the perspective of implementation,CaType uses cache layouts
of potential vulnerable control-flow branches rather than cache
states to suppress false positives. We evaluateCaType in identifying
side channel vulnerabilities in real-world crypto software, including
RSA, ElGamal, and (EC)DSA from OpenSSL and Libgcrypt. CaType
captures all known defects, detects previously-unknown vulnerabil-
ities, and reveals several false positives of previous tools. In terms
of performance, CaType is 16× faster than CacheD and 131× faster
than CacheS when analyzing the same libraries. These evaluation
results confirm the capability of CaType in identifying side channel
defects with great precision, efficiency, and scalability.

CCS Concepts

• Security and privacy→ Cryptanalysis and other attacks;
Formal methods and theory of security; Hardware attacks

and countermeasures.

∗Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560672

Keywords

cryptography; cache side-channel; static analysis; refinement type
inference
ACM Reference Format:

Ke Jiang, Yuyan Bao, Shuai Wang, Zhibo Liu, and Tianwei Zhang. 2022.
Cache Refinement Type for Side-Channel Detection of Cryptographic Soft-
ware. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and

Communications Security (CCS ’22), November 7–11, 2022, Los Angeles, CA,

USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3548606.
3560672

1 Introduction

Cache-based side channels have demonstrated serious threats to
crypto algorithms, such as the symmetric cipher AES [45, 47],
the asymmetric cipher RSA [35, 71, 74], and the digital signature
(EC)DSA [2, 51, 70]. The essence of these cache attacks is the inter-
ference of program memory accesses toward cache units, where
secret-dependent memory accesses or program branches leave dis-
tinguishable footprints in cache units. Thus, identifying and remov-
ing cache interference can eliminate side channel leakage.

Designing novel security-aware cache architectures may elimi-
nate adversarial interference. Prior research relies mostly on two
strategies, namely partitioning-based and randomization-based ap-
proaches. Strong isolation is achieved in partition isolated caches [20,
63] by physically partitioning the shared cache into multiple zones
for applications of various security levels. In contrast, [50, 63, 64, 68]
obscure adversary observations by randomizing the cache states.
Although it is envisaged that these architectures will eliminate
interference and secure programs that run on top of them, recent
works show that these randomization-based caches may be still
vulnerable to cache side channels [49, 55]. Also, these new cache
designs achieve security promise at the expense of performance.
Besides, they are not yet ready for commercial use due to extra cost
in chip circuit manufacturing.

Software-based mitigation of cache side channels appears in-
creasingly viable. However, manually detecting vulnerable crypto
code takes specialized knowledge, which drastically restricts nor-
mal developers from analyzing and patching their crypto software.
With the fast development of more efficient crypto software under
various usage scenarios, launching timely side channel analysis
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becomes even more challenging. With this regard, developing a
general, automated, and efficient analytic tool for detecting cache
side channels is receiving broad attention from both academics
and industry. Recent works [13, 21, 22, 60, 61, 67] serve as exam-
ples of this. In general, these works construct constraints through
symbolic modeling of program states and cache accesses. Then,
constraint solving techniques (e.g., Z3 [39]) are employed to check
the satisfiability of constraints and decide whether the program is
vulnerable to cache side channels. While these automated methods
have made concrete progress in discovering cache side channels in
real-world cryptosystems, they still face a number of obstacles.
Challenge 1: Software-based analysis needs to address precision

issues and be scalable to production crypto libraries. CacheAudit [21]
and its extension [22] calculate the upper bound of information
leakage by counting all possible final cache states via abstract in-
terpretation [18]. However, estimating worst-case leakage bound
may not reflect the reality. Moreover, CacheAudit cannot pinpoint
what/where the vulnerability is, prohibiting the debugging/fixing of
analyzed code. Using symbolic execution, CaSym [13] distinguishes
two different cache states resulting from secret variants. Though
CaSym covers multiple paths, it suffers from path explosion and
is less scalable. CacheS [60], likely the most scalable static tool
in this field, also uses abstract interpretation. It achieves higher
scalability due to modeling secret/non-secret semantics with sym-
bolic formulas of different granularity. Dynamic approaches, in
contrast, analyze concrete execution traces to track program states
and pinpoint side channels. CacheD [61] detects secret-dependent
memory accesses via symbolic execution, while not considering
secret-dependent branches. DATA [67] considers both memory ac-
cess leaks and branch leaks through differentiating address traces.
Existing dynamic methods, though manifest relatively improved
scalability, may still be slow to analyze production crypto libraries
(due to the usage of constraint solving) or require many well-chosen
inputs to induce distinct observations.
Challenge 2: Cache models adopted by software analyzers have

an effect on the scalability and detection granularity. Relying on
concrete cache replacement policies (e.g., LRU, FIFO, and RLRU),
CacheAudit precisely describes a program been executed on the
expected architecture, at the cost of scalability due to architectural
complexity. CaSym uses high-level abstract cache models (i.e., infi-
nite and age models) to achieve higher analysis scalability. It uses
the array index to compute the accessed cache locations. How-
ever, these abstract models have granularity issues: there is a gap
between the array index and the cache location in realistic archi-
tectures. At the other extreme, a much simplified cache model is
shared by [3, 22, 60, 61, 67], where an architectural-independent
model is used to detect cache side channels. Though this model
is realistic and efficient, performing analysis at such granularity
results in false positives, as will be discussed in this paper.
Challenge 3: Supporting a comprehensive analysis of crypto soft-

ware rather than some specific defects in sensitive code fragments. For
instance, CacheD omits the analysis of secret-dependent program
branches. Moreover, modern crypto libraries extensively use ran-
domization schemes like binding to mitigate side channels, whose
effectiveness (and remaining leaks) have not been analyzed by
previous tools. Supporting randomization is inherently hard for

previous static (abstract interpretation-based) tools [21, 22, 60], re-
quiring new abstract domains, new abstract operators, and sound-
ness proofs. Meanwhile, modeling randomization is also costly for
approaches that use constraint solvers, as it demands to iterate
blinding quantifiers [13, 60, 61]. [67] conceptually differentiates
traces derived from blinding-involved computations, but it over-
looks the complex computations involving blinding in production
cryptosystems, which may contain new attack vectors.

The aforementioned obstacles incentive the design of CaType,
an automated, precise, and efficient cache side-channel analysis tool.
CaType is scalable and capable of analyzing large-scale, complex
crypto software. CaType follows [61, 67] to log execution traces
of crypto software and performs trace-based type inference on the
logged traces. It features a novel refinement type system that en-
ables tracking program variables in the bit-level representation. Dif-
ferent from previous constraint solving-based approaches that are
inherently costly, our sound type system guarantees fine-grained
secret tracking and side channel detection with largely improved
efficiency. Lastly, CaType comprehensively models randomization-
based mitigation schemes adopted in modern crypto software. It
allocates specific refined types for differentiating the responsibilities
of (secret or randomized) variables, enabling precise information
flow tracking under the presence of randomization. In sum, we
make the following contributions:
• Conceptually, for the first time, cache side channels are analyzed
using refinement type techniques. We establish our novel refine-
ment type system directly over x86 assembly code, and formulate
cache side channels over refined types.
• Technically, CaType features several important and effective
enhancements compared with prior tools on the basis of re-
finement type system, including bit-level granularity tracking,
distinguishing different effects of variables, precise type infer-
ences, and much higher scalability. CaType takes into account
randomization-based defenses using specific refined types, and
uses novel cache layouts to suppress potential false positives.
• Empirically, we evaluate CaType to uncover side channel vul-
nerabilities among real-world crypto libraries. CaType captures
all known design flaws, identifies unknown flaws, and reveals
several false positives in existing tools. CaType is 16× faster than
CacheD and 131× faster than CacheS, demonstrating its high
applicability toward production crypto software.

Full version. Additional details are available in the full version of
the paper [31].

2 Preliminaries

2.1 Refinement Type Systems

A type system is a well-established formal system comprising a set
of rules that assigns types to terms in a programming language [15,
48]. For example, C language contains a basic type system, where
types (e.g., int, double, and int*) give meaning to data in the
memory or registers. Modern C compilers can feature basic type
checking rules to detect invalid operations, e.g., when a variable of
double is used as int* (for pointer dereference), an error is thrown
at the compilation time.

Type systems are widely-used in language-based security re-
search [72] like tracking secure information flow. In those systems,
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the types of variables and expressions are attached with annota-
tions that specify confidentiality policies enforcing the use of the
typed data. For instance, two type annotations 𝐻 and 𝐿 are used
to denote high and low security sensitivity of data. To detect the
violation of confidentiality policy, a set of type rules is defined to
check if the two classified sets of data interfere with each other.

Refinement types [30] extend standard type annotations with
predicates that confine the use of the values described by the type.
Typically, a variable 𝑥 ’s refinement type can be defined in the form
of 𝑥 : 𝑇 {𝑣 : 𝑃}, where𝑇 is a basic type and 𝑃 is the associated pred-
icate. For example, a non-negative integer variable 𝑥 is represented
as 𝑥 : 𝑖𝑛𝑡{𝑣 : 0 ≤ 𝑣}, where predicate 0 ≤ 𝑣 refines the basic type
𝑖𝑛𝑡 by specifying that the integer must be greater than or equal
to zero. With well-defined predicates, the refinement types can
provide stronger guarantees. For example, the zero-division errors
can be alerted at the compilation time when the predicate 𝑁 ≥ 0
indicates that the divisor may be zero. Meanwhile, one can elabo-
rately specify security policies over the refinement types to verify
software security vulnerabilities. [6, 8–10] are successful examples
of adopting refinement type systems in high-level languages (e.g.,
F∗) to provide security guarantees in crypto infrastructures. To our
best knowledge, CaType is the first to employ refinement types
over assembly code and for cache side channel detection.

2.2 Cache Hierarchy

Caches are incorporated into CPUs to accelerate process execution
due to the locality principle. In modern CPUs, each core (i.e., a
processing unit on a CPU chip) monopolizes an L1 cache and a
L2 cache. All cores share a megabyte-size LLC (Last-Level Cache).
The access time for a cache hit is around tens of cycles. In contrast,
the latency will become much higher (usually hundreds of cycles)
when a cache miss occurs and the main memory has to be accessed.
Modern CPUs use a𝑊 -way set-associative cache. Different memory
blocks may reside on the same cache set, and each cache set is
further divided into𝑊 cache lines. Given an 𝑁 -bit memory address,
𝑆-set cache with 𝐿 byte-size cache line, the lowest 𝑙𝑜𝑔2𝐿 bits of the
address represent the offset since continuous memory blocks are
cached together within one load instruction. The middle 𝑙𝑜𝑔2𝑆 bits
starting from bit 𝑙𝑜𝑔2𝐿 are used to locate the cache set index. The
upper part represents cache hit/miss tag bits.

2.3 Cache Side Channels

Cache poses threats of secret leakage, as program cache accesses
may be leveraged by adversaries to reconstruct confidential infor-
mation. In this section, we introduce two representative vulnerable
code patterns, secret-dependent branch condition (SDBC) and secret-

dependent memory access (SDMA), via classic examples in RSA.
Secret-Dependent Branch Condition (SDBC). Fig. 1a shows
a simplified view of the square-and-multiply implementation of
modular exponentiation in RSA. 𝑒𝑖 (line 4) denotes a private key
and decides if line 5 is executed. By monitoring the L1 instruction
cache (I-cache), attackers are aware of the execution of line 5, and
further reconstruct 𝑒𝑖 using well-established cache attacks [35, 71].
Secret-DependentMemoryAccess (SDMA).Besides SDBC, SDMA
also leads to exploitations. Consider Fig. 1b, where the sliding win-
dow modular exponentiation algorithm initializes a precomputed

array 𝑔[𝑖] (lines 1–3) to accelerate the computation. When per-
forming decryption, a window size key 𝑤𝑖 (line 8) is used as the
index to query the precomputed table 𝑔[𝑖]. For each for-loop (line
8), monitoring the accessed data cache (D-cache) line can reveal
certain bits in𝑤𝑖 and gradually reconstruct the private key [35].

1 : 𝑥 ← 1
2 : for 𝑖 ← |𝑒 | − 1 𝑑𝑜𝑤𝑛𝑡𝑜 0
3 : 𝑥 ← 𝑥2𝑚𝑜𝑑 𝑚
4 : if 𝑒𝑖 = 1 then
5 : 𝑥 ← 𝑥 · 𝑏 𝑚𝑜𝑑 𝑚
6 : return 𝑥

(a) Square-and-Multiply

Exp.

1 : 𝑔 [0] ← 𝑏 𝑚𝑜𝑑 𝑚

2 : for 𝑗 ← 1 𝑡𝑜 2𝑆−1 − 1
3 : 𝑔 [ 𝑗 ] ← 𝑏2𝑗+1𝑚𝑜𝑑 𝑚
4 : 𝑥 ← 𝑔 [ (𝑤𝑛−1 − 1)/2]𝑚𝑜𝑑 𝑚
5 : for 𝑖 ← 𝑛 − 2 𝑑𝑜𝑤𝑛𝑡𝑜 0
6 : 𝑥 ← 𝑥2

𝐿 (𝑤𝑖 )
𝑚𝑜𝑑 𝑚

7 : if 𝑤𝑖 ≠ 0 then
8 : 𝑥 ← 𝑥 · 𝑔 [ (𝑤𝑖 − 1)/2]𝑚𝑜𝑑 𝑚
9 : return 𝑥

(b) Sliding-window Exp.

Figure 1: Cache Side-channel Examples.

2.4 Cache Side Channel Mitigation

[36] surveys software-level countermeasures of cache side chan-
nels. Overall, two code patterns can remove secret-dependent cache
access patterns: AlwaysAccess-BitwiseSelect permits programs to
access secret-dependent data within each loop iteration in a con-
stant manner, while deciding whether or not to accept it via bit-
wise operations. Moreover, if the calculation is inexpensive and
free of secret-dependent branches, On-the-fly Calculation avoids
using lookup tables, which eliminates leakage shown in Fig. 1b.
Similarly, to remove secret-dependent branches, AlwaysExecute-
ConditionalSelect enables covering all branches regardless of the if
conditions.AlwaysExecute-BitwiseSelect eliminates secret-dependent
branches by selecting correct results through bitwise operations.

The aforementioned code patterns can frequently introduce high
overhead. They are thus less frequently used to only secure several
core code fragments, whichmaymiss subtle usage of secrets [22, 61].
Blinding introduces extra randomness in crypto computations to
obscure the inference of secrets. Depending on the blinding target,
there are two distinct usages of blinding masks.
Key Blinding. With this scheme enabled, the attacker obtains
blinded secrets without knowing the blinding mask 𝑟 . As 𝑟 is ran-
domly generated before each cipher process, attacker cannot exploit
the cryptosystem. For example, exponent blinding in RSA adds a
random multiple of Euler’s 𝜙 function, i.e., 𝑟 · 𝜙 (𝑛), to the secret
exponent. Then, RSA decryption performs 𝑐𝑑+𝑟 ·𝜙 (𝑛) 𝑚𝑜𝑑 𝑛, which
equals 𝑐𝑑 𝑚𝑜𝑑 𝑛. Though some known attacks [53] exploit this
scheme, the exponent blinding still impedes the attacker at large.
Plaintext/Ciphertext Blinding. Blinding can also be applied to
plaintext/ciphertext. For instance, when enforcing blinding, RSA
converts the ciphertext𝑚 into𝑚 · 𝑟𝑒 , where 𝑟 is the random factor.
The original result𝑚𝑑 𝑚𝑜𝑑 𝑛 can be obtained by multiplying the
new result (𝑚 · 𝑟𝑒 )𝑑 𝑚𝑜𝑑 𝑛 by 𝑟−1 due to 𝑟𝑒𝑑 · 𝑟−1𝑚𝑜𝑑 𝑛 ≡ 1𝑚𝑜𝑑 𝑛.
The plaintext/ciphertext blinding defeats known-input attacks that
leverage timing side channels.

Blinding can usually provide more comprehensive protection as
once key/ciphertext is blinded, all their follow-up usages and their
(subtle) influence on other variables should be protected. However,
their effectiveness in mitigating cache side channels are not yet
comprehensively analyzed, given the difficulty of modeling them
automatically in previousmethods (noted inChallenge 3 in Sec. 1).
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3 Research Overview

3.1 Assumptions

Threat Model. CaType follows an identical threat model as most
current cache side channel detectors [3, 13, 60, 61, 69]. We assume
that an adversary shares the same hardware platform as the victim, a
typical and practical assumption in cloud computing systems. Thus,
while the adversary cannot directly monitor the victim’s memory
accesses, he can probe the shared cache states to determine if cer-
tain cache lines have been visited by the victim software. This threat
model covers the majority of cache side channel attacks in the liter-
ature. For example, adversaries infer cache accesses by measuring
the latency of the victim program in EVICT-TIME attack [45], or
the latency of the attacker program in PRIME-PROBE [35, 45, 47],
FLUSH-RELOAD [71], and FLUSH-FLUSH attacks [29].

Existing works [13, 21] commonly refer to the attackers in our
threat model as “trace-based attackers” since they are able to probe
the cache state after the execution of each program statement in the
victim software. It is also worth noting that the attackers can dis-
tinguish cache layouts of instructions inside the program branches
of shared libraries. This is due to the fact that modern OSes adopt
aggressive memory deduplication techniques, allowing shared li-
braries to be mapped to copy-on-write pages. As a result, the prob-
ing granularity of attackers is precisely reduced to cache lines.
Main Audience. Consistent with previous works [3, 13, 16, 19, 21,
56, 60, 61, 67, 69], CaType is primarily designed for crypto software
developers who have sufficient knowledge about their own soft-
ware. Before release, CaType serves as a “vulnerability debugger”
for the developers to detect attack vectors in their software. CaType
provides fully automated and speedy analysis to flag program points
that leak secrets via cache side channels. Developers can accord-
ingly patch CaType’s findings to mitigate leakage. Nevertheless,
we clarify that CaType is not an attack tool; the exploitability of its
findings (e.g., whether RSA private keys can be reconstructed via
CaType’s findings) is beyond the scope of this paper.

3.2 Methodology Overview

This section illustrates the high-level methodology overview and
compares with existing efforts. Fig. 2(a) presents a sample code that
is vulnerable to SDMA (line 6) whereas the condition at line 9 is not
vulnerable to SDBC, as the else branch will always be executed.
Symbolic Execution-Based Approaches. De facto side channel
detectors perform heavyweight symbolic execution, where program
(secret-related) data facts are modeled using symbolic formulas.
Then, at each memory access and branch condition, they check if
different secrets can lead to the access of different cache lines using
constraint solving. For instance, let symbol 𝑘 represent the secret
read in line 2 of Fig. 2(a), existing side channel detectors [3, 13, 60,
61] primarily check the following constraint to decide SDMA/SDBC:

∃𝑘 ≠ 𝑘 ′, 𝐹 (𝑘) ≠ 𝐹 (𝑘 ′) (1)
where 𝐹 denotes the memory access constraint formed at line 6, or
branch condition constraint formed at line 9. The symbolic engine
forms 𝐹 (𝑘) = 𝑏 + 𝑘 × 4 at line 6, where 𝑏 is the base address of buf.
The satisfiability (SAT) of Constraint 1 checks the existence of two
secrets that lead to the access of different cache lines, such that cer-
tain amount of secrets will be leaked to the attacker. Moreover, the
symbolic engine will track computations using symbolic formulas,

and at line 9, the constraint solver yields unsatisfiable (UNSAT) for
Constraint 1, thereby proving the safety of line 9.

The primary obscurity of such detectors is scalability. Overall,
existing symbolic execution (or abstract interpretation)-based side
channel detectors need to maintain complex symbolic states for
each program statement to encode program semantics. As symbolic
execution continues, the symbolic constraints (encoding program
states) will steadily accumulate and grow in size, filling a vast
amount of memory. Even worse, existing tools need to perform con-
straint solving for each suspicious memory access and conditional
branch instruction, and constraint solving is generally slow. With
this regard, we notice that existing static analysis tools are often
limited to analyzing small programs, or fail to consider the effect
of side channel mitigation techniques like blinding.
Conventional Type-Based Analysis. Sec. 2.1 has introduced
basic mechanisms of type systems and the extensions to track
high/low secret-sensitive data with type annotations 𝐻 and 𝐿. As
illustrated in Fig. 2(c), performing type inference can easily estab-
lish that the types of k and c are uint32. Moreover, by assigning
a high security sensitivity type 𝐻 to k at line 2, the type system
identifies two usage of sensitive data at line 6 and line 9. These two
statements are deemed as “vulnerable”, leading to secret-dependent
memory access and branch condition. Nevertheless, we underlie
that while the statement at line 6 is a true positive (TP) finding,
statement at line 9 is a false positive (FP), as c can never exceed
7 (see line 3 in Fig. 2(a)). Overall, conventional type-based analy-
sis delivers speedy tracking of (secret-related) data through type
annotations. They, however, lack of tracking values and are less
expressive than constraint solving-based methods. Indeed, Sec. 7
compares taint analysis, conceptually similar to type systems en-
forcing information-flow security (e.g., [52]), with refinement type
system implemented in CaType. We show that taint analysis yields
considerably more false positives than CaType.
Refinement Type System in CaType. Fig. 2(d) illustrates the
usage of the refinement type system in CaType, where the refine-
ment formalizes the concerned (secret-related) program proper-
ties as predicates. In particular, we use type SDD to denote secret-
dependent values, and the refinement type system infers that in
line 6, k is of type uint32{𝑣 : SDD}, revealing a potential SDMA
case. Similarly, the refinement type of c in line 9 also has type
SDD, revealing a potential SDBC case (which is not vulnerable;
see below for clarification). CaType defines in total five predicates,
systematically considering secret-dependent, secret-independent,
as well as blinding operations. In this way, CaType can benefit
from refinement type techniques to keep track of secret propaga-
tions and identify SDMA/SDBC in a speedy manner while correctly
considering randomization mechanisms like blinding.

Moreover, CaType explores an important improvement, by track-
ing bit values directly in refinement types, in the form of value
predicates. A value predicate is defined as 𝑣 = 𝑏, where 𝑏 is either 0
or 1. CaType is carefully designed to deliver a “mild tracking” of
bit-level values. That is, only the refinement types of constants are
initialized to comprise bit-level predicates. Then, CaType tracks the
bit-level predicates via type inference in a correct yet conservative
manner. For instance, when a constant, 0x0000007, is used as the
mask over the secret (line 3), the type of the output means that it
is a bitvector with all secret bits (except the three least significant
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1
2
3
4
5
6
7
8
9
10

(a) sample code.

char buf[256] = {0};
uint32 k = secret_input();
uint32 c = k && 0x0000007;

//secret-dependent mem access
char a = buf[k];

//secret-dependent branch
if (c > 16) int b = 14;
...

k
slow symbolic modeling &
constraint checking

(b) constraint solving-
based approaches.

F9(k) != F9(k’)

at line 9

k
speedy type inference

(c) standard (secret-aware)
type system.

F6(k) != F6(k’)

at line 6

can decide if ∃k, k’è access of
diff. cache lines?

H,L denote secret-sensitive
and non-sensitive types

at line 6

at line 9

k
tracking bit-level values and secret-aware

refinement types during speedy type inference

(d) refinement type system in .

① secret-aware
refinement types

② tracking bit-level values only
when constants are involved

k:uint32 {H}

at line 6
k:uint32 {SDD}

c:uint32 {[0,...,0,1,1,1] ∧ SDD}

at line 9

è SAT

è UNSAT c:uint32 {H}

è TP

è FP

①

②

è TP

è TN
①

<latexit sha1_base64="VqVZ2esVaKofVBAjmI8TnJpjYnE=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoJVgETyWRoh6LvXis0C9oQ9lsp+3SzSbsTsQa+ku8eFDEqz/Fm//GbZuDtj4YeLw3w8y8IBZco+t+W7mNza3tnfxuYW//4LBoHx23dJQoBk0WiUh1AqpBcAlN5CigEyugYSCgHUxqc7/9AErzSDZwGoMf0pHkQ84oGqlvF3sIj6hZWqMNY8/6dsktuws468TLSIlkqPftr94gYkkIEpmgWnc9N0Y/pQo5EzAr9BINMWUTOoKuoZKGoP10cfjMOTfKwBlGypREZ6H+nkhpqPU0DExnSHGsV725+J/XTXB446dcxgmCZMtFw0Q4GDnzFJwBV8BQTA2hTHFzq8PGVFGGJquCCcFbfXmdtC7L3lW5cl8pVW+zOPLklJyRC+KRa1Ild6ROmoSRhDyTV/JmPVkv1rv1sWzNWdnMCfkD6/MHRIGTfw==</latexit>

CaType

Figure 2: Comparison of constraint solving-based techniques (b), type inference-based approach (c), and CaType (d). TP, FP,

and TN denotes true positive, false positive, and true negative, respectively.

bits) set to 0. Note that value predicates in refinement types can be
absent, indicating that the precise bit-level values are unknown.

By tracking of bit values from constants, CaType can exclude the
majority, if not all, cases where different secret values at a suspicious
SDMA/SDBC case result in visiting the same cache line (i.e., a safe
program site). For instance, when k is masked by 0x0000007 before
being used in the if condition at line 9 of Fig. 2(a), the refinement
type of c has all bits set to 0 except the lowest three bits, and
CaType can simply decide that the branch condition will always
be evaluated as “false” with an arithmetic comparison over two
bitvectors. Therefore, when analyzing the statement at line 9 of
Fig. 2(a), CaType yields a true negative (TN) finding, as shown in
Fig. 2(d). Overall, we view that the refinement type system designed
in CaTypemanifests comparable capability with constraint solving-
based methods to analyze cache side channels. Moreover, CaType
avoids the use of constraint solving, and is therefore dramatically
faster; see Table 4 in Sec. 6.1.
Potential False Positives. We clarify that the refinement type
system in CaType may not always know the precise bit values:
the absence of value predicates means the value could be 0 or 1.
Overall, CaType tracks the bit values introduced by constants using
refinement types at “its best effort”. Thus, we may encounter false
positives, e.g., due to constants that are however not tracked by
CaType. Nevertheless, cache side channels are rare in practice, and
we confirm that all findings of CaType over production cryptosys-
tems are true positives. Also, the refinement type system is sound
without introducing false negatives, as benchmarked in Sec. 7.
Blinding. As introduced in Sec. 2.4, modern cryptosystems use
randomness mechanisms like blinding to impede side channels.
To capture the security property of blinding, our refinement type
system facilitates a smooth and accurate modeling of blinding, by
adding specific predicates in type refinement to denote uniformly
random data (i.e., the blinding mask). We also define type inference
rules and propagation rules for blinding involved computations, so
that we can capture sufficient information used to infer potential
leaks. For example, uniformly random factors can perfectly mask
the result through logic xor operation, eliminating the effects of a
secret if it is a source operand. See details in Sec. 4.2 and Sec. 4.3.

In contrast, adding support for blinding presumably increases
the search space of constraint solving-based methods to a great
extent. Consequently, finding a SAT solution for Constraint 1 is
highly expensive, especially when both secrets and blinding masks
are present. Though an “optimal solution” is not yet clear, inspired

by relevant research in perfect masking analysis [24–26], we expect
to fix two different secrets 𝑘, 𝑘 ′ and then iterate the quantifiers of
all involved masks 𝑟1, . . . , 𝑟𝑛 to count the ranges under 𝑘, 𝑘 ′. This
process may take a dramatically longer time or timeout.

Leakage
Detection

Binary Taint
Filter

Type
Inference

Bit-level
Representation

Control-flow
Information

Trace
Logging

Figure 3: Workflow of CaType.

4 Design

Overview. Fig. 3 depicts the workflow of CaType. Given the crypto
software in executable format, we first run the executable using
Intel Pin [37] to perform concerned crypto computation (e.g., RSA
decryption) and log an execution trace. Then, we require users
of CaType to mark the program secrets and random factors on
the execution trace, and perform taint analysis by tainting those
secrets/randomness and extract a tainted sub-trace depicting how
tainted variables are propagated and used. Meanwhile, we also
disassemble the executable and extract control flow information
into a lookup table from the disassembled assembly code, which
will be used later in checking SDBC (see Sec. 4.4).

CaType then performs type inference over the tainted sub-trace,
by first annotating variables with bit-level types of initialized re-
finements (Sec. 4.1). It tracks the propagation and usage of secure-
sensitive values in refined types during type inference (Sec. 4.2 and
Sec. 4.3). When encountering memory accesses or branch condi-
tions, CaType uses the refined types of involved variables to check
if SDBC/SDMA exists (Sec. 4.4). Once a side channel flaw is dis-
covered, it reports the detected instruction’s address to users for
confirmation, debugging, and patching.
Design Consideration: Binary vs. Source. CaType is designed
to directly analyze x86 binary code compiled from crypto software.
Thus, the refinement type system is defined over x86 assembly
code, and CaType’s analysis depends on the specific memory lay-
out. Overall, side channels are sensitive to the low-level architecture
and system details. We clarify that prior works in this field are con-
sistently analyzing software in executable format. This enables the
analysis of legacy code and third-party libraries without accessing
source code. More importantly, by analyzing low-level assembly in-
structions, it is possible to take into account low-level details, such
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as memory allocation. Recent works [54] have shown that compiler
optimizations could introduce extra side channel opportunities that
are not visible at the high-level code representation level.
Design Consideration: Information Flow Tracking. When
illustrating cache side channels in Fig. 1 and Fig. 2, we depict how
the use of secrets result in side channels. Nevertheless, in addition
to side channels induced via the direct usage of secrets, it is crucial
to treat data derived from the secrets as “sensitive”. CaType tracks
both explicit and implicit information flows propagated from secrets.

When a variable 𝑥 is of SDD type, and the data is loaded from
memory address formed by 𝑥 , the destination variable has type
SDD. Similarly, when 𝑥 is used to form branch conditions, the
result type is SDD as well. By modeling information flows, CaType
comprehensively uncovers attack surface of cryptosystems.

4.1 Bit-level Representation and Types

We first clarify that in analyzing x86 assembly code, registers, CPU
flags, and memory cells are all considered as variables in CaType.
We use bit-level representation for variables encountered on the
execution trace, allowing us to track variables with fine-grained
precision. Considering the instruction syntax in Fig. 4, where an
expression 𝑒 can be a constant bit 𝑏, a variable 𝑥 , a constant bitvec-
tor [𝑏, · · · , 𝑏], or computations over expressions. Concatenation
𝑒1♯ 𝑒2 uses 𝑒1 and 𝑒2 to form the highest and lowest several bits,
respectively. Extracting several bits from the designated position of
a bitvector expression produces a fragment, dubbed as [𝑛1 : 𝑛2]/𝑒 .
Other operations include negation (¬), arithmetic and logic opera-
tions (⊲⊳) over two expressions, and the conditional expression with
three operands (the syntax mimics conditional selection in the C
language). A statement 𝑠 is an assignment, a memory load/store, or
a sequence of statements. We clarify that execution trace forms a
typical straight-line code of instructions, omitting branch merges.
Types and Hierarchy. As introduced in Sec. 2.1, a type 𝜌 has the
form of {𝑣 : 𝑇 | 𝑃}, where 𝑇 is a basic type and predicate 𝑃 is
the refinement. We define basic type 𝑇 as primitive types of bit
representations, i.e., one bit B or a bitvector of 𝑛 bits Vec⟨𝑛⟩. A
refinement type 𝑃 is either a security type predicate 𝜏 or a con-
junction with a value predicate. A security type predicate 𝜏 can be
any of the five types, i.e., SDD, URA, SID, WRA and CST, denot-
ing secret-dependent, uniformly random, secret-independent, weakly
random, and constant values. A value predicate is termed as 𝑣 = 𝑏
(where 𝑏 is 1 or 0), meaning that 𝑣 has value 𝑏. The expression typ-
ing judgment, Γ ⊢ 𝑒 : 𝜌 , states that expression 𝑒 has type 𝜌 , where
Γ is the typing environment mapping from variables to types.

The hierarchy of security types 𝜏 is CST ≤: URA ≤: WRA ≤:
SID ≤: SDD. We clarify that among the five refined types, only
SDD is related to secrets. We use WRA to denote a data of weakly
random distribution, meaning it is not uniformly random (in other
words, not perfect and secure blinding). URA means uniformly
random data, representing perfect and secure masking. The join
operator ⊔ takes the least upper bound of two types; for instance,
SID ⊔ SDD = SDD, as SDD sits higher in the hierarchy.
Types Annotation. Before launching type inference, we first an-
notate variables with security types. Secrets, random factors, and
constants are marked as SDD, URA, and CST, respectively. Wemark
other variables using SID, and type WRA may be generated during
type inference. Given that we perform bit-level type annotation

Expr 𝑒 ::= 𝑏 | 𝑥 | [𝑏, · · · , 𝑏 ] | ¬𝑒 | 𝑒1 ⊲⊳ 𝑒2
| 𝑒 ? 𝑒1 : 𝑒2 | 𝑒1 ♯ 𝑒2 | [𝑛1 : 𝑛2 ]/𝑒

Stmt 𝑠 ::= 𝑥 ← 𝑒 | 𝑥 ← 𝑒1 [𝑒2 ] | 𝑒1 [𝑒2 ] ← 𝑥 | 𝑠1; 𝑠2
Basic Types T ::= B | Vec⟨𝑛⟩

Security Types 𝜏 ::= SDD | URA | SID | WRA | CST
Refinements P ::= 𝑣 : 𝜏 | 𝑣 = 𝑏 ∧ 𝑣 : 𝜏

Type 𝜌 ::= {𝑣 : T | P}
Type Env Γ ::= ∅ | Γ, 𝑥 : 𝜌
Figure 4: Syntax of bit-level representation.

∥ [𝑏𝑛−1, · · · , 𝑏0 ] ∥𝑡 =



SDD ∃𝑏𝑖 . 𝑏𝑖 : {𝑣 : 𝐵 | 𝑣 : SDD}
URA (�𝑏𝑖 . 𝑏𝑖 : {𝑣 : 𝐵 | 𝑣 : SDD}) ∧

(∃𝑏𝑖 . 𝑏𝑖 : {𝑣 : 𝐵 | 𝑣 : URA})
SID (�𝑏𝑖 . 𝑏𝑖 : {𝑣 : 𝐵 | 𝑣 : SDD}) ∧

(�𝑏𝑖 . 𝑏𝑖 : {𝑣 : 𝐵 | 𝑣 : URA}) ∧
(∃𝑏𝑖 . 𝑏𝑖 : {𝑣 : 𝐵 | 𝑣 : SID})

WRA (�𝑏𝑖 . 𝑏𝑖 : {𝑣 : 𝐵 | 𝑣 : SDD}) ∧
(�𝑏𝑖 . 𝑏𝑖 : {𝑣 : 𝐵 | 𝑣 : URA}) ∧
(�𝑏𝑖 . 𝑏𝑖 : {𝑣 : 𝐵 | 𝑣 : SID}) ∧
(∃𝑏𝑖 . 𝑏𝑖 : {𝑣 : 𝐵 | 𝑣 : WRA})

CST ∀𝑏𝑖 . 𝑏𝑖 : {𝑣 : 𝐵 | 𝑣 : CST}
Figure 5: Type propagation from single-bit to bitvector.

and inference, if variable 𝑥 hosts a 32-bit secret, it is annotated as
{𝑣 : Vec⟨32⟩ | 𝑣 : SDD}. This vector type implies that each bit in
the vector has type SDD, i.e., ∀𝑏𝑖 ∈ 𝑥 . 𝑏𝑖 : {𝑣 : 𝐵 | 𝑣 : SDD}. For
constants, we also explicitly annotate each bit (whether it equals 0
or 1) in the value predicate. Thus, each bit of a constant 𝑐 is in the
form of 𝑏𝑖 ∈ 𝑐. 𝑏𝑖 : {𝑣 : 𝐵 | 𝑣 = 𝑏 ∧ 𝑣 : CST}, where 𝑏 is 0 or 1, de-
pending on the value of 𝑐 . Recall as noted in Sec. 3.2, our refinement
type-based inference conducts a “best-effort” tracking of bit-level
values derived from constants. The bit-level tracking updates value
predicates during type inference. Nevertheless, when a bit value
becomes unknown (could be either 0 or 1), we conservatively omit
its value predicate and only retain the security type predicate.

4.2 Type Inference for Bitvectors

Different bits in a bitvector may have varying security types. Con-
sider register eax, which stores a 32-bit data, where the upper 16
bits are URA and the lower 16 bits are SID. Intuitively, the bitvec-
tor’s type can be inferred by simply taking the least upper bound of
the constituent bits’ types, i.e., SID in this case. However, the high
16 bits are URA, meaning that each bit has equal possibility of being
0 or 1. Thus, the intuitive approach would lose the information of
randomness, leading to inaccuracy in subsequent analyses.

To precisely track bit-level security propagation, we define func-
tion ∥𝑥 ∥𝑡 in Fig. 5 to infer a bitvector’s type from the types of its
constituent bits based on a notion of structural priority. We give
type SDD the highest priority, meaning that a bitvector is of type
SDD if it contains at least one bit of type SDD. In the absence of
SDD type, type URA is structurally preceding. Then, SID is struc-
turally superior to WRA and CST, whereas WRA is structurally
superior to CST.

From a holistic view, sensitive data (specified in refinements)
are “propagated” from single-bit to whole bitvector following type
rules in Fig. 5. Therefore, information flow analysis is performed
here to determine how sensitive data are propagated and influence
program execution. To clarify, in addition to type rules, CaType
also conducts taint analysis over the Pin-logged trace and collects
a list of tainted instructions. This is a classic optimization to reduce
trace length, also adopted in previous works [3, 60, 61]. Our type
inference is performed on the tainted trace, as illustrated in Fig. 3.
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4.3 Type Inference Rules

CaType implements a comprehensive set of type inference rules
over each encountered x86 assembly instruction to track the propa-
gation of secure-sensitive types and check cache side channels.
Type Rules for One Bit Logical Operations. Fig. 6 presents a
representative list of type rules for one bit logical operations. First,
type rules that involve CST type are designed to propagate CST in a
straightforward way. Rule Conj&Disj.I states that if two operands
are not both CST or URA, then the result type is the least upper
bound of the two operands’ types. Rule Conj&Disj.II handles the
circumstance in which both operands are URA. Since the value of
the result is no longer distributed uniform-randomly under logic
AND and OR, the result type is lifted on the type hierarchy to WRA.

Rule XOR.I is similar to rule Conj& Disj.I, where the result type
is the least upper bound of the two operands’ types, provided that
neither bit expression is URA or CST simultaneously. Rule XOR.II
states that if one of the operands is of type URA, the result type
is URA. This refers to the fact that random factors can uniformly
blind the results through exclusive or (⊕) operations. Rule Neg.I
keeps security types unchanged in front of the negation operation.
TypeRules for Bitvector Operations. Fig. 7 depicts the type rules
for operations with bitvectors Vec⟨𝑛⟩. Three rules are applicable
to concatenation expressions. Rules Concat.I states that the resul-
tant’s type takes the least upper bound of the two vectors’ type, if
both vectors are not URA. Rule Concat.II-1 states that type URA is
structurally prior to other secret-free types, and Concat.II-2 speci-
fies that a bitvector exhibits SDD type if at least one bit in expres-
sion 𝑒2 is SDD. Rule Extraction is a well-demonstrated example
that leverages function ∥𝑥 ∥𝑡 to determine the refined type of the
segment extracted from the source operand. The Shift operations
can be implemented by combining concatenation and extraction
operations. Rule Logic.I infers a vector type from the types of its
constituent bits, i.e., the type of the result is inferred by applying
function ∥𝑥 ∥𝑡 . Rule Logic.II is similar to Rule Neg.I.

For the arithmetic operations of two bitvectors, one difference
lies in performing the calculation at the whole bitvector level as op-
posite to each bit. Specifically, we determine the security type of the
result, and propagate it to each bit. This offers a sound estimation
of each bit’s security type. Similar to Concat rules, Arith rules
conform to the security type propagation in bitvector structures.

As specified in x86 assembly code, the comparison operation only
produces one-bit bitvector Vec⟨1⟩ to the result (i.e., the affected CPU
flags). RuleComp specifies that the resultant’s type is the least upper
bound of the two operands’ types. We omit the case where two
operands are both CST as it is straightforward. Lastly, we specify
two rules according to whether the condition expression 𝑒 is related
to the secret. Rule Cond.I states that if the refined security type of
the condition expression 𝑒 is SDD, the result type is SDD regardless
of the type of two branch expressions. This rule allows CaType
to keep track of implicit information flow propagated from secret-
dependent branches to the instructions. Thus, it facilitates detecting
potential cache side channels derived from implicit information
flow. In contrast, Rule Cond.II takes the least upper bound of two
branch expressions’ types.

Statement type rules are standard [31], andCaType tracks secrets
propagation through both explicit and implicit information flows.

Proposition 4.1. Our type system guarantees security-safety stat-

ically: if an expression 𝑒 is given the type {𝑣 : 𝑇 | 𝑣 : 𝜏}, then the type

of its runtime value will be at least at level 𝜏 on the type hierarchy.

That is, the type system in CaType is sound, and it does not
make any false negatives in its analysis; see further discussions and
empirical results about type system correctness in Sec. 7.

4.4 Cache Side Channel Detection

Sec. 2.3 has illustrated two representative forms of cache side
channels, i.e., SDMA and SDBC. When performing type inference,
CaType will check each encountered memory access or conditional
jump instruction to see if cache side channels exist. Specifically, to
check if a memory access leads to SDMA, we right shift the vari-
able holding memory address by 𝐿 bits, and decide if the resulting
variable is of SDD type. Following a common setup [3, 60, 61], 𝐿
equals 6, standing for 64-byte (26) cache line size on modern CPUs.

For SDBC, previous research [3, 13] merely checks if different
secrets induce distinct executing branches. In contrast, CaType
checks if the conditional expression is of SDD type, and further
assures two branches are not within identical cache lines. Recall
as shown in Fig. 3, we disassemble the crypto software executable
and recover the control flow structure. At this step, we compute the
covered cache units of two branches: a SDBC is confirmed, in case
the condition is of SDD type, and two branches are placed within
distinguishable (at least one non-overlapping) cache lines.
An Illustrative Example.We use an example from the OpenSSL
library to visually demonstrate the type inference and detection
of side channels. With respect to code in Fig. 8, we present the
corresponding (simplified) type inference procedure launched by
CaType in Table 1. The first and second columns report the applied
type inference rules and the refinement types of relevant variables.
The last column reports the relevant cache line layout: MA(𝑎) rep-
resents a secret-dependent memory access, and we also report the
accessed cache line. BC(𝑎, 𝑏, 𝑐) indicates that for a conditional con-
trol transfer the if branch starts at virtual address 𝑎 (ends at address
𝑏), whereas the else branch starts at 𝑏 and ends at 𝑐 . We also report
the accessed cache lines in the last column (“c-line”).

Before analysis, users mark eax as “secrets” (type SDD). With
type inference applied, CaType identifies one SDMA and two SDBC
(marked in red). As shown in the last column, for the memory ad-
dress of the SDMA, CaType checks that the refinement type of high-
est 32− 𝐿 bits is of SDD type. As for those two SDBC cases, in addi-
tion to checking the branch condition’s type is SDD,CaType further
checks whether the if and else branches are located within distin-
guishable cache lines. CaType confirms all three cases as vulnerable
to cache side channels, whose findings are aligned with [60, 61].

5 Implementation

CaType is implemented in Scala, and presently performs analysis
on crypto software executables compiled on 32-bit x86 platforms.
However, extending CaType to other platforms, e.g., 64-bit x86, is
not complex. See discussion in Sec. 7. As a common practice for
trace-based analysis, we use Pin [37] to log each covered instruction
and its associated execution context, including all values in CPU
registers. These logged contexts are used to compute the concrete
values of pointers in the follow-up static analysis phase. In other
words, our type inference phase employs a practical and common
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Conj&Disj.I
Γ ⊢ 𝑒1 : {𝑣 : 𝐵 | 𝑣 : 𝜏1 } Γ ⊢ 𝑒2 : {𝑣 : 𝐵 | 𝑣 : 𝜏2 }

𝜏1 ≠ CST 𝜏2 ≠ CST ¬(𝜏1 = URA ∧ 𝜏2 = URA) ⊲⊳ ∈ {∧,∨}
Γ ⊢ 𝑒1 ⊲⊳ 𝑒2 : {𝑣 : 𝐵 | 𝑣 : 𝜏1 ⊔ 𝜏2 }

Conj&Disj.II
Γ ⊢ 𝑒1 : {𝑣 : 𝐵 | 𝑣 : URA} Γ ⊢ 𝑒2 : {𝑣 : 𝐵 | 𝑣 : URA} ⊲⊳ ∈ {∧,∨}

Γ ⊢ 𝑒1 ⊲⊳ 𝑒2 : {𝑣 : 𝐵 | 𝑣 : WRA}

XOR.I
Γ ⊢ 𝑒1 : {𝑣 : 𝐵 | 𝑣 : 𝜏1 } Γ ⊢ 𝑒2 : {𝑣 : 𝐵 | 𝑣 : 𝜏2 }
𝜏1 ≠ URA 𝜏2 ≠ URA ¬(𝜏1 = CST ∧ 𝜏2 = CST)

Γ ⊢ 𝑒1 ⊕ 𝑒2 : {𝑣 : 𝐵 | 𝑣 : 𝜏1 ⊔ 𝜏2 }

XOR.II
Γ ⊢ 𝑒1 : {𝑣 : 𝐵 | 𝑣 : URA} Γ ⊢ 𝑒2 : {𝑣 : 𝐵 | 𝑣 : 𝜏 }

Γ ⊢ 𝑒1 ⊕ 𝑒2 : {𝑣 : 𝐵 | 𝑣 : URA}

Neg.I
Γ ⊢ 𝑒 : {𝑣 : 𝐵 | 𝑣 : 𝜏 }
Γ ⊢ ¬𝑒 : {𝑣 : 𝐵 | 𝑣 : 𝜏 }

Figure 6: Selected one bit B type rules for logical operations.

Concat.I
Γ ⊢ 𝑒1 : {𝑣 : Vec⟨𝑛1 ⟩ | 𝑣 : 𝜏1 } 𝜏1 ≠ URA
Γ ⊢ 𝑒2 : {𝑣 : Vec⟨𝑛2 ⟩ | 𝑣 : 𝜏2 } 𝜏2 ≠ URA
Γ ⊢ 𝑒1 ♯ 𝑒2 : {𝑣 : Vec⟨𝑛1 + 𝑛2 ⟩ | 𝑣 : 𝜏1 ⊔ 𝜏2 }

Concat.II-1
Γ ⊢ 𝑒1 : {𝑣 : Vec⟨𝑛1 ⟩ | 𝑣 : URA}

Γ ⊢ 𝑒2 : {𝑣 : Vec⟨𝑛2 ⟩ | 𝑣 : 𝜏2 } 𝜏2 ≠ SDD
Γ ⊢ 𝑒1 ♯ 𝑒2 : {𝑣 : Vec⟨𝑛1 + 𝑛2 ⟩ | 𝑣 : URA}

Concat.II-2
Γ ⊢ 𝑒1 : {𝑣 : Vec⟨𝑛1 ⟩ | 𝑣 : URA}
Γ ⊢ 𝑒2 : {𝑣 : Vec⟨𝑛2 ⟩ | 𝑣 : SDD}

Γ ⊢ 𝑒1♯𝑒2 : {𝑣 : Vec⟨𝑛1 + 𝑛2 ⟩ | 𝑣 : SDD}

Extraction
Γ ⊢ 𝑒 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏𝑒 }

𝑚1 ≤𝑚2 ∥ [𝑚1 :𝑚2 ]/𝑒 ∥𝑡 = 𝜏

Γ ⊢ [𝑚1 :𝑚2 ]/𝑒 : {𝑣 : Vec⟨𝑚2 −𝑚1 + 1⟩ | 𝑣 : 𝜏 }

Logic.I
Γ ⊢ 𝑒1 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏1 } Γ ⊢ 𝑒2 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏2 }

⊲⊳∈ {∧,∨, ⊕} ∥𝑒1 ⊲⊳ 𝑒2 ∥𝑡 = 𝜏

Γ ⊢ 𝑒1 ⊲⊳ 𝑒2 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏 }

Logic.II
Γ ⊢ 𝑒 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏 }
Γ ⊢ ¬𝑒 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏 }

Arith.I
Γ ⊢ 𝑒1 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏1 } Γ ⊢ 𝑒2 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏2 }

𝜏1 ≠ URA 𝜏2 ≠ URA ¬(𝜏1 = CST ∧ 𝜏2 = CST) ⊲⊳∈ {+,−,×,÷}
Γ ⊢ 𝑒1 ⊲⊳ 𝑒2 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏1 ⊔ 𝜏2 }

Arith.II-1
Γ ⊢ 𝑒1 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : URA} Γ ⊢ 𝑒2 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏2 }

𝜏2 ≠ SDD ⊲⊳∈ {+,−,×,÷}
Γ ⊢ 𝑒1 ⊲⊳ 𝑒2 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : URA}

Arith.II-2
Γ ⊢ 𝑒1 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : URA}

Γ ⊢ 𝑒2 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : SDD} ⊲⊳∈ {+,−,×,÷}
Γ ⊢ 𝑒1 ⊲⊳ 𝑒2 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : SDD}

Comp
Γ ⊢ 𝑒1 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏1 } Γ ⊢ 𝑒2 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏2 }

¬(𝜏1 = CST ∧ 𝜏2 = CST) ⊲⊳∈ {<, ≤,>, ≥,=,≠}
Γ ⊢ 𝑒1 ⊲⊳ 𝑒2 : {𝑣 : Vec⟨1⟩ | 𝑣 : 𝜏1 ⊔ 𝜏2 }

Cond.I
Γ ⊢ 𝑒 : {𝑣 : Vec⟨1⟩ | 𝑣 : SDD} Γ ⊢ 𝑒1 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏1 }

Γ ⊢ 𝑒2 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏2 }
Γ ⊢ 𝑒 ? 𝑒1 : 𝑒2 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : SDD}

Cond.II
Γ ⊢ 𝑒 : {𝑣 : Vec⟨1⟩ | 𝑣 : 𝜏 } 𝜏 ≠ SDD Γ ⊢ 𝑒1 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏1 }

Γ ⊢ 𝑒2 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏2 } ¬(𝜏1 = CST ∧ 𝜏2 = CST)
Γ ⊢ 𝑒 ? 𝑒1 : 𝑒2 : {𝑣 : Vec⟨𝑛⟩ | 𝑣 : 𝜏1 ⊔ 𝜏2 }

Figure 7: Type rules for expressions involving bitvector Vec⟨𝑛⟩.
Figure 8: BN_num_bits_word.

804961d: mov eax, ptr [ebp+0x8]
8049620: and eax, 0xffff0000
8049625: test eax, eax
// secret−dependent condition
8049627: je 8049661
8049629: mov eax, ptr [ebp+0x8]
804962c: and eax, 0xff000000
8049631: test eax, eax
// secret−dependent condition
8049633: je 804964b
8049635: mov eax, ptr [ebp+0x8]
8049638: shr eax, 0x18
// secret−dependent mem access
804963b: mov al, ptr [eax+0x8110460]
8049641: and eax, 0xff
8049646: add eax,0x18
8049649: jmp 8049691

Table 1: Type Inference. “c-line” stands for cache line.

Involved refinment types Applied rules Control-flow & cache lines
𝑒𝑎𝑥 = {𝐾 }32 : 𝑆𝐷𝐷
𝑒𝑎𝑥 = {𝐾 }16 {0}16 : 𝑆𝐷𝐷, 𝑟0 = {1}16 {0}16 : 𝐶𝑆𝑇 Logic.I, Conj&Disj.I, Const-Conj.I&II
𝑒𝑎𝑥 = {𝐾 }16 {0}16 : 𝑆𝐷𝐷, 𝑟0 = {𝐾 }16 {0}16 : 𝑆𝐷𝐷,
𝑧𝑓 = {𝐾 } : 𝑆𝐷𝐷 Logic.I, Conj&Disj.I, Const-Conj.I

je condition (𝑧𝑓 ) −→ secret-dependent
BC(8049629,8049661,804968c)
true branch −→ c-line 201258
false branch −→ c-line 201259 20125a

𝑒𝑎𝑥 = {𝐾 }32 : 𝑆𝐷𝐷
𝑒𝑎𝑥 = {𝐾 }8 {0}24 : 𝑆𝐷𝐷, 𝑟0 = {1}8 {0}24 : 𝐶𝑆𝑇 Logic.I, Conj&Disj.I, Const-Conj.I&II
𝑒𝑎𝑥 = {𝐾 }8 {0}24 : 𝑆𝐷𝐷, 𝑟0 = {𝐾 }8 {0}24 : 𝑆𝐷𝐷,
𝑧𝑓 = {𝐾 } : 𝑆𝐷𝐷 Logic.I, Conj&Disj.I, Const-Conj.I

je condition (𝑧𝑓 ) −→ secret-dependent BC(8049635,804964b,804965f)
true branch −→ c-line 201258
false branch −→ c-line 201259

𝑒𝑎𝑥 = {𝐾 }32 : 𝑆𝐷𝐷
𝑒𝑎𝑥 = {0}24 {𝐾 }8 : 𝑆𝐷𝐷, 𝑟0 = 24 : 𝐶𝑆𝑇 Extraction, Concat.I
𝑒𝑎𝑥 = {0}24 {𝐾 }8 : 𝑆𝐷𝐷, 𝑟0 = 135332960 : 𝐶𝑆𝑇,
𝑟1 = {0}4 {1}{0}6 {1}{0}3 {1}{0}5 {1}{0}2 {𝐾 }8 : 𝑆𝐷𝐷,
memory address (𝑟1) −→ secret-dependent

Arith.I, Concat.I MA(804963b)
destination −→ c-line 0x201258 · · ·

𝑒𝑎𝑥 = {0}24 {𝐾 }8 : 𝑆𝐷𝐷, 𝑟0 = {0}24 {1}8 : 𝐶𝑆𝑇 Logic.I, Conj&Disj.I, Const-Conj.I&II
𝑒𝑎𝑥 = {0}24 {𝐾 }8 : 𝑆𝐷𝐷, 𝑟0 = 24 : 𝐶𝑆𝑇 Arith.I, Concat.I

BR(8049649,8049691)

† 𝑟0 and 𝑟1 represent temporary variables. ‡ 𝑧𝑓 represents Zero Flag register.

Figure 9: Type inference over sample assembly code. To ease reading, we use K, I, W, and U to term refinement type predicates,

corresponding to SDD, SID, WRA, and URA types. {𝐾}32 means bit K repeats 32 times, while {1}16 means bit 1 repeats 16 times.

memory model [14, 61], such that we decide the addresses stored
in a pointer using their concrete values logged on the trace.

We use objdump to disassemble executable files of crypto soft-
ware, and recover the control flow graph over the disassembled
assembly code. Currently, when encountering an indirect jump,
we conservatively consider that it can jump to any legitimate con-
trol transfer destinations in the disassembled assembly code. For
each conditional jump, we collect the memory address ranges of its
if/else branches from the disassembled code. We build a lookup
table over these control transfer information when checking if
executing secret-dependent branches can visit different cache lines.

Usage of CaType. To use CaType, users need to manually identify
the secrets and random factors like blinding in assembly code of
crypto software. As noted in Sec. 3.1, CaType is designed primarily
for crypto software developers, who have detailed knowledge of
their own code. Note that the knowledge of sensitive data in crypto
binary code is generally assumed by previous side channel detectors,
as most of them analyze binary code [3, 60, 61, 67].

We clarify that, as existing works [3, 60, 61], flagging secret (e.g.,
RSA private key) only requires mundane reverse engineering of
crypto executable and marking memory buffers that store keys. To
date, disassemblers are mature for processing crypto executables.
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Moreover, to ease the localization of secrets/random factors in as-
sembly code, we recommend developers to compile crypto software
with debug information attached. We observe that it takes less than
30 minutes to flag the secrets for each of our evaluated crypto soft-
ware. Other than manually localizing secrets, all follow-up analyses
are done automatically by CaType, whose outputs would be local-
ized vulnerable points in assembly code, as illustrated in Table 1.
Then, developers will need to map those leakage assembly instruc-
tions to source code for diagnosis and patching. To ease mapping
assembly instructions to source code, it is also suggested to compile
binary code with debug information attached, thereby encoding
source code line number into assembly instructions.

In addition, we do not particularly mark certain one-way func-
tions on the execution trace, e.g., functions applying key blinding
over secrets. Instead, we assign refined types (URA) to random data
before the analysis, and whenever keys are used together with blind-
ing, refined types for secrets and blinding will naturally fit their
corresponding type inference rules (as defined in Fig. 6 and Fig. 7).
Therefore, we should not miss any one-way function provided that
random data has been marked correctly before the analysis.

6 Evaluation

Evaluation Setup. We evaluate CaType on production cryptosys-
tems. Evaluations are conducted in Ubuntu 16.04 with Intel Xeon
3.50GHz CPU, 32GiB RAM. We collect execution traces of algo-
rithms including RSA, Elgamal, and (EC)DSA from OpenSSL and
Libgcrypt (see Table 2). ∗ represents using random factor on plain-
text/ciphertext and ★ indicates using random factor on secrets. Be-
sides, we evaluate the effectiveness of CaType on a constant-time
dataset offered in Binsec/Rel [19]. This will validate the correctness
of our methodology to a reasonable extent.

The RSA/Elgamal algorithms from both libraries leverage the
built-in secret generation function for generating 2048-bit secrets.
The ECDSA algorithm adopts OpenSSL sect571r1 curve. We initiate
the plaintext or the message to be signed as “hello world”. We use
Intel Pin to log the execution traces when executing the crypto
software for standard decryption/signature procedures, including
the majority of asymmetric encryption functions such as modular
exponentiation in RSA/ElGamal and point multiplication in the
signature procedure of ECDSA.

Table 2: Cryptosystems analyzed by CaType.

Algorithms Implementations Versions

RSA OpenSSL 1.0.2𝑓 ∗ , 1.1.0𝑔∗ , 1.1.0ℎ∗
1.1.1𝑛∗ , 3.0.2∗

Libgcrypt 1.6.1∗ , 1.7.3∗ , 1.9.4∗★
ElGamal Libgcrypt 1.6.1, 1.7.3∗ , 1.9.4∗★

(EC)DSA OpenSSL 1.0.1e, 1.1.0g, 1.1.0𝑖★
1.1.1𝑛★, 3.0.2★

6.1 Results Overview

Vulnerability Detection. We present the positives reported by
CaType in Table 3. We report that CaType confirms all cache side
channel vulnerabilities that have been found by CacheD/CacheS.
Moreover, it identifies new defects that were neglected in previous
analyses of the same crypto software. CaType detects precisely 485
information leakage sites, including 440 known sites and 45 newly
found sites. To better characterize findings, we adhere to CacheD/-
CacheS to group adjacent leakage sites (assembly instructions) into

a unit and eliminate duplicated units. This way, 97 known units
are confirmed and 14 unknown units are discovered. [65, 67] only
report leakage units, which are compared here. We elaborate on
the findings of CaType in the following two subsections.

Also, for the constant-time dataset offered by [19],CaType has no
positive findings, meaning that CaType (over this dataset) does not
produce false positives or false negatives. We notice that constant-
time computations in this dataset (e.g., comparison and conditional
selection) extensively use bitwise operations. Since CaType per-
forms bit-level type inference, CaType manifests high accuracy
without treating safe bitwise operations as vulnerable. Note that
constant-time operations provided in this dataset are frequently
used in modern crypto libraries; thus, experiments on this dataset
verify the correctness of CaType to a reasonable extent.
Analysis Against Randomization. CaType is evaluated against
blinding over plaintext/ciphertext and keys. CaType confirms that
the secret leakage exists in OpenSSL-1.0.2f and Libgcrypt-1.6.1/1.7.3,
notwithstanding the introduction of plaintext/ciphertext blinding.
Note that secrets are still exposed to side channels without blinding
in these cases. In contrast, key blinding mitigates most leakage
sites. For instance, evaluations of RSA/ElGamal in Libgcrypt-1.9.4
reveal that secrets are now labeled as random data (with type URA)
by CaType. However, this protection is at the cost of introduc-
ing extra (potentially vulnerable) procedures to perform blinding.
CaType discovers five new leakage sites in RSA/Libgcrypt-1.9.4.
These leakage units cover both the private key 𝑑 and the prime 𝑝
(recall in RSA, 𝑑 and 𝑝 are secrets). Therefore, we show that though
key blinding obscures secrets, it introduces new leakage sites due
to extra calculations. In sum, by considering random factors with
specific refined types, CaType can analyze side channel mitigation
techniques implemented in modern crypto software.
Performance Evaluation.We compare CaType with CacheD and
CacheS by using the same crypto implementations, and report the
comparison results in Table 4 (first five rows). For crypto libraries
evaluated by CacheD/CacheS (with a total of 4.4M instructions),
CaType finishes the analysis with around 120 CPU seconds, and
exhibits promising speed across all evaluation settings with no time-
out cases. To compare with CacheD/CacheS, we use the processing
time per 10 thousand lines as an indicator. CaType handles per
10 thousand lines in 0.27 seconds on average, while CacheD and
CacheS require 4.42 CUP and 35.41 CPU seconds, respectively. We
also report performance statistics of other RSA evaluation settings
in the next rows of Table 4. Their trace lengths range between
thousands and millions. Fig. 10 illustrates the approximately linear
correlations between trace length and time. Considering the com-
plexity of analyzing real-world cryptosystems, CaType displays
a highly promising performance and scalability. Overall, without
using constraint solving, CaType maintains a comparable analy-
sis capability as those of CacheD/CacheS. As noted in Sec. 4.4, by
using bit-level secret tracking (SDD), deciding if secret-dependent
memory access leads to cache side channels is recast to essentially
recognize SDD in refined types. This pattern match operation is
very efficient without undermining soundness.

6.2 Discussion of Known Vulnerabilities

CaType confirms all vulnerabilities reported by CacheD/CacheS
in the RSA/Elgamal implementations from Libgcrypt-1.6.1, which
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Table 3: Identified Information Leakage Sites/Units byCaType.We compare the resultswith recentworks, includingCacheD [61],

CacheS [60] and DATA [65, 67].

Algorithms Implementations

Information Leakage

Sites (known/unknown)

Information Leakage

Units (known/unknown)

CacheD reported [61] CacheS reported [60] DATA reported [65, 67]

Leakage Sites/Units† Leakage Sites/Units† Leakage Units‡
RSA OpenSSL 1.0.2f 30/0 6/0 2/2 6/3 4
RSA OpenSSL 1.1.0g 30/4 8/1 - - 5
RSA OpenSSL 1.1.0h 22/0 5/0 - - 5
RSA OpenSSL 1.1.1n 9/0 5/0 - - 3
RSA OpenSSL 3.0.2 9/4 4/2 - - 2
RSA Libgcrypt 1.6.1 31/4 9/1 22/5 40/11 -
RSA Libgcrypt 1.7.3 24/4 8/1 0/0 0/0 -
RSA Libgcrypt 1.9.4 4/5 2/3 - - -

ElGamal Libgcrypt 1.6.1 31/4 9/1 22/5 40/11 -
ElGamal Libgcrypt 1.7.3 24/4 8/1 0/0 0/0 -
ElGamal Libgcrypt 1.9.4 3/0 1/0 - - -
ECDSA OpenSSL 1.0.1e 98/0 9/0 - - 9
ECDSA OpenSSL 1.1.0g 49/0 6/0 - - 6
ECDSA OpenSSL 1.1.0i 13/0 3/0 - - 3
ECDSA OpenSSL 1.1.1n 14/0 2/0 - - 2
ECDSA OpenSSL 3.0.2 14/0 2/0 - - 3
DSA♮ OpenSSL 1.1.0i 0/4 0/1 - - -

DSA(swapped)♮ OpenSSL 1.1.0i 9/4 4/1 - - -
DSA OpenSSL 1.1.1n 13/4 3/1 - - 3
DSA OpenSSL 3.0.2 13/4 3/1 - - 3
total 440/45 97/14 46/12 86/25 48

† The RSA and Elgamal from Libgcrypt library are counted together in CacheD [61] and CacheS [60].
‡We collect all leaky functions reported in DATA [65, 67] and locate whether these leaky functions appear in the corresponding OpenSSL version.
♮ DSA (OpenSSL-1.1.0i) and its swapped patch are only evaluated for the key blinding part.

Table 4: Performance comparison with CacheD/CacheS. We also list the

analysis of eight RSA implementations for scalability assessment.

Crypto setup

Instructions

on the Traces

Processing Time

(CPU Seconds)

Time of

Per 104 Lines

CacheD CacheS

Per 104 Lines Per 104 Lines

RSA & Elgamal

OpenSSL-1.0.2f
1,620,404 35.58 0.22 3.49 21.16

RSA & Elgamal

Libgcrypt-1.6.1
1,379,652 36.00 0.26 4.93 45.36

RSA & Elgamal

Libgcrypt-1.7.3
1,411,081 48.40 0.34 3.92 54.57

total (first three rows) 4,411,137 119.98 0.27 4.42 35.41
RSA-OpenSSL 1.0.2f 1,620,404 35.58 0.22 - -
RSA-OpenSSL 1.1.0g 822,151 18.58 0.22 - -
RSA-OpenSSL 1.1.0h 28,874 4.88 1.69 - -
RSA-OpenSSL 1.1.1n 1,763,970 39.29 0.22 - -
RSA-OpenSSL 3.0.2 1,711,746 36.57 0.21 - -
RSA-Libgcrypt 1.6.1 806,410 22.63 0.28 - -
RSA-Libgcrypt 1.7.3 837,215 23.23 0.27 - -
RSA-Libgcrypt 1.9.4 114,733 11.25 0.98 - -
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Figure 10: Trace lengths/processing time to-

wards the analysis of RSA implementations.

adopts pre-computation tables for the sliding-window exponen-
tiation. Although Libgcrypt-1.7.3 employs a direct computation
scheme rather than using pre-computation tables, CaType still
finds 24 leakage sites that leak the secret length, which also exist in
Libgcrypt-1.6.1. However, no leaks are reported in CacheD/CacheS
about Libgcrypt-1.7.3. In the CacheS paper, they admit these leak
points are false negatives of their tool. As Libgcrypt-1.9.4 adopts a
new algorithm (i.e., left-to-right exponentiation), CaType reports
a known secret length leakage in function _gcry_mpih_add_n,
whereas prior leak operations are discontinued.

Concerning OpenSSL, CaType first confirms the existence of
CVE-2018-0737, where RSA private key is leaked during key gener-
ation, in functions BN_gcd and BN_mod_inverse from OpenSSL-
1.1.0g/1.1.0h. A recently found vulnerability comes from function
BN_num_bits_word, reported in CacheD/CacheS.CaType performs
the type deduction process in Table 1. The issue exists in OpenSSL-
1.0.2f/1.1.0g/1.1.0h and has been fixed [44], hence disappears in
the latest OpenSSL versions (OpenSSL-1.1.1n/3.0.2). In function
BN_window_bits_for_ctime_exponent_size of all analyzedOpenSSL
versions, CaType confirms a secret length leakage, shown in List-
ing 1. The issue is also reported in CacheS, but is not fixed in the
latest OpenSSL. CaType also detects a vulnerability reported in
DATA, where constant-time flags of RSA secret primes 𝑝 and 𝑞

are not propagated to the temporary copies inside the function
BN_MONT_CTX_set during the Montgomery initialization for
modular inverse. This issue exists in OpenSSL-1.0.2f, but the other
four OpenSSL libraries resolve it.

Listing 1: Window size of modular exponentiation.

1 BN_window_b i t s _ fo r_c t ime_exponen t_ s i z e ( b ) \
2 ( ( b ) > 937 ? 6 : \
3 ( b ) > 306 ? 5 : \
4 ( b ) > 89 ? 4 : \
5 ( b ) > 22 ? 3 : 1 )

When evaluating the (EC)DSA implementations, we mark the
nonce used in Montgomery ladder as a secret. This is because the
leaky nonce can result in the Hidden Number Problem (HNP) [11,
12], where collecting enough leaky nonce contributes to the recov-
ery of private keys through constructing lattice [7, 40, 41]. CaType
confirms a direct leakage of the nonce in theMontgomery ladder im-
plementation from OpenSSL-1.0.1e. This vulnerability was reported
in [70], and this flaw (CVE-2014-0076) has been fixed by the devel-
opers and implemented in a non-branch commit [42, 43]. Recently,
Ryan [51] reports a vulnerability located in modular reduction of
(EC)DSA implementations in OpenSSL that uses an early abort con-
dition to estimate the range of private keys. CaType confirms this
vulnerability comes from function BN_ucmp and BN_usub inside
function BN_mod_add_quick.
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CaType is also evaluated on analyzing the lifetime of a nonce,
including the generation, scalar multiplication, modular inversion,
and main signing process. The leakage sites identified by CaType
fully cover the findings reported in [65]. For example, by distin-
guishing whether an extra limb is used to expand the representation
of nonce in BN_add, CaType confirms the padding resize vulnera-
bilities about the nonce reported in CVE-2018-0734 for DSA and
CVE-2018-0735 for ECDSA, as shown in Listing 2. The vulnerability
states that the result buffer resizes one more limb to hold the result.
By distinguishing the resize operations, attackers can learn the
range information of the nonce. Other known leakage sites of the
nonce (e.g., skipping leading zero limbs through bn_correct_top,
performing an early stop in BN_cmp, and conditional branches
in BN_mul) are identified by CaType; they still exist in the latest
versions. Individually, CaType reports non-constant-time vulner-
abilities in OpenSSL-1.0.1e when performing ECDSA nonce mod-
ular inverse. This is because the constant-time flag was not set to
the nonce. OpenSSL-1.1.0g/1.1.0i, on the other hand, implement
Fermat’s little theorem via constant-time modular exponentiation.
Benefit to the cache layout checking, CaType finds four new leak-
age sites that reveal the secret key size through a series of else/if
branches in DSA from OpenSSL-1.1.0i/1.1.1n/3.0.2 (see Sec. 6.3).
Contrary to our expectations, CaType does not mark cases in the
switch statement of BN_copy as vulnerable. Through rechecking
the source code and its disassembly code, we confirm that CaType
performs a correct inference because the trace on the cache cannot
be distinguished (see Sec. 6.5).

Listing 2: Bignumber resize.

1 if ( ! BN_add ( r , k , o rde r )
2 | | ! BN_add (X , r , o rde r )
3 | | ! BN_copy ( k , BN_num_bits ( r ) > o r d e r _ b i t s ? r : X ) )
4 goto e r r ;

6.3 Unknown Vulnerabilities

CaType finds new vulnerable programpoints in Libgcrypt-1.6.1/1.7.3
that have been analyzed by existing tools. It finds that the size of
secret exponentiation is leaked through the if/else statements at
the beginning of function _gcry_mpi_powm, as shown in Listing 3.
The sliding-window size W is determined by the size of secret expo-
nent esize. Different execution traces of the if/else statements
can be differentiated because it occupies multiple cache lines. How-
ever, we admit that the if/else statements are a moderate leakage
because only line 1 and line 5 can be distinguished directly. CaType
cannot distinguish execution between line 2 and line 4.

Listing 3: Window size selection.

1 if ( e s i z e ∗ BITS_PER_MPI_LIMB > 512 ) W = 5 ;
2 else if ( e s i z e ∗ BITS_PER_MPI_LIMB > 256 ) W = 4 ;
3 else if ( e s i z e ∗ BITS_PER_MPI_LIMB > 128 ) W = 3 ;
4 else if ( e s i z e ∗ BITS_PER_MPI_LIMB > 64 ) W = 2 ;
5 else W = 1 ;

We find a new vulnerability in the OpenSSL function BN_rshift1
which performs GCD using the Euclid algorithm. We first demon-
strate how this function leaks the length of the one-shifted-right
operand. Function BN_rshift1 performs shifting to the right one-bit
for each element of the BN_ULONG structure. The length of the
source operand (i.e., a->top) is used as the while loop’s condition.
CaType confirms it as a secret-dependent branch, where the judg-
ment of the while loops and part instructions inside the while loops

are stored in one cache line and the subsequent instructions until
the end of function BN_rshift1 are stored in another cache line.
Therefore, the trace of the while loops can be distinguished. By
probing the while loop condition, the value of a->top is inferred
as one increment to the number of while loops.

[66] proposes a page-level attack to recover RSA primes 𝑝 and 𝑞
when performing prime testing using BN_gcd.CaType confirms the
vulnerability in which four different branches are identified because
BN_rshift1 of each branch is at different cache lines. Meanwhile,
we argue the length information of the source operand leaked by
BN_rshift1 accelerates the recovery in [66]. For example, between
two adjacent loop operations (𝑎𝑖+1 = 𝑎𝑖/2, 𝑎𝑖+1 = (𝑎𝑖 − 𝑏𝑖 )/2 or
𝑎𝑖+1 = (𝑎𝑖 − 𝑏𝑖 )/2, 𝑎𝑖+1 = 𝑎𝑖/2), one decrement in the latter 𝑎𝑖+1’s
length indicates that the topmost bit of the former 𝑎𝑖+1 is one. This
deduction helps to reduce the range of intermediate results for each
Euclid loop. In addition to BN_rshift1, CaType finds similar leakage
in BN_lshift1 from OpenSSL-3.0.2.

CaType also finds another vulnerability in the OpenSSL-1.1.0i
implementation of DSA. The key blinding mechanism of DSA
first multiplies the random factor blind and the DSA secret key
dsa->priv_key by calling the function bn_mul_normal to perform
a classic multiplication if the length of both operands is less than
BN_MULL_SIZE_NORMAL. Inside the bn_mul_normal, four con-
ditional branches control whether to end the for-loop. where nb
represents the length of the secret key. CaType confirms that the
secret-dependent branches leak the length of the secret key. By
probing different if-conditions present in distinct cache lines, the
value of the secret length can be recovered. Such vulnerable opera-
tions are found in the latest OpenSSL-1.1.1n/3.0.2.

6.4 Discussion about Blinding

As stated in Sec. 6.1, CaType shows that the plaintext/ciphertext
blinding cannot eliminate cache side channels, given that secrets
themselves are still exposed (e.g., secret-dependent memory ac-
cesses and branches in modular exponentiation from Libgcrypt-
1.6.1). However, key blinding impedes nearly all leakage. For exam-
ple, CaType reports no vulnerability in the modular exponentiation
from Libgcrypt-1.9.4. By inspecting the type inference outputs, we
find that the secret exponent is marked as a random number (URA)
through a series of blinding operations before conducting modular
exponentiation. However, CaType finds new leakage sites in the
blinding process. Considering key blinding in RSA/Libgcrypt-1.9.4,
which uses 𝑑_𝑏𝑙𝑖𝑛𝑑 = (𝑑 𝑚𝑜𝑑 (𝑝 − 1)) + (𝑝 − 1) ∗ 𝑟 to mask the
secret exponent 𝑑 before performing modular exponentiation. Here,
𝑝 represents one RSA prime number and 𝑟 is the random factor.
CaType newly discovers five leakage sites in the subtraction and
division operations. They leak the length of the prime number 𝑝
and secret exponent 𝑑 . For instance, the function _gcry_mpi_sub_ui
is invoked to perform 𝑝 − 1 on 𝑝 . It leaks the length of 𝑝 whenever
the resize operation is performed on the result operand, as well as
at other length-related branches.

Apart from the key blinding in Libgcrypt-1.9.4, CaType also
explores the effect of different key blinding positions on mitigat-
ing cache side channels. For instance, DSA implementation from
OpenSSL-1.1.0i applies key blinding b to avoid leaking the private
key x as follows:
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𝑠 = (𝑏𝑚 + 𝑏𝑥𝑟 ) 𝑚𝑜𝑑 𝑞 (2)
𝑠 = 𝑠 · 𝑘−1 𝑚𝑜𝑑 𝑞 (3)

𝑠 = 𝑠 · 𝑏−1 𝑚𝑜𝑑 𝑞 (4)
where statements 2, 3, and 4 are executed sequentially. Swapping
statements 3 and 4 results in different key blinding use, which is
applied in a LibreSSL patch [34]. CaType compares the original
patch with the swapped one (we manually swap statements 3 and 4
in OpenSSL-1.1.0i DSA). We find nine additional leakage sites re-
lated to the length of the inverse nonce kinv in the swapped patch
(see Table 3), although the statement 3 also leaks the inverse nonce
length in the original patch. We argue when executing statement 4
first, 𝑠 does not possess the property of randomization anymore
due to 𝑏 (𝑚 + 𝑥𝑟 )𝑏−1 𝑚𝑜𝑑 𝑞 ≡ (𝑚 + 𝑥𝑟 ) 𝑚𝑜𝑑 𝑞. Hence, the nonce
inverse kinv is exposed to the attacker. The swapped practice is fix
in a LibreSSL patch [33].

6.5 Reducing False Positives

We explain how CaType reduces false positives by using cache
layouts rather than cache states to detect side channels. Consider-
ing Fig. 11, function BN_copy is used by RSA and (EC)DSA. Take
(EC)DSA as an example, whose secret nonce is copied from b to
a via BN_copy. In particular, a switch statement at line 8 helps
skipping the copy of leading zero in b. By manually reviewing this
function, we would anticipate that certain information about the
nonce is leaked by discriminating executed switch cases. However,
CaType deems this case as safe.

1 𝐵𝐼𝐺𝑁𝑈𝑀 ∗ 𝐵𝑁 _𝑐𝑜𝑝𝑦
2 (𝐵𝐼𝐺𝑁𝑈𝑀 ∗ 𝑎,
3 𝐵𝐼𝐺𝑁𝑈𝑀 ∗ 𝑏) {
4 · · ·
5 /∗ 𝑎𝑠𝑠𝑖𝑔𝑛 𝑣𝑎𝑙𝑢𝑒𝑠
6 𝑖𝑛 𝑔𝑟𝑜𝑢𝑝𝑠 𝑜 𝑓 4 ∗ /
7 · · ·
8 𝑠𝑤𝑖𝑡𝑐ℎ (𝑏− > 𝑡𝑜𝑝&3) {
9 𝑐𝑎𝑠𝑒 3 : 𝐴 [2] = 𝐵 [2];
10 𝑐𝑎𝑠𝑒 2 : 𝐴 [1] = 𝐵 [1];
11 𝑐𝑎𝑠𝑒 1 : 𝐴 [0] = 𝐵 [0];
12 𝑐𝑎𝑠𝑒 0 :; }
13 · · · }

(a) BN_copy function.
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Figure 11: BN_copy from the OpenSSL Library.

We analyze the result released by CaType from the perspectives
of both FLUSH-RELOAD and PRIME-PROBE attacks. We depict
the cache layouts of BN_copy from OpenSSL-1.1.0g and OpenSSL-
1.1.0h in Fig. 11(b) and Fig. 11(c). In these two libraries, the switch
statement occupies two separate cache lines. Thus, the first cache
line must be visited. Meanwhile, instructions after the statement
are loaded into the second cache line and are also visited; in an
extreme case, the whole switch statement is loaded into one cache
line. In sum, different switch cases are not distinguishable (e.g.,
for the FLUSH-RELOAD attack). We further consider whether a
PRIME-PROBE attack can distinguish the difference in cache lay-
outs. First, the base addresses are loaded into the cache regardless of
whether they correspond to the source array (A[]) or the destination
array (B[]). Second, the largest offset for the element among the
last group (both destination and source) is 8 bytes. In that sense, the
address of any element is mapped to the same cache line (address≫
6 for 64-byte cache lines). Therefore, PRIME-PROBE cannot collect
a distinguishable observation and fails to extract secrets. However,
CacheD/CacheS simply treats BN_copy as vulnerable, given that a

secret-dependent branch condition (line 8) is (inaccurately) treated
as “vulnerable” in the view of their cache state-based vulnerability
pattern. However, it is indeed a false positive.
Robustness of Using Cache Layouts. The above experiments
are conducted using OpenSSL’s default compilation setting. The
switch statement may be vulnerable, when the code chunk of each
switch case occupies distinct cache lines. Overall, we anticipate that
different optimization settings could result in placing instructions
into different cache lines. To benchmark the robustness of using
cache layouts instead of using cache state-based threat models, we
measure how compiler optimizations may influence the results of
CaType, whose results are given in Table 5. At this step, we only
measure side channels due to SDBC, because we use the cache
layout model to check SDBC. Also, given that we need to manually
confirm and compare each finding across different optimizations,
we only select a crypto library when its SDBC-related source code
has visible changes across different versions. For instance, while we
evaluate Libgcrypt 1.6.1, 1.7.3, and 1.9.4 in Table 3, we only evaluate
versions 1.7.3 and 1.9.4, since version 1.6.1 appears to be identical
with 1.7.3 in terms of those SDBC cases flagged by CaType.

Table 5: Branch vulnerabilities identified by CaType under

gcc -O0, -O2, and -O3 optimization settings.

Crypto setup

gcc-5.4

-O0 -O2 -O3

RSA-OpenSSL 1.1.0g 27/9 24/9 24/9
RSA-OpenSSL 1.1.0h 20/5 18/5 18/5

RSA/Elgamal-Libgcrypt 1.7.3 17/7 14/7 14/7
RSA/Elgamal-Libgcrypt 1.9.4 6/4 6/4 6/4

ECDSA-OpenSSL 1.1.0g 38/6 22/6 19/6
ECDSA-OpenSSL 1.1.0i 10/3 7/3 7/3
ECDSA-OpenSSL 3.0.2 9/2 9/2 9/2
DSA-OpenSSL 1.1.0i 4/1 3/1 3/1
DSA-OpenSSL 1.1.1n 14/4 12/4 12/4

total 145/41 115/41 112/41

Table 5 shows that optimizations affect the analysis results, as
heavy optimizations tend to “condense” code into fewer cache lines.
Similar to Table 3, we provide the discovered leakage sites as well
as grouped leakage units. CaType can accurately capture the subtle
leakage (without making false positives) with its employed cache
layout threat model. With manual efforts, we confirm that all cases
are true positives. Indeed, we report that all -O2 findings are sub-
sumed by those of -O0, and all -O3 findings are subsumed by -O2
findings. In contrast, we report that CacheD/CacheS yields identical
findings across different optimization settings, meaning that they
have a considerable number of false positives under -O2 and -O3.

7 Discussion and Limitation

Type System Benchmarking. Scientifically, it would be ideal to
benchmark our refinement type system against some “synthetic
datasets” to determine their algorithmic effectiveness and efficiency
before evaluating side channel detections, which is a “downstream”
application of our type system. Nevertheless, it is practically hard
to find a proper (synthetic) dataset to solely evaluate the type sys-
tem, and using downstream applications to reflect the effectiveness
of a type system is a common evaluation plan used by relevant
works [57–59]. To avoid potential confusion, we revisit the effec-
tiveness and efficiency of our type system as follows.

First, our type system is sound (per Proposition 4.1). All typing
rules are intuitive, and there are no “tricky” ones implemented
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in CaType. Thus, the soundness is at ease. Second, in terms of
efficiency, our implementation manifests approximately 𝑂 (𝑛) com-
plexity, where 𝑛 is the number of instructions in a given trace.
CaType is empirically very efficient. As demonstrated in Fig. 10,
CaType manifests a mostly linear growth in terms of the trace
length and processing time. Overall, the end-to-end evaluation on
side channel analysis illustrates the accuracy of CaType, thereby
reflecting the effectiveness of its underlying type systems at large.

Further to the above discussion, we empirically evaluate the type
system by comparing it with taint analysis to check correctly-tagged
variables. In general, taint analysis offers a holistic modelling of how
secrets propagate through the program, while our type system is
more precise. Most taint analysis implementation is performed at the
syntax level. In contrast, as shown in Sec. 3.2 and Fig. 2, CaType’s
type system tracks bit-level values/secrets uniformly using refined
types; thus, the type system captures stronger semantics properties,
e.g., it models how blinding obscures secrets. Therefore, properly
masked secrets are not treated as secrets in CaType (i.e., they do
not have an SDD type), but taint analysis will “over-taint” them.

Recall CaType first conducts taint analysis over the Pin-logged
trace before performing type inference. Thus, we compare the num-
ber of tainted registers/memory cells with the number of variables
of type SDD over the same trace. As clarified above and observed
in [31], the number of variables of SDD type is less than the number
of tainted variables, as expected. Also, we confirm that all variables
of type SDD exist in the tainted set, i.e., our type inference phase
has no false negatives (when using tainted variables as the baseline).
More importantly, we manually study every “over-tainted” variable
that does not have type SDD. Given the difficulty of manual in-
spection, for each evaluation setting, we randomly select 100 cases
(if there are more than 100 cases). For each case, we comprehend
the causality of how variable is tainted, and decide if this is a true
positive (the tainted variable is carrying secrets correctly).

The manual inspection results [31] indicate that all the “over-
tainted” variables are false positives of the taint analysis. It is thus
correct for our type system to neglect them. Among in total 1,905
randomly selected cases, the “over-tainted” variables belong to
the following categories: ① variables of SDD type that have been
appropriately masked with blinding, while they are still tainted, ②
variables that are further tainted by variables belonging to ①, ③

variables of SDD type that have been zeroized by constants, whereas
taint analysis retains the taint label over those variables, and ④ the
base address of a secret buffer is deemed as a taint source, such that
whenever loading from the base address, the output will be tainted.
While ①, ②, and ③ are due to the inherent limitation of standard
taint analysis technique, ④ is due to the “clumsy” implementation
of our adopted taint analysis tool.1 Out of 1,905 manually checked
cases, we find that about 52% cases fall in ④, whereas the remaining
48% cases are due to ①, ②, or ③, which are correctly eliminated by
our refinement type system.
Extension. We discuss the extension of CaType from both ar-
chitectural and analysis target perspectives. First, the current im-
plementation of CaType supports to analyze 32-bit x86 binaries.
Given that the closely-related works (e.g., CacheD, CacheS, and
1We use the taint analysis tool provided by CacheD. Secrets (and their associated
non-secret data) are often stored in a BIGNUM struct. By treating the base address of
this struct as the taint source, non-secret data in the struct are all tainted due to ④.

CacheAudit) only support 32-bit x86 binaries, supporting the same
binary format enables an “apple-to-apple” comparison. Moreover,
CaType can be extended to 64-bit binaries with no extra research
challenge. We expect to convert each refinement type, currently a
32-bit vector, to a 64-bit vector. We also need to handle new instruc-
tions. Nevertheless, these are engineering endeavors rather than
open-ended research problems. We leave it as one future work to
support other architectures including 64-bit x86.

Also, from the analysis target perspective, side channel analyzers
in this field require to flag program secrets (or other sensitive data)
specified by users, and then start to analyze their influence on cache.
Detectors (including CaType) are not limited to crypto software.
Analyzing crypto software targeted by previous analyzers, however,
makes it easier to compare CaType with them. Given the scalabil-
ity of CaType, it should be feasible to extend CaType to analyze
production software running in trusted execution environments
(TEEs) and detect their side channel leaks [1, 17, 62].

8 Related Work

Perfect masking analysis conducted on power side channels is
highly relevant to our work [32, 38]. In such analysis, all inter-
mediate computation outputs are statistically examined for inde-
pendence between secret data and power side channels. Recent
efforts employ a type-based technique to deduce potentially leak-
age of program intermediate variables. Specifically, [4, 5, 23] use
a syntactic type system that primarily relies on the variable struc-
tural information. [28, 73] extend the syntax-based approach to a
semantic-based type system that refines inference rules for boolean
masking scheme analysis. Two improvements [27, 46] add rules
for additive and multiplicative masking. These works inspire the
design of our refinement type system. However, crucial gaps exist
in applying these rules to detect cache side channels. First, perfect
masking analysis of software power side channel countermeasures
targets specific masked programs (often bitwise operations), whose
computation is usually straightforward (calculating and then assign-
ing). Cache side channel analysis targets complicated production
cryptosystems. Type systems proposed in prior works are primarily
for bitvector logical operations, not general x86 assembly semantics.
Second, our tentative exploration shows that earlier typing rules
were often incomplete; they may need to use constraint solving
when typing rules cannot be applied. Their performance is therefore
downgraded. In contrast, CaType’s type inference rules completely
infer refined types for variables.

9 Conclusions

Detecting cache side channels in production cryptographic software
is still an open problem. This paper presents CaType, a refinement
type-based tool to deliver highly efficient and accurate analysis
of cache side channels over x86 binary code. Evaluation over real-
world cryptographic software shows that CaType identifies side
channels with high precision, efficiency, and scalability.
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