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Abstract—Modern GPU clusters are designed to support distributed Deep Learning jobs from multiple tenants concurrently. Each
tenant may have varied and dynamic resource demands. Unfortunately, existing GPU schedulers fail to thoroughly consider the
fairness among the tenants and jobs, which can result in unbalanced resource allocation and unfair user experience. In this article, we
present an efficient solution to provide strong fairness while maintaining high scheduling effectiveness in multi-tenant GPU clusters.
First, we introduce a novel Long-Term GPU-time Fairness metric, which can comprehensively evaluate the fairness at both the tenant
and job levels, based on both the temporal and spatial impacts of resource allocation. Second, we design a new and practical GPU
scheduler, AsTRAEA, to enforce the desired fairness among tenants and jobs. Large-scale evaluations show that AsTraEa can improve
tenant fairness by up to 9.42x compared to state-of-the-art schedulers, without sacrificing the average job completion time.

Index Terms—Distributed systems, deep learning, GPU cluster scheduling

1 INTRODUCTION

EEP learning (DL) has been utilized in a wide range of
Dreal-world applications, e.g., image recognition, natural
language processing, recommendation systems [1]. State-of-
the-art DL models are trained from massive data samples,
involving a large amount of computations. It is a common
practice to leverage GPUs or other accelerators to speed up
the training process [2], [3]. To deal with the ever-growing
complexity of DL training (DLT) workloads and increased
demands for computation resources, enterprises and insti-
tutes commonly set up large-scale GPU clusters.

A cluster is typically shared by multiple user groups (i.e.,
tenant), which can significantly improve resource utilization
and reduce operational costs [4], [5]. It can concurrently
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serve a large number of jobs with different features. Table 1
shows the running time distribution of DLT jobs from two
production GPU clusters operated by Microsoft and Sense-
Time. We observe that there are long-term jobs which take
hours or days to complete. Besides, about 41% (Philly) and
67% (Venus) of the DLT jobs can be completed within 10
minutes. These short-term jobs generally adopt the feed-
back-driven exploration method for the research and debug-
ging purposes [6], [7].

The mixed workloads of long-term and short-term jobs
call for fair resource allocation, and it is crucial to provide
sharing incentive in a shared cluster. Here sharing incentive
refers to the property that if IV jobs share a cluster, then
each job should not have worse performance compared to
an independent cluster with 1/N of the resources [8]. On
one hand, long-term jobs should not monopolize the entire
cluster, which can significantly block the execution of short-
term jobs (a.k.a. head-of-line blocking [6], [7]). On the other
hand, arbitrarily prioritizing short-term jobs can cause star-
vation for long-term jobs. It is necessary to balance all these
types of jobs and satisfy every tenant. Unfortunately, most
of the existing DLT schedulers, e.g., Slurm [9], Kubernetes
[10], Yarn-CS [4], Tiresias [7], Gandiva [6], Hived [11] and
Pollux [12] ignore the fairness issue in GPU clusters, which
can result in severe discrimination of resource allocation
across DLT jobs. Gandiva s, [13] targets the fairness of GPU
clusters. However, it mainly considers fair share of GPU
resources across tenants instead of DLT jobs.

This paper aims to design new scheduling solutions to
achieve fairness for DLT jobs in multi-tenant GPU clusters. Past
works have studied similar problems in the big-data cluster
environment. The mainstream mechanism is instantaneous
resource-allocation fairness, which can ensure instantaneous
fair allocations across big data jobs (e.g., map-reduce tasks)
by balancing the allocated resources among all the jobs in
real-time [4], [5], [14], [15], [16]. Unfortunately, it is difficult
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TABLE 1
Running Time Distributions of DLT Jobs in Two GPU Clusters:
Philly From Microsoft and Venus From SenseTime

Time < 10min < lhour < 6hour < lday < 6day
Philly 40.8% 71.6% 88.5% 94.1% 98.5%
Venus 67.3% 83.3% 90.6% 96.2% 99.6%

to achieve instantaneous fairness for DLT jobs in GPU clus-
ters, due to their distinct characteristics. (1) Mainstream DL
frameworks [17], [18] require gang scheduling, i.e., all the
requested GPUs should be offered to the job in an all-or-
nothing manner. Under this restriction, it is infeasible to
split partial resources from one job and give them to others
for instantaneous fairness. (2) DLT jobs have high GPU
affinity requirements. The performance of communication-
intensive DLT jobs exhibits high sensitivity to inter-GPU
topography. The instantaneous resource-allocation fairness
mechanism cannot take this factor into consideration. (3)
The preemption overhead of a DLT job is large for saving
and loading the model. Frequent preempting DLT jobs for
instantaneous fairness can cause huge performance penalty.

Hence, it is necessary to design a fairness solution dedi-
cated to DLT workloads. Themis [8] made such an attempt
by proposing the long-term finish-time fairness metric for DLT
jobs. It considers the gang scheduling and GPU affinity
requirements, and leverages a lease-based scheduling to
handle the preemption overhead of DLT jobs. At each
scheduling round, this mechanism tries to figure out the
optimal resource allocation strategy based on the remaining
time of each job. However, the metric only measures fair-
ness in terms of completion time without considering differ-
ent GPU requirements of DLT jobs. This can disincentive
small DLT jobs with smaller GPU requirements from using
the shared cluster. More seriously, a dishonest user may
submit DLT jobs with overclaimed GPU demands to inten-
tionally get higher throughputs with the same scheduling
priority, which could lead to more serious waste of cluster
resources and exacerbate the unfairness issue. We will give
detailed analysis about these mechanisms in Section 4.1.

Motivated by the above limitations, we present a novel
solution for fair GPU resource allocation across DLT work-
loads. We make the following two key contributions. First,
we design a new metric, Long-Term GPU-Time Fairness
(LTGF), to comprehensively characterize and evaluate the
fairness of DLT jobs. The comprehensiveness of this metric is
reflected from two aspects. (1) LTGF considers both the tempo-
ral and spatial impacts of a resource allocation on the fairness of
DLT jobs. At a long-term scale, it quantifies the gap between
the amount of resources allocated to the job and the amount
of resources the job deserves to obtain under the sharing
incentive. This can give more reasonable assessment than
the finish-time fairness in Themis, which only considers the
temporal factor. (2) LTGF considers fairness at both the tenant
and job levels. At the tenant level, it distributes to different ten-
ants fair amounts of GPU resources, which are proportional
to their contributions (e.g., budget or GPU resources) over a
period of time. At the job level, it ensures that GPU time is
fairly allocated among concurrent DLT jobs in the long term
within a tenant. This can provide guaranteed service for ten-
ants, as well as high cluster utilization.
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Second, we design AsTrRAEA,! a practical and efficient
scheduling system to achieve fairness in GPU clusters. It can
simultaneously ensure fair share of GPU resources among
tenants as well as jobs without bringing noticeable overhead
for DLT jobs. Specifically, AsTRAEA adopts the LTGF metric to
evaluate fairness and identify the optimal resource allocation
decisions. It also utilizes a lease-based scheduling scheme,
which can efficiently preempt running jobs to balance fair-
ness and Job Completion Time (JCT). Evaluation shows that
AsTRAEA outperforms state-of-the-art fair schedulers, and
improves tenant-level fairness by up to 9.42x and job fair-
ness by up to 10.3 x without sacrificing the average JCT.

2 BACKGROUND

2.1 Multi-Tenant GPU Cluster

It becomes popular to operate the GPU cluster in a multi-
tenant fashion. This can bring many benefits, such as reduc-
ing operational cost and improving resource utilization. A
shared GPU cluster is divided into multiple Virtual Clusters
(VCs), with each one assigned to a tenant. Based on a ten-
ant’s resource weight, its VC is associated with a static or
dynamic resource quota in terms of the number of GPUs
and other resources (e.g., CPU, RAM) [19]. Users of a tenant
can only submit DLT jobs to their corresponding VC. A
cluster scheduler is in charge of selecting DLT jobs from the
pending job pool and placing them on GPUs for execution.

2.2 Deep Learning Training

A Deep Learning training (DLT) job aims to determine the
optimal parameter values of a Deep Learning model from
training data. Users submit their jobs to the cluster. Then a
scheduler selects appropriate jobs from the pending queue
and places them to the demanded GPU resources for execu-
tion. A running DLT job may be preempted by other jobs.
There are three possible final states for a DLT job: (1) COM-
PLETED: a DLT job successfully executes all the epochs of
its training procedure. (2) CANCELED: users may manually
early stop the execution of a DLT job based on the interme-
diate results. (3) FAILED: DLT jobs could be terminated by
force due to programming or hardware issues [19]. DLT
jobs have following features.

Iterative Computing. A DLT job is executed in an iterative
fashion. At each iteration, a batch of training samples are
selected as the input of two steps of computation: forward
and backward propagation. A DLT job may conduct mil-
lions of iterations to achieve model convergence, resulting
in long running time (e.g., tens of days) [19], [20]. It is com-
mon to leverage hardware accelerators (e.g., GPU) to
improve the computation efficiency. Feedback-Driven Explo-
ration. Users usually perform exploration tasks (e.g., search-
ing different configurations or hyper-parameters, selecting
the optimal network structures) in a trial-and-error manner
before obtaining the final model [6], [7]. This exploration can
be performed by hyperparameter-tuning frameworks [21],
[22]. During this exploration process, poor-performing jobs
will be killed in advance based on the intermediate results.

Gang Scheduling. Distributed DLT jobs could use multiple
GPUs to train a single model using data-parallel or model-

1. AsTRAEA is the name of a Greek goddess for justice.
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Fig. 2. Distribution of DLT job GPU service time.

parallel techniques. They usually require gang scheduling: all
the requested GPUs should be offered in an all-or-nothing
manner. While some new training solutions [23] with elastic
GPU resources have been proposed, they are still at an early
stage without broad deployment.

Placement = Sensitivity. Distributed training procedure
needs to exchange data between GPUs at every iteration. To
guarantee training performance, communication-sensitive
jobs require strict topology of allocated GPUs. For example,
a job with 8 GPUs should be placed on a single 8-GPU node
for the high performance of the nvlink-based communica-
tion. If this job is allocated with two nodes, the inter-node
communication could be the performance bottleneck [3].

2.3 DLT Job Scheduling

A scheduler is indispensable in a cluster to manage the com-
puting resources and schedule jobs. At runtime, the sched-
uler continuously receives jobs submitted by users with the
explicit resource demands. Then it decides when and where
to run by selecting the proper jobs to satisfy the scheduling
objectives and placing them to the appropriate servers for
execution [24]. Different scheduling systems may pursue
various scheduling objectives, e.g., improving resource utili-
zation [5], [20], [25], optimizing the performance of work-
loads [26], [27], maximizing scheduling efficiency [14], [28],
guaranteeing service and user experience [29], [30], etc. Dif-
ferent from the traditional big-data or HPC workloads, DLT
jobs exhibit unique characteristics (Section 2.2). This brings
new challenges for GPU cluster scheduling, and it is neces-
sary to design dedicated schedulers for DLT jobs, which
will be discussed in Section 7.2.

3 A STuDY OF REAL-WORLD DLT JoB TRACE

In this section, we study Venus [20], a production DLT clus-
ter in SenseTime. Venus contains 133 GPU servers con-
nected by RDMA network. Each server is installed with 8
NVIDIA Volta GPUs. The cluster is shared among 16 ten-
ants. Each tenant is allocated with a static number of GPUs.
Venus uses Slurm [9] as the scheduler. We collect and ana-
lyze 109734 GPU-based DLT jobs over a period of 6 months.
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3.1 Characteristics of DLT Jobs in Shared Clusters
Unpredictable Training Time. In Venus, 52.2% of jobs are suc-
cessfully completed, 27.9% are canceled, and 19.9% fail.
Due to the high cancellation/failure ratio, it is difficult to
predict the running time of DLT jobs just based on the
remaining number of iterations. [31].

Various GPU Demands. Fig. 1 shows the distribution of
DLT job in terms of requested GPU resources. About 52.5%
of jobs use single GPU, 22.6% require 8 GPUs, and 10.3%
need more than 8 GPUs. Jobs have high cancellation/failure
ratio in all the cases. We define the GPU service time of a
DLT job as the product of its GPU demand and running
time. Fig. 2 shows such distribution. While single-GPU jobs
account for the largest proportion of all the jobs, they only
consume 4.7% of total GPU service time. The major GPU
service time is consumed by DLT jobs with no less than 8
GPUs (85.7%).

Mixed Workload of Long-Term and Short-Term Jobs. Table 1
demonstrates that DLT job running time varies from
minutes to days. Fig. 3 further shows the cumulative dis-
tributions of job running time and service time with differ-
ent resource demands. We observe that DLT job running
time follows the long-tail distribution. For example, for
single-GPU jobs, 87.4% of jobs last for less than 1 hour,
while 2.2% spend more than 1 day. In addition, DLT jobs
with larger GPU demands tend to have longer running
time.

Unbalanced Resource Demands. The GPU resource
demands of VCs in a shared DLT cluster are unbalanced
over time. Fig. 4 gives the VC utilization of two tenant. On
June 15, Tenant-B has a high cluster GPU utilization of over
90%, but Tenant-A has an average utilization of less than
50%. On June 21, Tenant-A achieves near 100% utilization,
while Tenant-B only uses 60% of its GPUs.
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Implication #1: The unpredictability of training time, and
high variety in the GPU demands and running time sig-
nificantly increase the difficulty of making optimal
scheduling decisions and allocating resources.

3.2 Issues of DLT Clusters Without Fairness

Venus uses FIFO (First-In-First-Out) to schedule jobs without
considering fair resource allocation across parallel DLT jobs.
Long-term jobs may monopolize the whole cluster or VC,
blocking the execution of pending jobs (a.k.a. head-of-line
blocking). As shown in Fig. 5a, a portion of jobs have
extremely long pending time. For example, 4.4% of single-
GPU jobs wait for over 30 minutes to be scheduled. Jobs with
4 or more GPUs may have higher pending time. Blocked
DLT jobs (especially for short-term jobs) may suffer from
large execution slowdown ratio, which is defined as
(running-time + pending_time) /running_time. As shown in
Fig. 5b, a certain number of jobs have large (> 5) slowdown
ratios.

Implication #2: Scheduling without considering fairness
could worsen the job pending situation and result in
unfair execution across different jobs.

4 LoNG-TERM GPU-TIME FAIRNESS

In this section, we analyze the limitations of existing fair-

ness mechanisms, and then present our new fairness metric.

This will further inspire the design of our fair scheduler.
We consider two types of sharing incentive in this work.

Definition 1 (Sharing incentive for DLT jobs) Consider a
M-GPU cluster hosting N DLT jobs with the same weight. We
say there is sharing incentive for a job if its performance is no
worse than the situation where it runs in an independent clus-
ter of M /N GPUs.

Definition 2 (Sharing incentive for tenants) Consider a
M-GPU cluster shared by T' tenants with the same weight. We
say there is sharing incentive for a tenant, if he could be allo-
cated with at least the same amount of GPU service time as an
independent cluster of M /T GPUs over a period of time,
regardless of the workloads of other tenants.

4.1 Analysis of Existing Fairness Mechanisms

We give some illustrative examples to demonstrate the limi-
tations of two common fairness mechanisms, as well as the
innovation and superiority of our metric.
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4.1.1 Instantaneous Resource-Allocation Fairness

This mechanism is widely adopted by existing big-data
clusters to achieve instantaneous fairness [4], [5], [14], [15],
[16]. Consider there are N active jobs in the cluster for
scheduling at one instant ¢. Each job ¢ receives r;(t) resour-
ces from the scheduler. Then the goal of the instantaneous
resource-allocation fairness is to figure out the optimal pol-
icy with the following objective:

maximize : min r;(¢).
ieN

If a job does not fully utilize the allocated resources, these
excess resources will be redistributed to other jobs.

Fig. 6a gives an example of this mechanism. Consider a
cluster of 6 CPUs with three active jobs. The scheduler
should allocate these CPUs equally to each job regardless of
their types or demands. Following this principle, the sched-
uler is able to provide instantaneous fairness across all the
jobs at any time.

Unfortunately, instantaneous resource-allocation fairness
is hard to achieve for DLT jobs. As discussed in Section 1,
DLT jobs require gang scheduling with high placement sen-
sitivity and preemption overhead. These characteristics
make it inflexible for the scheduler to adjust the resource
allocation instantaneously to guarantee fairness.

4.1.2 Long-Term Finish-Time Fairness

This metric was proposed in [8] to address the fairness issue
for Hyper-Parameter Optimization (HPO) workloads. It
allocates resources to balance the finish time of each HPO
job. It is defined as p;(t) = T;(¢)/(T; (t) - N), where T;(t) and
T (t) is the estimated time to finish job i using the actual
allocated resources and the entire cluster, respectively. At
each scheduling round, the scheduler tries to identify the
optimal solution with the following objective:

minimize : max p;(t).
iEN

Fig. 6b gives an example when directly using this metric
to schedule DLT jobs. Three DLT jobs are submitted to a 6-
GPU cluster. JobI requires 6 GPUs while Job2 and Job3 require
3 GPUs. Each of them needs 40 minutes to complete. The
duration of one scheduling round is 10 minutes. Guided by
this long-term finish-time fairness principle, these jobs will
be scheduled alternatively until their completion.

This metric only considers fairness in terms of comple-
tion time, while ignoring the amount of allocated resources.
In Fig. 6b, for each period of 20 minutes, Jobl gets 1/2 of the

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 13,2022 at 02:15:35 UTC from IEEE Xplore. Restrictions apply.



YE ETAL.: AsTraea: A FAIR DEEP LEARNING SCHEDULER FOR MULTI-TENANT GPU CLUSTERS

total GPU resources. In contrast, Job2 and Job3 only get 1/4
of the resources each. This cluster loses sharing incentive
for these two jobs. Moreover, since jobs with higher GPU
demands can get more GPU service time, tenants may over-
claim excessive resources for their jobs to increase the
throughput, resulting in a waste of GPU resources.

A fair scheduler should consider the spatial information
(GPU demand) in addition to the temporal information
(running time) of DLT jobs. Using the above example, the
scheduler should give one round for Jobl and two rounds
for Job2 and Job3 (Fig. 6¢). Then equal resources are allocated
to each running job in any half hour. Our proposed metric
can achieve this fairness, as described below.

4.2 Long-Term GPU-Time Fairness Definition

We propose a novel metric, Long-Term GPU-time Fairness
(LTGF) for DLT scheduling. In a single-tenant cluster, LTGF
achieves sharing incentive for DLT jobs. In a multi-tenant
cluster, LTGF also provides sharing incentive for tenants.

4.2.1 LTGF in Single-Tenant Clusters

Consider a single-tenant cluster of M/ GPUs shared by N
jobs from time ¢; to t,. Let Demandt?”b be the GPU demand
of job J;, Alloc{"b(t) be the amount of GPUs allocated to J; at
time ¢. Due to the gang scheduling feature, we have

job 0, _ if J; is not running
Alloc”(t) = {Demand,{-ab, if J; is running ~ ° M

Over a period time of [t1,t;], the accumulated GPU ser-
vice time allocated to J; by the scheduler is

o ty )
Alloc” (ty,t2) = [ Alloc®(t) dt. ®)

t

We use Active(J;,t) to denote the state of Job .J; at time ¢:
pending or running jobs have Active(J;,t) = 1 while failed
or completed jobs have Active(J;,t) = 0. Given the share
weight W/ of J;, based on the max-min fairness, its instan-
taneous fair number of allocated GPUs at time ¢ is

. M x Wi
FairShare‘{Ob(t) = —x : x Wi - 3)
> i1 (Active(J;, ) x W)

Due to gang scheduling, J; could not use more GPUs
than Demand!” even if FairShare)”(t) has a large value.

The fair GPU service time of J; over [t;, ts] is

FairSharefOb(tl, ty) =
b2 . .
min(Demand!™, FairShare!® (t)) dt. (4)

t

The fairness degree p{‘)b(tl, ty) for the job ¢ from ¢; to ¢, is
defined as

i Alloc’?oz} ti,t
P (1, ts) = ‘ (Ji, I &)
FairShare;  (ty,ts)

pI”(t1,t5) > 1 implies good long-term fairness in terms
of GPU service time for job J;. In contrast, p/(t;, ;) < 1
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indicates unfairness since it violates the sharing incen-
tive. For example, we assume all the jobs have the same
weight and keep active over [t;,ts]. The GPU service
time that J; receives in the shared cluster is pf"b(tl,tg)
(ty — t1)min(Demand’®’, M/N). Considering an indepen-
dent cluster of M /N GPUs, the GPU service time that .J;
acquires is (ty — t;)min(Demand!”, M/N). It is noted that J;
could not run with M /N GPUs if Demand®’ > M /N due to
the gang scheduling. The performance of J; in a shared clus-
ter is no worse than the situation where it runs in an indepen-
dent cluster of M /N GPUs, if pﬁ‘)b(tl, o) > 1.

4.2.2 LTGF in Multi-Tenant Clusters

Consider a cluster of M GPUs shared by T tenants. It is
divided into 7" VCs, with each one assigned to a tenant.
Each tenant j is associated with a weight W/***"*. Then the
GPU quota of this tenant Quota, is calculated as

M x Wz_fsanant
J

Quota; = —————.
i W)

(6)

Let N; be the number of jobs for tenant j, and Demandfjb
be the GPU demand of J;; from this tenant. The requested
amount of GPUs by tenant j at any time is
‘]v]

Demand™™" = Z(Active(]i‘]—, t) x Demand{;b). )

i=1

If Demand ™™ (t) < Quota,(t), the tenant would not use
more GPUs than its resource demands. The fair number of
allocated GPUs for tenant tenant j at time ¢ is

FuairS hare;&e”’“"t (t)
= min(Demand;e"a’”’t (t), Quotaj(t)). (®)

The fair GPU service time that tenant j should receive
over a period of [t1, 5] is

tenant

t2
FairShare, (thtg):/ FairSharezmam(t) dt. 9

G}

As shown in Section 3, the total GPU demands of tenants
are unbalanced and varying over time. The actual amount
of GPUs allocated to tenant j at time ¢ is

N; A
Alloc™™™(t) = > "(Allocl! (t)),

=1

(10)

where Allocfg-b(t) denotes the amount of GPUs allocated to
job J; ; at time ¢ (Equation (1)).

When Alloc™ " (t) < Quota, the tenant does not fully uti-
lize its resource quota due to insufficient workloads or GPU
resource fragmentation. In contrast, Alloc;-m"”m’(t) > Quota,
means the tenant uses more resources than its quota to
improve the overall cluster utilization.

Over a period of [t1, t2], the actual GPU service time allo-
cated to tenant j by the scheduler is
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tenant

t2
Alloc; (thtz):/ Alloc;’-m""t(t)dt. (11
t

The fairness degree pé"'”’"”t(tl, ty) for tenant j from #; to t»
is defined as follows:

———tenant
AllOCj (tl,tg)
tenant

. (12)
FairShare, (t1,12)

pé_enant (tl , tZ) —

,03-””‘““‘/(&7 19) > 1 implies good long-term fairness in terms
of GPU service time for tenant 7;. It means the tenant can
use more or at least the same amount of GPU service time
than its fair share. In contrast, pf"b (t1,t2) < 1 indicates
unfairness since the tenant receives less GPU service time
than a separate cluster of M /T GPUs. '

We can also calculate the job fairness for J; ;. Let W/‘;b be
the share weight of J; ; in its corresponding VC. Its instanta-
neous fair resource share at time ¢ should be

Fairsharet_enant (t) X Wj()b
g t G (13)
>0 (Active(J; j,t) x thj )

FairShare{Z-h (t) =

Its fair GPU service time over [t1, 5] should be

FairSharef;b (t1,t2) =
[5)

min(Demanngb, Faz’rShare{Zb (t)) dt. (14)

t

The job fairness degree p,gf}l’(tl,tg) for J;; from t; to ¢y is
defined as follows:

AllOCiO}b(h y tg)
FairSharebe(tl, ts)

ﬂzg'b(tl’tz) = (15)

4.2.3 Application

Our proposed LTGF can provide guidance for realizing fair-
ness scheduling at both the tenant and job levels. To achieve
tenant-level fairness, we can use the max-min approach to

maximize the minimal p/"*"" in Equation (12)

maximize : min p" " (ty,15).
jer Y

Job level fairness can also be guaranteed in a similar way
with the following objective:

. . job
maximize : min p}% (t1,t2).
ieN; "

Since these two parameters are used to regulate two differ-
ent levels of fairness separately, we do not unify them. On
one hand, our proposed two-phase scheduling algorithm
(Section 5.2) enables to achieve both job-level and tenant-
level fairness simultaneously. On the other hand, these two
parameters give the cluster administrators more flexibility
to focus on different types of fairness based on their
demands and situations.

Compared to the long-term finish-time fairness in The-
mis, LTGF can provide more comprehensive assessment for
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both temporal and spatial impacts at the tenant and job lev-
els. Besides, LTGF computes the fairness of a job or tenant
over a past period. In contrast, Themis needs to predict the
remaining time of each job to calculate the finish-time fair-
ness, which is not always accurate (Section 3.1), and can
affect the subsequent scheduling decisions.

5 A FAIR SCHEDULING SYSTEM

In this section, we introduce AsTRAEA, a fair DLT job scheduler
for GPU clusters. AsTRAEA achieves our proposed Long-Term
GPU-time Fairness with two techniques. The first one is a
lease-based training scheme (Section 5.1). It breaks a long-
term job into a sequence of multiple sub-jobs, which enables
balancing jobs with different running time, and rearranging
job execution orders. The second innovation is a two-phase
scheduler based on LTGF across tenants and jobs (Section 5.2).
It maintains the two-level fairness using a max-min approach.

Fig. 7 shows the overview and workflow of AsTRAEA. Dif-
ferent tenants submit jobs to their pending queues individu-
ally (@), which are then processed by the two-phase
scheduler. The scheduler first selects tenants based on the
tenant-fairness metric (@), and then selects one job from the
tenant’s pending queue based on the job-fairness metric ().
The selected job will be allocated to the resource pool accord-
ing to the placement strategy (®). A job will return to its
pending queue for renewal when its lease is expired (@).
Since job placement strategy is not included in our contribu-
tions, we use a common consolidated job placement strategy
along with AsTrAEA, which deploys a job on as few nodes as
possible, following [6], [7], [19]. Other state-of-the-art GPU
placement algorithms determined by cluster administrators
can be integrated into AsTRAEA as well.

To summarize, we leverage the lease-based training
scheme for a more flexible arrangement of DLT jobs. We uti-
lize the two-phase fairness scheduling algorithm to make
scheduling decisions and achieve LTGF in a multi-tenant
cluster. Below we detail each technique.

5.1 Lease-Based Training Scheme

To balance the jobs with different GPU demands and finish-
time, we design a novel lease-based DL training scheme. As
discussed in Section 2.2, a DLT job is usually a long iterative
process, causing inflexibility to the scheduler. Thus, we pro-
pose to break a long training job into a series of periods with
a fixed length, namely lease terms. As shown in Fig. 8, at every
scheduling round, each pending job needs to request for a
lease term. If this request is approved, the job will also
receive the demanded resources, and perform the computa-
tion. At the end of this lease, the running job needs to proac-
tively make a checkpoint, and then submit the renewal
request for the next lease term. If the renewal is successful,
the job can continue the execution. Otherwise, it will be pre-
empted and its resources are released to other jobs and ten-
ants. Jobs that can be finished within one term can release the
resources immediately after the completion without the
need for lease renewal.

The lease-based training scheme is essential to the sched-
uling process and is integrated with the two-phase schedul-
ing algorithm tightly. Based on the scheduling decision made
by the algorithm, the scheme is used to enforce resource re-
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Fig. 7. Overview of ASTRAEA.

allocation between jobs. For the scheduler, at every cycle, it
needs to decide whether the lease renewal request should be
approved for each running job. If yes, the scheduler will send
a notification of “successful renewal ” to the job so it can con-
tinue the execution. Otherwise, the scheduler will suspend
the job and reclaim the resources. In addition, the scheduler
also needs to select pending jobs, grant lease terms and
resources to them, and resume their computation. All these
decisions are made by our two-phase scheduling algorithm
with the LTGF metric. The concept of lease was adopted in
various domains, e.g., networking [32], cloud computing [33],
computer architecture [34], etc. Previous studies also lever-
aged similar ideas for resource management and DLT job
scheduling [6], [7], [8]. Below we present some design details.

5.1.1  On-Demand Checkpoint

The lease-based training scheme brings imperative resource
re-allocation and reclamation, introducing the need of on-
demand checkpoint for DLT jobs. A job needs to make a
checkpoint before the end of the lease term to avoid the loss of
progress. We make some changes in the user-side DL library
to achieve this function. A daemon is created when a job starts
to execute. When the job losses its lease term and resources,
the scheduler sends a POSIX signal to notify the daemon of
saving the current checkpoint. However, a checkpoint has to
be saved at the end of one iteration. There may be not enough
time for the job to finish the current iteration before the resour-
ces are reclaimed. To solve this issue, ASTRAEA implements a
last store technique. At every iteration, the job updates the
model and other information as a snapshot. Once receiving
the preemption signal, the daemon flushes the latest snapshot
to the disk and waits for the current iteration to complete. An
updated snapshot is made and stored if this iteration is fin-
ished before the job preemption. Otherwise, the previous
flushed snapshot will be used for the future lease term.

5.1.2 Lease Renewal

There is minor modification over the conventional schedul-
ing algorithm to accommodate the lease-based training

I Running [ Pending
Lease #1 Lease #2 Lease #3 Lease #4

Renewal fail Renewal succeed Time

Fig. 8. Job execution under the lease-based training scheme.

scheme, along with other renewal mechanisms. At each
scheduling cycle, the scheduler needs to handle the requests
from both the running and pending jobs. ASTRAEA processes
these requests with the following steps. (1) The scheduler
treats all the jobs as in the pending state, and all the resour-
ces as available. It selects the jobs to be scheduled based on
the fairness algorithm in Section 5.2. (2) For each running
job in the current lease term, if it is selected by the sched-
uler, then its lease renewal is successful, and the execution
will continue in the next lease with the current assigned
resources. Otherwise, the job will be preempted and the
resources are reclaimed. (3) After all the resources of the
preempted jobs are freed, the scheduler performs the place-
ment policy (consolidated placement strategy in our imple-
mentation) to allocate resources to the selected pending
jobs, and then resume their execution.

We introduce a coordinator to reconcile the job renewal.
This coordinator is responsible for not only triggering the
lease renewal and reclaiming the resources of preempted
jobs, but also resuming jobs with new assigned lease terms.
The resumed jobs will continue running from the last check-
point with the help of a network-attached storage system.

5.1.3 Lease Term Length

The length of a lease term is critical to determine the sched-
uling efficiency and training performance. A short lease
term can increase the frequency of making checkpoints and
training overhead, and cause heavy loads for the scheduler.
A long lease term fails to appropriately adjust the job execu-
tion order, leading to poor fairness and JCT. Therefore, how
to set a proper lease term is a challenging problem, as it
depends on many configurations and behaviors of the clus-
ter and DLT jobs.

We can heuristically identify the proper length for the
target cluster based on its historical record. Specifically, we
collect a trace of past jobs, simulate the scheduling behav-
iors, and measure the corresponding job fairness and per-
formance under different lease term lengths. Based on the
simulation results, we pick the optimal value that best bal-
ances the fairness and performance for the cluster. Based on
the running time distribution of DLT jobs in Section 3, a
majority of jobs have short duration (nearly 70% jobs can be
finished within 10 minutes). Therefore, an appropriate
length ensures that most jobs can be completed within one

Authorized licensed use limited to: Nanyang Technological University. Downloaded on June 13,2022 at 02:15:35 UTC from IEEE Xplore. Restrictions apply.



2788

lease term. This significantly reduces the overhead. We can
periodically collect the traces and simulate the scheduler to
adjust the configuration of term length adaptively. Detailed
results can be found in Section 6.2.

5.2 Two-Phase Fairness Scheduling Algorithm

To achieve the two-level LTGF defined in Section 4.2, we
design a novel two-phase scheduling algorithm, as shown
in Algorithm 1. The core of this algorithm is the Allocate-
Job function, which is called in every scheduling round.

In this function, the scheduler first updates the fairness
metric for each tenant based on Equation (12) (line 2), and for
each job based on Equation (15) (line 3). These metrics are
computed from the beginning t;.., to the current moment
thow- Then at Phase 1, the scheduler first maintains tenant-fair-
ness by selecting the tenant p* with the smallest fairness index
(line 5). If this tenant does not have any pending jobs, the
scheduler will skip it. Otherwise, it will continue with Phase
2, which selects the job with the highest priority from the ten-
ant’s pending queue (line 7). If there are enough resources
and the job could be satisfied with the current placement strat-
egy, the scheduler will grant the lease term and demanded
GPUs to this selected job (line 10-15). Otherwise, it will skip to
the next tenant to prevent starvation. Finally, it removes the
job from its corresponding pending queue (line 13) and
updates the tenant level fairness metrics as if the allocated job
was running (line 14-15). The scheduler repeats the above two
phases until there are no pending jobs or adequate resources.
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of this function. Basically, it calculates the reward for each
job based on the job-level fairness index. Then it selects the
job with the maximal reward (e.g., smallest fairness index) as
the candidate.

Note that this job selection process can be integrated with
other job-level prioritization approaches. For instance, three
types of jobs can be assigned with higher priority for selec-
tion if not scarifying the fairness. (1) Some jobs have ultra-
short duration. If we prioritize the newly submitted jobs,
these short jobs can be scheduled and completed promptly,
which can reduce the job pending overhead. (2) Some jobs
have been executed for a large number of lease terms, and
more likely have a relatively long duration. Thus, special
attention to the lease renewal of these jobs can reduce the
total overhead caused by frequent preemption. (3) Users
may specify some important and urgent jobs that need to
meet certain deadlines. The scheduler can also increase the
reward of these jobs during selection, to ensure they are not
affected by lease expiration.

Algorithm 2. Select a Candidate Job From a Job List

Input: A job_list .J

Output: Selected job from J.
1: Function SelectJob
2:  forall eachjob i in J do

// Calculate job reward.

3: i.reward = fp{“b(tbegm, thow)
1" = arg max;¢ yi.reward
return ¢*

Algorithm 1. Two-Phase Job Scheduling

Input: T" tenants and N jobs, a cluster of M free GPUs.
1: Function AllocateJob
2:  Update p'“"! for each tenant with Equation (12)
3:  Update p' for each job with Equation (15)
4:  while there exist pending jobs € N with demand » < M
A satisfy placement strategy do
// Phase 1: Tenant selection

5 p"=arg minjeTp;'enunt (tbegi'n,7 tno’u')

// Phase 2: Job selection
6: Jy+ +—pending job list of tenant p*
7: i* = SelectJob(Jy)

8: i+ < GPU demand of job ¢*
// Apply current placement strategy

9: A+ — Placement (M, i*)
10: if riv < M A A+ # @ then
// Allocate r;+ resources to job.
11: Allocate (A;+, %)
12: M=M — Ti*
13: Ty = Jp \ {i*}

// Update therelatedmetrics of tenant p*.

tenant tenant

14: Allocj (t) = Allocj () + 73 * Liegse
15: Update """ according to Equation (12).
16:  else

// Continuewith the rest tenants.
172 T=T\{p"

5.2.1 Job Selection

In Phase 2, the scheduler selects a job from the tenant’s pend-
ing queue for scheduling. Algorithm 2 shows the procedure

6 EVALUATION

6.1 Experimental Methodology
6.1.1 Implementation Details

We develop a trace-driven simulator to implement and
evaluate our fairness metric and AsTrAEA system. We adopt
several techniques to optimize the system implementation.
First, to select a tenant at Phase 1, we check the gap between
the resources a tenant can utilize in a scheduling round and
his weighted quota. Specifically, we slightly modify Equa-
tion (8) for the tenant-level fairness as below:
FairShareEF‘”’""t(t) = Quota;(t). (16)
This can better reveal the discrimination of utilized resources
with different resource weights of the tenants. The corre-
sponding fairness metric (Equation (12)) illustrates the
weighted amount of resources allocated to tenant p during
[t1,t2]. This adjusted metric can motivate a tenant to lend his
unused resources to others and reclaim more than his share
when he has a burst demand in the future, which can achieve
the sharing incentive more effectively. Moreover, although
all tenants may remain fair on a long-time scale, it is possible
that a burst request from a tenant may prevent him from sub-
mitting new jobs as long as he has a higher LTGF metric.
Therefore, this modification can compensate for the problem
that LTGF cannot be quickly adjusted on short-time scales.
Second, to select a job at Phase 2, we consider more job-
level prioritization, as discussed in Section 5.2.1. We priori-
tize the newly submitted job, which can help short jobs be
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scheduled and completed promptly. This achieves overall
better results considering the fact that short jobs take the
majority in GPU clusters.

6.1.2 Workloads

For the fidelity and generality of our simulation, we select
two real-world DLT job traces and use a two-week snapshot
of both two traces. The first one is Venus, collected from a
production cluster of 1064 GPUs in SenseTime [20]. This
trace contains 11304 jobs from 16 different tenants. The sec-
ond one is Philly from the Microsoft cluster [19], containing
44329 jobs from 15 VCs with 2490 GPUs. Note that the Philly
trace does not provide the size of each VC cluster, so we
make an assumption that the size of a VC is proportional to
the total number of GPUs requested by all the jobs in this VC.

6.1.3 Simulation Configurations

We set the lease term length as 900s, which can best balance
the cluster efficiency and fairness. Identification of this
value is detailed in Section 6.2. The scheduling interval is
set as 10s to provide balanced response time for newly sub-
mitted jobs. These configurations are compatible with the
default settings of real-world round-based schedulers [35].
Considering there exist CPU jobs in Venus and general
under-utilization for production clusters, we follow [36] to
scale down the cluster size to make usage more intensive:
we set 100 nodes for Venus and 210 nodes for Philly, with
each node comprised of 8 GPUs. We will fully investigate
the effectiveness of AsTrAEA under different cluster sizes in
Section 6.5. The duration and GPU demand of each job is
unmodified in the workload, regardless of whether the sub-
mission time has been normalized. The cluster is initialized
with all the nodes available and starts to schedule jobs sub-
mitted in the last scheduling round. We apply a consoli-
dated placement strategy in the simulation.

6.1.4 Metrics

We use the following metrics to quantify the effectiveness of
our proposed ASTRAEA.

e Fairness. We measure the LTGF fairness at both the
tenant and job levels (Section 4.2). For tenant-fair-
ness, we calculate p**"" at multiple fixed intervals
for each tenant (Equation (12)), as well as the distri-
bution. For job-fairness, we calculate o for every
job (Equation (15)).

o  Average slowdown. We use the average slowdown to
quantify the normalized pending situation, which is
calculated as the sum of pending time and running
time divided by the running time (Section 3.2). This
can represent users’ experience: a small average slow-
down indicates higher fairness and shorter waiting
time, which is beneficial especially for short-term jobs.

e Job Completion Time (JCT). We compute the average JCT
for the cluster efficiency. An efficient cluster has better
scheduling performance with lower average JCT.

6.1.5 Comparison With Other Baselines

We consider the following six baselines for comparisons. The
first four are mainstream DLT job schedulers for different
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purposes (e.g., improving job performance and resource uti-
lization, handling heterogeneous environments). The last
two are state-of-the-art DLT schedulers specifically for job-
level fairness and tenant-level fairness, respectively.

e YARN-CS [4]: a static quota strategy is adopted to
allocate resources according to users” weights.

e HiveD [11]: a dynamic quota is implemented in this
scheduler, allowing users to submit spot jobs to other
VCs with lower utilization.

e  Allox [37]: this scheduler adopts the min-cost bipar-
tite matching to solve the placement problem with
heterogeneous resources, and select tenants with the
lowest progress in each scheduling round.

e Tiresias-L [7]: it measures the aggregated GPU time
each job receives, and uses the Least Attained Service
to maintain the resource allocation.

e  Themis [8]: it proposes the long-term finish-time fair-
ness as a new metric to evaluate fairness. We imple-
ment this scheme by calculating the remaining
iterations and predicting throughput with non-shared
situation, with a reasonable estimation error rate.

e Gandivag [13]: this scheduler utilizes a gang-
aware split stride, ticket-based mechanism to man-
age the resources in heterogeneous systems, focusing
on the tenant-level fairness.?

6.2 Selection of Lease Term Length

Fairness and cluster efficiency highly depend on the lease
term length. We evaluate the impact of lease term lengths
on the scheduling system. Fig. 9 shows the average JCT
(doted line) and preemption overhead (bars) with different
lease term lengths. We observe the preemption overhead is
relatively small, especially when the lease term becomes
longer. When we increase the lease term length, the JCT is
first decreased, as more jobs can be completed within one
term without being preempted, and the frequency of job
switching is reduced with smaller overhead. However,
when the lease term becomes longer, the JCT also becomes
larger because jobs have fewer chances to be adjusted. We
can find a length that achieves strong fairness while not
sacrificing the job performance. Fig. 9 also shows the rela-
tionship between the job-level fairness and lease term length.

2. Gandiva,, also introduced an automated trading mechanism to
handle GPU heterogeneity and time sharing. This is not the focus of
this paper and will not be included in the evaluation. This mechanism
can be integrated with ASTRAEA as well.
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We observe that a longer term can reduce the fairness, as the
frequency of job execution rearrangement is reduced either,
making it less efficient to adjust the fairness via scheduling.
Based on the above analysis, we select a proper length as
900s from our historical trace considering both fairness and
efficiency, because it has similar performance while satisfac-
tory fairness compared with the most efficient length
(1200s). In practice, the lease term length could be adjusted
by cluster administrators. We will use this configuration for
the following evacuations. Scheduler designers can identify
the lease term length for their clusters and jobs similarly.

6.3 Fairness Comparisons

Fig. 10 shows the cumulative distribution of job-level fair-
ness under different schedulers. We observe more jobs main-
tain higher fairness with Astraea than the other schedulers.
If we treat jobs with fairness metric smaller than 0.95 as shar-
ing loss jobs, then AsTRAEA only produces 7.1% sharing loss
jobs in Venus. In contrast, Themis and YARN-CS schedulers
give 19.7% and 73.6% sharing loss jobs, 2.8x and 10.3x of
ASTRAEA. ASTRAEA exhibits even higher advantage in Philly,
which has more uneven distributions of resources and jobs
among tenants.

Figs. 11 shows the tenant-level fairness metrics with differ-
ent schedulers for the Venus trace. The z-axis in each figure
denotes tenants, and y-axis shows the distribution of tenant-
level fairness metric for each tenant over many periods. A fair
scheduler should maintain a higher metric all the time. We
observe that ASTRAEA can guarantee most tenants have the
fairness metric larger than or equal to 1. The other schedulers
give relatively worse tenant-level fairness, indicating they fail
to meet the resource-as-you-contribute requirement and sharing
incentive. Quantitatively, we calculate the ratio of cases
whose metric value is smaller than 1 as the indicator that the
tenant is experiencing sharing loss. AsTRAEA gives such an
unfairness ratio of 5.2%. For the other schedulers, the best one
is Allox (6.9%), similar with Gandiva s, (8.0%), and the worst
are Tiresias-L (49.0%) and YARN-CS (44.6%). ASTRAEA outper-
forms these schedulers by 1.3x to 9.42x. Similar conclusions
can be drawn from the results for Philly trace.

6.4 Cluster Efficiency Comparisons

We show how effective our scheduler is in mitigating the
queuing congestion and reducing the average JCT in the
cluster. Fig. 12 shows the cumulative distributions of aver-
age slowdown. We observe that ASTRAEA can achieve the
least pending overhead compared to other schedulers, indi-
cating that it can provide prompt responses to short-term
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jobs and reduce the waiting time of long-term jobs. A very
small portion of jobs suffer from long pending overhead,
because they have very short running time (e.g., 5 seconds)
compared to one scheduling round. A shorter scheduling
round can decrease these jobs” pending time at the cost of
larger scheduling overhead.

Fig. 13 shows the average JCT of each scheduler. The fair-
ness enforcement in ASTRAEA can ensure work conservation
for short-time jobs and reduce the pending time for long-
time jobs. It also enables the flexible adjustment of tenant
quota. Due to these mechanisms, AsTrRAEA has smaller aver-
age JCT compared to other schedulers.

Similar as other preemption-based schedulers, ASTRAEA
introduces extra overhead when rearranging the job exe-
cution order. This overhead can be divided into two
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components: making checkpoints, and cold-start job. Check-
points are made for every lease expiration in case of preemp-
tion, while cold start occurs only when the job lease renewal
fails. Previous work has shown that cold start dominates the
job preemption overhead[7]. Our lease-based training
scheme enables the job to renew its lease and continue the
execution without the cold start, which can improve the JCT.
In general, this scheme only brings approximately 0.8% over-
head to the average JCT with a lease term length of 900s
(Fig. 9) in the Venus trace, which is negligible.

6.5 Impact of Cluster Sizes

The cluster loads can also affect the effectiveness of ASTRAEA
and other scheduling algorithms. We quantitatively show the
impact of cluster sizes on the average JCT and ratio of sharing
loss jobs with a fairness metric < 0.95. We compare ASTRAEA
with Tiresias-L, which outperforms other baseline methods
according to our evaluations in previous sections. Figs. 14a
and 14b give the comparison results with different cluster
sizes (i.e., numbers of GPU nodes). We observe that ASTRAEA
always beats Tiresias-L for both cluster efficiency and fair-
ness, regardless of the cluster size. In addition, both AsTRAEA
and Tiresias-L exhibit more advantages when the cluster
becomes larger. This is because a larger cluster with more
available resources can satisfy more jobs with reduced pend-
ing time, and these idle resources can be better utilized to
achieve fairness for various jobs.

7 RELATED WORKS

7.1 Fairness Metrics

We review and analyze the fairness metrics for conventional
CPU workload or DLT jobs in prior works. Some metrics
consider the relative job performance (e.g., job execution
time) between the shared and independent systems [8], [14].
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Fig. 13. Average JCT for different schedulers.
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Some methods calculate the benefit gap between different
tenants: a smaller gap indicates a fairer scheduler [38], [39].
Some methods utilize queuing theory to consider the job
experience in the pending queue [40], [41]. A variety of
works also proposed fairness solutions for OS processes
[13], [42], [43], [44] or distributed workload scheduling [45],
[46], [47], [48]. They cannot be applied to DLT job schedul-
ing due to the unique job characteristics.

7.2 DLT Job Management

Over the past years, researchers have designed a quantity of
scheduling algorithms and systems to optimize the execu-
tion of DLT jobs in GPU clusters from different perspec-
tives. (1) Some works designed schedulers to maximize the
cluster utilization [6], [12], [19], [49], [50]. Particularly, GPU
sharing across jobs is a facilitating mechanism[51], [52] to
improve GPU utilization, which is adopted in these works.
(2) Some works aim to minimize the average JCT of DLT
jobs [71, [31], [37], [53], [54]. (3) New schedulers were intro-
duced to optimize the job performance [6], [7], [8], [11], [13],
[19], [31], [37], [55]. Different from those works, our goal is
to enhance both the job-level and tenant-level fairness while
maintaining the job performance.

8 CONCLUSION

In this paper, we present a novel study about resource allo-
cation fairness for DLT jobs in GPU clusters. We perform a
quantitative analysis of a real-world job trace from a pro-
duction cluster in SenseTime, to uncover the severe fairness
problem in DLT scheduling. To mitigate this issue, we pro-
pose a new yet practical metric, LTGF, to accurately mea-
sure the fairness at both the job and tenant levels, without
prediction of job remaining time and future throughput. We
further design AsTRAEA, a new and efficient scheduler with a
two-phased scheduling algorithm based on LTGF to enforce
fairness. We evaluate ASTRAEA via large-scale simulations on
real-world cluster traces. Experimental results show that
ASTRAEA can guarantee stronger fairness without sacrificing
the job performance or cluster utilization, compared to other
state-of-the-art schedulers.
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