
Titan: A Scheduler for Foundation Model Fine-tuning
Workloads

Wei Gao1,2, Peng Sun3, Yonggang Wen1, Tianwei Zhang1
1School of Computer Science and Engineering, Nanyang Technological University

2S-Lab, Nanyang Technological University 3SenseTime

gaow0007@e.ntu.edu.sg, sunpeng1@sensetime.com, {ygwen, tianwei.zhang}@ntu.edu.sg

ABSTRACT

The recent breakthrough of foundation model (FM) research

raises a new trend to acquire efficient DL models by fine-

tuning FMswith low-resource datasets. Current GPU clusters

are mainly established to develop DL models by training

from scratch. How to tailor a GPU cluster scheduler for FM

fine-tuning workloads is still not explored.

We propose Titan, a scheduler to improve the efficiency

of FM fine-tuning workloads based on their three distinct

features. (1) It takes full advantage of the fixed model struc-

ture to estimate the job duration accurately and configure

the fine-tuning workload efficiently. (2) The multi-task adap-

tivity of FMs enables multiple fine-tuning workloads to share

the same model parameters, which can significantly reduce

the GPU resource consumption. (3) It considers the pipeline

parallelism of FM fine-tuning workloads and concurrently

executes the parameter transmission and gradient compu-

tation to hide the overhead of context switch. Preliminary

simulation result validates the efficiency of Titan.

CCS CONCEPTS

• Computing methodologies → Distributed computing

methodologies.

KEYWORDS

GPU Datacenter, Deep Learning Training, Cluster Manage-

ment System, Foundation Models

ACM Reference Format:

Wei Gao1,2, Peng Sun3, Yonggang Wen1, Tianwei Zhang1. 2022.

Titan: A Scheduler for Foundation Model Fine-tuning Workloads.

In Symposium on Cloud Computing (SoCC ’22), November 7–11, 2022,

San Francisco, CA, USA. ACM, New York, NY, USA, 7 pages. https:

//doi.org/10.1145/3542929.3563460

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9414-7/22/11.

https://doi.org/10.1145/3542929.3563460

1 INTRODUCTION

The foundation model (FM) is an emerging technique to push

the envelope of various artificial intelligence (AI) tasks [1,

10, 11]. Training FMs typically demands thousands of GPUs

for a long time. The expensive cost drives the AI community

to approach a quantity of downstream AI tasks through

fine-tuning. Such FM fine-tuning workloads are becoming

increasingly important in modern GPU clusters.

This paper aims to design a scheduler to efficiently fine-tune

FMs in a large-scale GPU cluster. It is easy to leverage existing

schedulers for general DL training workloads [17, 29, 42] to

manage FM fine-tuning workloads. However, they do not

consider the unique features of FM fine-tuning workloads,

and leave large efficiency space to improve. First, fine-tuning

FMs usually fixes the model structure and explores the op-

timal model parameters. Several works [4, 8, 15] have dis-

cussed the impacts of resource allocations on the job run-

time speed, which raise challenges of estimating the job

duration. The fixed model structure provides an opportunity

to predict the run-time of each job without online profiling.

The execution of FM fine-tuning commonly adopts a hybrid

of data-parallelism, tensor-parallelism and pipe-line paral-

lelism. An effective parallelism execution plan can improve

the job throughput by up to ten times [40], but usually takes

several minutes to search for it. Since the best plan depends

on the model structure, batch size, and input shape, we can

cache these optimal solutions for future use.

Second, a FM fine-tuning workload can be multi-task adap-

tive, i.e., FMs can perform well over several tasks when their

adopted datasets share similar semantic information. This

indicates that several fine-tuning workloads can share the

same model parameters. Thus, we can merge several fine-

tuning workloads into one to improve the GPU utilization

while maintaining the performance.

Third, fine-tuning FMs demands extensive GPU resources

for a relatively short time. This leads to frequent context

switches, each taking up to minutes. The overhead is intoler-

able considering the job duration length. Pipeline parallelism

is a common adoption in FM fine-tuning workloads. Hence

we can pipeline the gradient computation of one job and

parameter access of another job to amortize this overhead.

348

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Wei Gao, Peng Sun, Yonggang Wen, and Tianwei Zhang

Provider Name Model Size Task Code

OpenAI GPT-3 [5] 175 B � �

Ali Cloud M6 [24] 10 B � Δ
Baidu ERNIE 3.0 [39] 10 B � � � Δ

Hugging Face AutoTrain [13] N/A Any �

Table 1: Comparisons of existing fine-tuning service.

We denote �, �, � as NLP, CV, and multi-modal tasks,

respectively. Δ indicates that the user needs to call the

API instead of programming from scratch.

These insights lead to Titan, a novel scheduler that ac-

counts for the distinct characteristics of FM fine-tuningwork-

loads to improve the cluster efficiency. Existing DL sched-

ulers (e.g., Themis [27], Optimus [29], AFS [22], Pollux [30])

assume that DL workloads support the light-weight check-

point and/or data-parallelism to make effective decisions

about resource allocations. However, such assumption is not

applicable to FM fine-tuning workloads. Instead, we choose

two baseline systems for comparisons: a non-preemptive

Shortest Remaining Time First (SRTF) scheduler and Tire-

sias [17], which reduce the number of resource re-allocations.

We simulate Titan on a cluster of 16 nodes with 64 GPUs,

running a ViT-Large/16 [11], a FM for computer vision tasks.

The results present the advantages of Titan over both base-

lines.

2 BACKGROUND

Foundation Model. Recently, AI researchers expect to train

large-scale pre-trained models on massive datasets, which

can further transfer their knowledge over different tasks.

These large-scale models are referred to as foundation mod-

els (FMs). Basically, FMs can serve as a knowledge base to

boost the performance across various tasks, including NLP

[5, 10, 14, 31, 32, 36, 43], CV [7, 18, 25, 26, 34], and biol-

ogy [12, 19, 35].

Fine-tuning-Foundation-Models as a Service. The suc-

cess of FMs motivates AI practitioners to explore their busi-

ness practice. We summarize existing commercial services

about fine-tuning FMs in Tab. 1. Commonly, to fine-tune

a FM, the user needs to prepare a dataset. The scheduler

receives the request, and makes effective resource allocation

to each workload and returns a downstream model with

satisfactory performance.

Pipeline DL Training. Pipeline parallelism is an approach

to partition layers across machines so as to train a FM which

can not be held by a single machine. It also adopts micro-

batches to saturate the pipeline as much as possible to im-

prove resource utilization. DeepSpeed [33], Megatron [37],

and fairscale [3] are popular DL training libraries to support

pipeline parallelism. Our system is empowered by fairscale

to implement pipeline switch, as illustrated in Sec. 4.3.

3 PROBLEM FORMULATION

We design a non-preemptive scheduler to minimize the av-

erage job completion time (JCT) of given FM fine-tuning

workloads. We formulate this job scheduling task as a Mixed

Integer Linear Programming (MILP) problem, and call the

MILP solver to determine the resource allocations in the

events of job completion and job submission.

We consider 𝑁 pending jobs: J = { 𝑗1, 𝑗2, 𝑗3 ... 𝑗𝑁 } and 𝑀
available GPUs. The number of allocated GPUs to each job

belongs to a given set A = {1, 2, 4𝑚 |𝑚 ∈ 𝑁 +}. We denote
𝑇𝑖,𝑎 as the progress per time unit of job 𝑗𝑖 assigned with 𝑎
GPUs. The progress per time unit is computed as the number

of iterations per time unit divided by the total number of

iterations. We will discuss how to predict 𝑇𝑖,𝑎 in Sec. 4.1. We
use a binary variable 𝑥𝑖,𝑎 to denote whether 𝑗𝑖 is allocated
with 𝑎 GPUs. The MILP solver can yield a solution to the
following objective:

max

𝑁∑
𝑖=1

∑
𝑎∈A

𝑥𝑖,𝑎 ∗𝑇𝑖,𝑎 (1)

subject to:

𝑥𝑖,𝑎 ∈ {0, 1},∀𝑎 ∈ A,∀𝑖 ∈ [1, 𝑁] (2)∑
𝑎∈A

𝑥𝑖,𝑎 ≤ 1,∀𝑖 (3)

𝑁∑
𝑖=1

∑
𝑎∈A

𝑥𝑖,𝑎 ∗ 𝑎 ≤ 𝑀 (4)

Objective (1) is to maximize the cluster-wide progress per-

time unit. Constraint (3) ensures that all pending jobs should

be given at most one resource allocation policy. Constraint

(4) ensures that the total number of allocated GPUs does not

exceed the resource capacity.

From the solution of MILP solver, we can identify the re-

source allocation for each job. The number of GPUs assigned

to each job is in set A. Hence we can find a communication-

optimal resource topology for each job. The powerful MILP

solver can yeild the solution very rapidly: the average/maximal

time of optimizing Eq. 1 for the scale of 320 jobs is 0.005/0.16

seconds on 1 vCPU. Next, we discuss how to utilize the

characteristics of FM fine-tuning workloads to improve the

scheduling efficiency.

4 SYSTEM DESIGN

Fig. 1 illustrates the workflow of our designed Titan. The

user submits the dataset to the scheduler. Based on the

dataset scale, the scheduler leverages a lookup table (LUT)

to derive the job duration. Next, it adopts a task merger to

combine several datasets into one to improve the resource

utilization. When certain jobs complete, we leverage a fast

pipelined context switch to hide the context switch overhead.

349

Titan: A Scheduler for Foundation Model Fine-tuning Workloads SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Figure 1: Workflow of Titan.

A B Task Merger SRTF

Case 1 20 20 25 30

Case 2 10 20 21 20

Case 3 5 100 102 55

Table 2: The average JCT (min) of individual task, task

merger, and Shortest Remaining Time First.

4.1 Time Estimator

Existing works adopt mathematical models [30] or machine

learning algorithms [44] to estimate the job throughput.

However, they primarily consider the data-parallelism set-

ting and decompose the time cost per training iteration into

gradient computation and synchronization. Besides, they do

not fit into the complicated FM training acceleration tech-

niques including gradient checkpoint, mixed precision train-

ing, frozen training. Fortunately, the fixed model structure

allows to profile the job information in the offline manner.

We propose a simple yet effective method named lookup

table (LUT), which constructs a map T(𝑎, 𝑠,𝑚, ℓ, 𝑎𝑚𝑝, 𝑐𝑘𝑝𝑡)
between resource allocation solutions, training configura-

tions and job throughput. 𝑎 is the number of GPUs assigned
to the job. 𝑠 is the number of gradient accumulation steps.
𝑚 is the global batch size. ℓ is the number of frozen layers
during fine-tuning. 𝑎𝑚𝑝 and 𝑐𝑘𝑝𝑡 denote whether to adopt
the mixed-precision training and gradient checkpoint, re-

spectively. To build such LUT, we use 64 GPUs to profile

as many training configurations as possible, which can be

completed within 37 hours.

For each fine-tuning request, the scheduler determines an

appropriate batch size range and number of epochs based

on the dataset scale. Given a resource allocation strategy, it

searches the LUT to determine the best optimal training con-

figurations tominimize the job latency. A linear interpolation

can be adopted to estimate the run-time of unseen training

configurations. Overall, LUT can not only estimate the job

throughput but also determine the training configurations.

4.2 Task Merger

Apart from time estimation, the fixed model structure also

enables to merge several individual workloads into one by

combining their datasets together. However, the inappro-

priate dataset combination might sacrifice the model per-

formance. The task merger shares a similar challenge with

multi-task learning, which needs to balance the impacts of

various tasks on the model performance. Since the perfor-

mance improvement is not our focus, we pursue to improve

the resource utilization while maintaining the model perfor-

mance. Besides, the generality and transferability of FMs are

relatively robust to task merging. We approach it by requir-

ing users to provide a dataset card. Hugging Face abstracts

away a dataset card to ease the management of a variety

of datasets. The creation of a new dataset card requires the

description of the domain and topic of the dataset, which

contains certain key words, e.g., task category (classification),

object category (cat, dog). These key words encode the se-

mantic information of datasets, which can be extracted from

the dataset description. Hence, the similarity score of these

key words implicitly suggests whether the merged datasets

negatively affect the model performance.

Merge as many tasks as possible is not an optimal way to

minimize the average JCT. In the example of Table. 2, when

the duration of two workloads is close, the task merger can

outperform the SRTF solution in the overall JCT, as illustrated

in case 1. When the duration of task B is twice that of task A.

The average JCT of the task merger is comparable to that of

SRTF. However, when the duration of task B is much longer

than task A (case 3), the SRTF-ordered sequential execution

is a better option. To address this issue, we denote a set of 𝐾
potential task merging policies: S = {𝑚𝑗1,𝑚 𝑗2,𝑚 𝑗3, ...𝑚 𝑗𝐾 }.
Each merged job𝑚𝑗𝑘 is a subset of S. We introduce a binary
variable 𝑦𝑘,𝑎 to denote whether we merge tasks in the set
of𝑚𝑗𝑘 and assign 𝑎 GPUs to it. Otherwise we use 𝑇𝑁+𝑘,𝑎 to
represent corresponding progress per time unit estimated

through LUT. Hence, we can make a re-formulation of our

scheduling problem as follows.

max

(
𝑁∑
𝑖=1

∑
𝑎∈A

𝑥𝑖,𝑎 ∗𝑇𝑖,𝑎
)
+
(

𝑆∑
𝑘=1

∑
𝑎∈A

𝑦𝑘,𝑎 ∗𝑇𝑁+𝑘,𝑎 ∗ 1 + |𝑚𝑗𝑘 |
2

)
(5)

subject to:

𝑥𝑖,𝑎 ∈ {0, 1},∀𝑎 ∈ A,∀𝑖 ∈ [1, 𝑁] (6)

𝑦𝑘,𝑎 ∈ {0, 1},∀𝑎 ∈ A,∀𝑘 ∈ [1, 𝐾] (7)∑
𝑎∈A

𝑥𝑖,𝑎 ≤ 1,∀𝑖 (8)

∑
𝑎∈A

(
𝑦𝑘,𝑎 +

∑
𝑗𝑖 ∈𝑚𝑗𝑘

𝑥𝑖,𝑎

)
≤ 1,∀𝑘 (9)

350

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Wei Gao, Peng Sun, Yonggang Wen, and Tianwei Zhang

∑
𝑎∈A

(
𝑦𝑘,𝑎 +

∑
𝑘1≠𝑘,𝑘1∩𝑘≠∅

𝑦𝑘1,𝑎

)
≤ 1,∀𝑘 (10)

∑
𝑎∈A

𝑎 ∗
(

𝑁∑
𝑖=1

𝑥𝑖,𝑎 +
𝐾∑
𝑘=1

𝑦𝑘,𝑎

)
≤ 𝑀 (11)

We introduce
1+|𝑚𝑗𝑘 |
2 to re-weight the progress of the

merged task in objective (5), and favor the merged one with

a shorter job latency. Constraints (9-10) ensure that each job

is assigned with at most one allocation policy, and there is

no overlap between individual workload and merged work-

load. Constraint (11) ensures the total number of allocated

GPUs does not exceed the resource capacity under the cir-

cumstance of the merged task.

The task merger might lead to the accuracy loss and data

privacy issues. For accuracy, several papers [9, 16, 38] dis-

cussed how FMs succeed in multi-tasking learning. In prac-

tice, the user can specify the target accuracy. If the task

merger cannot satisfy the target, the model will be trained

alone for a while to recover the accuracy. For privacy, users

can disable the task merger if they care about data privacy.

Our scheduler can lower the priority of such jobs to incentive

users to opt for the task merger.

4.3 Pipeline Switch

The expensive overhead of context switch between fine-

tuning workloads exacerbates the scheduling flexibility and

delays the job progress, especially for short-term ones. Fig. 3

presents the context switch overhead of ViT can be up to

46 seconds. Inspired by PipeSwitch [2], we propose pipeline

switch to amortize such overhead.

Fig. 2 presents how to pipeline the gradient computation

of job 𝑋 and parameter transmission of job 𝑌 . Each machine
maintains the entire model structure and partial model pa-

rameters. Both jobs 𝑋 and 𝑌 adopt the pipeline parallelism
on 4-GPUmachines, and the FM is partitioned into four parts.

For naming conventions, we use the subscript of job 𝑋 and
𝑌 to denote the partition. Also, we use the superscript 𝐹 ,
𝐵 and 𝑇 to represent the forward propagation, backward
propagation and parameter transmission respectively. When

the context switch happens between jobs 𝑋 and 𝑌 , we can
overlap the parameter store of job 𝑋 and the parameter load
of job 𝑌 across machines. We also can pipeline the gradient
computation and parameter transmission as much as possi-

ble in each machine. To this end, we require the task 𝑌 to
compute from machine 4 to machine 1. On machine 4, after

completing 𝑋 𝐹
4 , we can save the partial parameters of job 𝑋

subsequently. Next, the partial parameters of task 𝑌 can be
loaded into machine 4, and𝑌 𝐹

1 starts execution. Note that our

pipeline adoption differs from PipeSwitch: (1) we consider

the pipeline parallelism while PipeSwitch only focuses on

Figure 2: Pipeline model propagation and parameter

transmission. D2H indicates saving parameters from

device (GPU) to host (CPU). H2D indicates loading pa-

rameters from host (CPU) to device (GPU).

ViT (G8) ViT (G4) ViT (G2)
0

20

40

60

Sw
it

ch
 O

ve
rh

ea
d

(S
ec

)

46

29
22

6 5 7

naive pipeline

Figure 3: Context switch overhead of ViT-Large/16 with

an allocation of 8 GPUs, 4 GPUs and 2 GPUs between

naive methods and our adopted pipeline switch.

single GPU tasks; (2) our proposed reverse direction param-

eter load enables to hide the overhead of parameter switch

while PipeSwitch fails to achieve it.

5 PRELIMINARY RESULTS

Trace Analysis.We study a trace of FM training/fine-tuning

workloads from a production GPU cluster in our institute.

This trace contains 18471 jobs over a period of 3 months on

a cluster of 88 nodes, a total of 704 NVIDIA V100 GPUs. We

select a subset of jobs the duration of which ranges from

5 minutes to 10 hours to emphasize the difference among

different traces. Fig. 4 (left) compares the job duration dis-

tribution over Philly [23], Helios [21], MLaaS [41] and our

adopted trace (FMTrace). We observe that short job duration

(within 30 minutes) accounts for exceeding 50% of FMTrace.

This implies that frequent context switch will lead to the

performance loss of FM fine-tuning workloads. Fig. 4 (right)

presents the GPU request distribution, and suggests that the

distributed execution prefers FM fine-tuning workloads.

Simulator Constructor.We profile the job throughput of

ViT-Large/16 [11] over various training configurations in-

cluding accumulation steps, batch size, the number of frozen

layers, mixed-precision training and gradient checkpoint.

Note that the batch size scale is relatively large compared to

other configurations. Therefore we profile across a batch size

scale of (64 ∼ 512) with a base-√2 exponential increasing

351

Titan: A Scheduler for Foundation Model Fine-tuning Workloads SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

103 104

Duration (Sec)

0

50

100

C
D

F Philly
Helios
MLaaS
FMTrace

22 25

GPU Request

0

50

100

C
D

F Philly
Helios
MLaaS
FMTrace

Figure 4: Trace characterization.

Scheduler Policy Average JCT Makespan

SRTF 1.68h(ours) 33.09h

Tiresias 1.67h 33.09h

Titan (w/o task merger) 1.23h 33.11h

Titan (w/o pipeline switch) 1.16h 29.01h

Titan 1.04h 29.01h

Table 3: Summary of evaluation results.

workload density 0.5 1 1.5 2

% of jobs with JCT reduction 18% 19% 20% 19%

% of jobs with JCT increase 6% 8% 7% 11%

Table 4: Detailed comparison between Titan and SRTF.

order. We also collect the time cost of context switch with

and without our pipeline switch mechanism over resource

allocations, as depicted in Fig. 3. Regarding the simulation

trace, we transform the requested GPU-time to the dataset

scale. We follow the submission pattern and distribution

of FMTrace to synthesize our workload including 320 jobs

submitted within first 8 hours.

Evaluation Results. Tab. 3 presents the average job com-

pletion time and makespan of Titan and its variants as well

as other baselines. Tiresias can achieve a competitive perfor-

mance to SRTF policy because SRTF suffers from significant

context switch overhead. Titan can reduce 38% average JCT

and 12% makespan compared to baseline schedulers. More-

over, task merger and pipeline switch contribute to 15% and

10% average JCT reduction respectively. We also vary the

workload density relative to a total number of 320 jobs while

keep the cluster capacity fixed, as shown in Fig. 5. When we

increase the job density, the average JCT of all scheduling

policies become longer. Moreover, the performance gap be-

tween Titan and baselines also increases in the case of the

denser job workload. Tab. 4 reports the percentage of jobs

that receive the significant JCT reduction and increase com-

pared to SRTF over different workload densities. Exceeding

50% jobs experience at most 10% JCT increase or decrease

compared to SRTF. We ignore these jobs with relatively small

JCT changes, and only consider at least 10% JCT reduction

and increase as significant JCT changes. We find that around

20% jobs get benefits from Titan, and only a small proportion

of jobs are delayed by Titan. Overall, preliminary results

show promising performance of our proposed Titan to man-

age FM fine-tuning workloads.

0.5 1.0 1.5 2.0
Relative Workload Density

0

2

4

A
vg

. J
C

T
(H

ou
r))r

Tiresias SRTF Titan

Figure 5: Performance across variousworkload density.

6 CONCLUSION AND FUTUREWORKS

This paper presents Titan, a scheduling system tailored for

FM fine-tuning workloads in GPU clusters. We leverage a

lookup table for training time estimation and configuration

identification. Whereby the multi-task adaptivity of FM fine-

tuning, we propose the task merger to improve the cluster-

wide job throughput. Besides, we design pipeline switch to

address the expensive overhead of initializing a new job.

As future works, we aim to extend Titan from the fol-

lowing perspectives. First, data processing can impact FM

fine-tuning in terms of job throughput. A poor policy makes

data processing a bottleneck of FM fine-tuning. Furthermore,

the task merger requires to combine several datasets into one

and complicates the data processing. Existing GPU clusters

can offer abundant CPU resources, and data processing can

be isolated from gradient computation. Hence we can allo-

cate certain CPU resources to process data samples ahead of

FM fine-tuning. This is one optimization direction to accel-

erate FM fine-tuning workloads.

Second, the billion-scale parameter size of FMs and inten-

sive fine-tuning requests can result in formidable storage

consumption. It is critical but challenging to reduce the stor-

age cost. Parameter-efficient fine-tuning approaches [20, 28]

aim to tune much fewer trainable parameters while main-

taining a satisfactory performance. We can incorporate these

approaches into Titan to reduce the storage overhead.

Third, our current pipeline switch only supports to overlap

parameter load and gradient computation across machines.

Indeed, PipeSwitch [2] has demonstrated the feasibility of

context switch in a single GPU. We can also asynchronously

execute the parameter load and gradient computation in a

single GPU to further amortize the overhead and improve

the resource utilization.

Fourth, fine-tuning FMs often requires pipeline parallelism

with certain idle machines (Fig. 3). We can fill certain FM

inference workloads into these idle blocks to improve the

resource utilization. The management of both FM inference

and fine-tuning workloads will bring a new challenge.

We will continue to improve our system design, and make

the above potential extensions. Moreover, we will develop a

352

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Wei Gao, Peng Sun, Yonggang Wen, and Tianwei Zhang

prototype atop Kubernetes [6], and deploy it in a production

environment to validate its practicability.

7 ACKNOWLEDGEMENT

We thank our Shepherd Dr. Lin Wang and anonymous re-

viewers for their valuable comments. This study is supported

under the RIE2020 Industry Alignment Fund – Industry Col-

laboration Projects (IAF-ICP) Funding Initiative, as well as

cash and in-kind contributions from the industry partner(s).

REFERENCES
[1] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael

Auli. 2020. wav2vec 2.0: A framework for self-supervised learning

of speech representations. Advances in Neural Information Processing

Systems 33 (2020), 12449–12460.

[2] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. 2020. PipeSwitch: Fast

Pipelined Context Switching for Deep Learning Applications. In 14th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI ’20).

[3] Mandeep Baines, Shruti Bhosale, Vittorio Caggiano, Naman Goyal,

Siddharth Goyal, Myle Ott, Benjamin Lefaudeux, Vitaliy Liptchinsky,

Mike Rabbat, Sam Sheiffer, Anjali Sridhar, and Min Xu. 2021. FairScale:

A general purpose modular PyTorch library for high performance and

large scale training. https://github.com/facebookresearch/fairscale.

[4] Edmon Begoli, Seung-Hwan Lim, and Sudarshan Srinivasan. 2021.

Performance Profile of Transformer Fine-Tuning in Multi-GPU Cloud

Environments. In 2021 IEEE International Conference on Big Data (Big

Data). IEEE, 3095–3100.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen,

Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,

Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

and Dario Amodei. 2020. Language Models are Few-Shot Learners. In

Advances in Neural Information Processing Systems (NeurIPS ’20).

[6] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and

John Wilkes. 2016. Borg, Omega, and Kubernetes: Lessons Learned

from Three Container-Management Systems over a Decade. Queue

(2016).

[7] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. 2020. Im-

proved baselines with momentum contrastive learning. arXiv preprint

arXiv:2003.04297 (2020).

[8] Zhilu Chen, Jing Wang, Haibo He, and Xinming Huang. 2014. A fast

deep learning system using GPU. In 2014 IEEE International Symposium

on Circuits and Systems (ISCAS). IEEE, 1552–1555.

[9] Alexandra Chronopoulou, Matthew E Peters, and Jesse Dodge. 2021. Ef-

ficient hierarchical domain adaptation for pretrained language models.

arXiv preprint arXiv:2112.08786 (2021).

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

2019. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. In Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics

(NAACL ’19).

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-

senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,

Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. An

image is worth 16x16 words: Transformers for image recognition at

scale. arXiv preprint arXiv:2010.11929 (2020).

[12] Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Ri-

hawi, Yu Wang, Llion Jones, Tom Gibbs, Tamas Feher, Christoph An-

gerer, Martin Steinegger, et al. 2020. ProtTrans: towards cracking the

language of Life’s code through self-supervised deep learning and high

performance computing. arXiv preprint arXiv:2007.06225 (2020).

[13] Hugging Face. 2022. https://huggingface.co/autotrain.

[14] William Fedus, Barret Zoph, and Noam Shazeer. 2021. Switch trans-

formers: Scaling to trillion parameter models with simple and efficient

sparsity.

[15] Xin Geng, Haitao Zhang, Zhengyang Zhao, and Huadong Ma. 2020.

Interference-aware parallelization for deep learning workload in GPU

cluster. Cluster Computing 23, 4 (2020), 2689–2702.

[16] Andrea Gesmundo and Jeff Dean. 2022. muNet: Evolving Pretrained

Deep Neural Networks into Scalable Auto-tuning Multitask Systems.

arXiv preprint arXiv:2205.10937 (2022).

[17] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeong-

jae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019. Tire-

sias: A GPU Cluster Manager for Distributed Deep Learning. In 16th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI ’19).

[18] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick.

2020. Momentum contrast for unsupervised visual representation

learning. In Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition. 9729–9738.

[19] Liang He, Shizhuo Zhang, Lijun Wu, Huanhuan Xia, Fusong Ju, He

Zhang, Siyuan Liu, Yingce Xia, Jianwei Zhu, Pan Deng, et al. 2021.

Pre-training co-evolutionary protein representation via a pairwise

masked language model. arXiv preprint arXiv:2110.15527 (2021).

[20] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone,

Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and

Sylvain Gelly. 2019. Parameter-efficient transfer learning for NLP. In

International Conference on Machine Learning. PMLR, 2790–2799.

[21] Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei

Zhang. 2021. Characterization and Prediction of Deep Learning Work-

loads in Large-Scale GPU Datacenters. In Proceedings of the Interna-

tional Conference for High Performance Computing, Networking, Storage

and Analysis (SC ’21).

[22] Changho Hwang, Taehyun Kim, Sunghyun Kim, Jinwoo Shin, and

KyoungSoo Park. 2021. Elastic Resource Sharing for Distributed Deep

Learning. In 18th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’21).

[23] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie

Qian, Wencong Xiao, and Fan Yang. 2019. Analysis of Large-Scale

Multi-Tenant GPU Clusters for DNN Training Workloads. In 2019

USENIX Annual Technical Conference (USENIX ATC ’19).

[24] Junyang Lin, Rui Men, An Yang, Chang Zhou, Ming Ding, Yichang

Zhang, PengWang, AngWang, Le Jiang, Xianyan Jia, et al. 2021. M6: A

chinese multimodal pretrainer. arXiv preprint arXiv:2103.00823 (2021).

[25] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, YixuanWei, Jia

Ning, Yue Cao, Zheng Zhang, Li Dong, et al. 2022. Swin transformer

v2: Scaling up capacity and resolution. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition. 12009–12019.

[26] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,

Stephen Lin, and Baining Guo. 2021. Swin transformer: Hierarchi-

cal vision transformer using shifted windows. In Proceedings of the

IEEE/CVF International Conference on Computer Vision. 10012–10022.

[27] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram

Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla.

2020. Themis: Fair and Efficient GPU Cluster Scheduling. In 17th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI ’20).

353

Titan: A Scheduler for Foundation Model Fine-tuning Workloads SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

[28] Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma,

Jiawei Han, Wen-tau Yih, and Madian Khabsa. 2021. Unipelt: A unified

framework for parameter-efficient language model tuning. arXiv

preprint arXiv:2110.07577 (2021).

[29] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanx-

iong Guo. 2018. Optimus: An Efficient Dynamic Resource Scheduler

for Deep Learning Clusters. In Proceedings of the Thirteenth EuroSys

Conference (EuroSys ’18).

[30] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie

Neiswanger, Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P.

Xing. 2021. Pollux: Co-adaptive Cluster Scheduling for Goodput-

Optimized Deep Learning. In 15th USENIX Symposium on Operating

Systems Design and Implementation (OSDI ’21).

[31] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,

Ilya Sutskever, et al. 2019. Languagemodels are unsupervisedmultitask

learners. OpenAI blog 1, 8 (2019), 9.

[32] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan

Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al. 2020.

Exploring the limits of transfer learning with a unified text-to-text

transformer. J. Mach. Learn. Res. 21, 140 (2020), 1–67.

[33] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He.

2020. Deepspeed: System optimizations enable training deep learning

models with over 100 billion parameters. In Proceedings of the 26th

ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining. 3505–3506.

[34] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann,

Rodolphe Jenatton, André Susano Pinto, Daniel Keysers, and Neil

Houlsby. 2021. Scaling vision with sparse mixture of experts. Advances

in Neural Information Processing Systems 34 (2021), 8583–8595.

[35] Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming

Lin, Jason Liu, Demi Guo, Myle Ott, C Lawrence Zitnick, Jerry Ma,

et al. 2021. Biological structure and function emerge from scaling

unsupervised learning to 250 million protein sequences. Proceedings

of the National Academy of Sciences 118, 15 (2021), e2016239118.

[36] Justyna Sarzynska-Wawer, Aleksander Wawer, Aleksandra Pawlak,

Julia Szymanowska, Izabela Stefaniak, Michal Jarkiewicz, and Lukasz

Okruszek. 2021. Detecting formal thought disorder by deep contextu-

alized word representations. Psychiatry Research 304 (2021), 114135.

[37] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,

Jared Casper, and Bryan Catanzaro. 2019. Megatron-lm: Training multi-

billion parameter language models using model parallelism. arXiv

preprint arXiv:1909.08053 (2019).

[38] Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected

attention layers for efficient adaptation in multi-task learning. In In-

ternational Conference on Machine Learning. PMLR, 5986–5995.

[39] Yu Sun, ShuohuanWang, Shikun Feng, Siyu Ding, Chao Pang, Junyuan

Shang, Jiaxiang Liu, Xuyi Chen, Yanbin Zhao, Yuxiang Lu, et al. 2021.

Ernie 3.0: Large-scale knowledge enhanced pre-training for language

understanding and generation. arXiv preprint arXiv:2107.02137 (2021).

[40] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos

Efrain Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati, Pat

McCormick, Jamaludin Mohd-Yusof, et al. 2022. Unity: Accelerating

{DNN} Training Through Joint Optimization of Algebraic Transfor-
mations and Parallelization. In 16th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 22). 267–284.

[41] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,

Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS

in the Wild: Workload Analysis and Scheduling in Large-Scale Het-

erogeneous GPU Clusters. In 19th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’22).

[42] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Si-

vathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,

Hanyu Zhao, Quanlu Zhang, Fan Yang, and Lidong Zhou. 2018. Gan-

diva: Introspective Cluster Scheduling for Deep Learning. In USENIX

Symposium on Operating Systems Design and Implementation.

[43] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R

Salakhutdinov, and Quoc V Le. 2019. Xlnet: Generalized autoregressive

pretraining for language understanding. Advances in neural informa-

tion processing systems 32 (2019).

[44] Geoffrey X. Yu, Yubo Gao, Pavel Golikov, and Gennady Pekhimenko.

2021. Habitat: A Runtime-Based Computational Performance Predictor

for Deep Neural Network Training. In 2021 USENIX Annual Technical

Conference (USENIX ATC ’21).

354

