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ABSTRACT
Multi-Robot Systems (MRSs) show significant advantages to deal

with complex tasks efficiently. However, the system complexity

inevitably enlarges the attack surface and adds difficulty in guaran-

teeing the security and safety of MRSs. In this paper, we present

an in-depth investigation about the Byzantine threats in MRSs,

where some robot is untrusted. We design a practical methodol-

ogy to identify potential Byzantine risks in a given MRS workload

built from the Robot Operating System (ROS). It consists of three

novel steps (requirement specification using signal temporal logic,

attack surface determination via data-flow analysis, attack iden-

tification using requirement-driven fuzzing) to thoroughly assess

MRS workloads. We use this fuzzing method to inspect five typical

MRS workloads from past works and the ROS platform, and identify

three novel kinds of attacks that can be launched with five attack

strategies. We conduct comprehensive experiments in the Gazebo

simulator and a real-world MRS with three TurtlBot3 robots to

validate these attacks, which can remarkably decrease the system’s

performance, or even cause task failures.
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1 INTRODUCTION
The robotics technology is becoming more popular and ubiquitous

in our society. A variety of intelligent and autonomous robots were

designed to significantly improve our work efficiency and quality

of life. With the increased complexity of tasks and performance

demands, Multi-Robot Systems (MRSs) have gained ever-growing

attention. Multiple mobile robots are interconnected with each

other within the same environment. They collaboratively work on

an enormous task, which is hard to achieve by a single robot. Due to

these benefits, MRSs have been developed for myriad scenarios and

applications, such as precision agriculture [23, 24, 62, 89], minefield

mapping [41, 46, 76, 85, 86], search and rescue [54, 59, 63].

The significance of MRSs calls for special attention to security, as

the system complexity can increase the attack surface. Past works

have demonstrated that a single robot device is vulnerable to a

plethora of attacks from different components, including sensors

[22, 27, 50, 81], actuators [20, 33], motion controller [68], Robot

Operating System [19, 28] and applications [48, 50, 68]. These vul-

nerabilities enable an external adversary to easily intrude into the

robot and take full control of the robot, resulting in Byzantine faults

in an MRS. A Byzantine fault describes a condition of a distributed

system where some components may fail and there is a lack of

sufficient information to identify such failures [96]. In a distributed

MRS, if one robot is compromised, it has the potential to affect

other robots and even threaten the entire system, due to their close

communication and collaboration. For instance, in 2021 January, a

drone swarm got crashed during a light show in Chongqing, China.

Up to 100 drones lost controls and hit into a building due to a small

bug in the mainframe control [87].

Such Byzantine problem has been extensively studied in tradi-

tional distributed systems. However, it is relatively less explored

in the context of MRSs. Prior work [10, 13, 58, 82] considered the

Byzantine resilience in MRSs from a theoretical perspective. They

simply treat each robot as a dot without considering the specific

workloads, robots’ capabilities and physical constraints. Hence, it

is infeasible to apply these solutions and findings to the real-world

Multi-Robot scenarios and tasks in a practical way.

We are particularly interested in two unsolved questions: given
the design or implementation of an MRS, (1) how can we identify
the potential Byzantine threats and the optimal attack strategy? (2)
how much damage can a Byzantine robot bring to the entire MRS?
Addressing these two questions is challenging. First, an MRS can
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execute a variety of workloads with distinct characteristics and

user requirements. The inter-robot communication and collabora-

tion can be implemented with various mechanisms. So it is hard to

design a unified method for vulnerability identification and assess-

ment. Second, during the operation, a malicious robot has very high

freedom to affect other robots and the entire system in unexpected

ways. They exchange different types of messages, and each message

has a large input space for the robot to tamper with. This makes it

difficult to comprehensively search for potential attacks.

In this paper, we provide the first practical study towards the

Byzantine threats in MRSs based on the Robot Operating System

(ROS) [2]. ROS is the most popular open-source platform for robot

app development. It provides thousands of packages to achieve

various functions, compatible with mainstream robot devices. This

platform has benefited the robotics research, as well as the devel-

opment of commercial products in industry, e.g., Dji Matrice 200

drone [1], PR2 humanoid [7], and ABB manipulators [5]
1
.

We design a requirement-driven fuzzing methodology, which

can automatically analyze a given MRS workload and identify the

potential Byzantine risks. We consider a threat model where only

one robot in an MRS is malicious. Our method can be easily ex-

tended to the case with multiple Byzantine robots. We assume the

Byzantine robot can arbitrarily compromise any type of messages

sent from it at any time. Then our fuzzing strategy has three steps

to discover the potential risks. (1) Requirement specification: we
formulate the requirements for the normal operation of an MRS

with Signal Temporal Logic (STL). This includes the general require-

ments (safety, mechanism, performance) as well as task-specific

requirements. (2) Data-flow analysis: we dynamically generate the

data-flow diagram at the level of node operations by simulating the

workload. Through analyzing this diagram, we extract the parame-

ters and communication messages controllable by the Byzantine

robot, which form the fuzzing input space. (3) Requirement-driven
fuzzing: we mutate the messages from the identified input space

and check whether the requirements are violated. Different muta-

tion strategies (dropping, content modification, etc.) are considered

for different types of messages.

We build an MRS workload suite, which incorporates standard

implementations of common MRS workloads and coordination

schemes from the past literature [12, 16, 17, 31, 38, 42, 45, 53, 55,

69, 71, 78, 80, 90, 94, 99, 100, 105] and ROS platform. Using our

requirement-driven fuzzing methodology, we uncover three new

forms of Byzantine attacks with five attack strategies in these ex-

isting workloads. (1) Task assignment control attack: the Byzantine
robot can manipulate the messages of location, robot status or task

bidding to compromise the task assignment process. (2) Map merg-
ing poisoning attack: the Byzantine robot can decrease the quality

of generated map by falsifying the explored map messages. (3) Task
forwarding manipulation attack: the Byzantine robot can tamper

with the transmitted task information to mislead other robots to

perform wrong jobs.

We perform extensive experiments using the Gazebo simulator

[49] to validate the effectiveness of these attacks. They can signifi-

cantly decrease the performance of the entire system, or even cause

system crash. Moreover, we deploy these workloads in a real-world

1
ROS is used as a communication wrapper in ABB manipulators.

environment and MRS consisting of three TurtleBot3 UGVs [8], and

successfully achieve the discovered attacks. In summary, we make

the following contributions:

• We design a novel requirement-driven fuzzing methodology to

identify Byzantine threats and the corresponding strategies for

distributed MRS workloads.

• We introduce and opensource a first-of-its-kind MRS workload

suite, consisting of different standard workloads and coordina-

tion schemes. They can be deployed in simulators as well as

physical robots for performance evaluation, security assessment

and other purposes as well.

• We discover three new forms of Byzantine attacks in existing

common MRS workloads.

• We perform evaluations in both simulation and real-world en-

vironments, and the real-world experiments confirm that the

consequences observed in simulated environments are realistic.

The rest of this paper is organized as follows. Section 2 intro-

duces the background of ROS, MRS workloads and our threat model.

Section 3 presents our novel fuzzing method for Byzantine threat

identification. We describe our MRS workload suite in Section 4,

followed by the discovered attacks in Section 5. Sections 6 and

7 demonstrate our evaluations in a simulator and physical envi-

ronment, respectively. We discuss possible countermeasures and

related works in Section 8, and conclude in Section 9.

2 BACKGROUND AND THREAT MODEL
2.1 Robot Operating System
ROS is the most popular robotic platform for robot research and

development. It has beenwidely adopted in the research community,

as well as industry, e.g., Dji Matrice 200 drone [1] and PR2 humanoid

[7]. This platform provides full-stack open-source services to ease

the development of robotic workloads. First, it offers a set of core

libraries as the low-level middleware. These libraries are deployed

between robot apps and hardware to support runtime execution,

such as abstracting hardware, passing messages and managing

devices. Second, it provides thousands of high-level packages for

various functions [6]. Developers can integrate these packages to

build a robot workload.

In this paper, we focus on the Multi-Robot workloads imple-

mented from the ROS platform. Our methodology and tool can be

extended to other robotic platforms and implementations as well.

2.2 Workflow of Robot Tasks
The workflow of a task running on a robot can be represented as a

Directed Acyclic Graph of actions (actionDAG), where each node

represents a certain action, and edges represent the dependencies

of the actions in this task [101]. Figure 1 shows the structure of

a standard robot task. It consists of three fundamental stages: (1)

Perception: the robot extracts estimated states of the environment

and the device from raw sensor data. It uses the Localization
node to determine the device position, and CostmapGen node to

model the device’s surroundings. (2) Planning: the robot determines

the long-range actions. It uses the Path Planning node to find

the shortest path, and Exploration node to search for accessible

regions. (3) Control: the robot processes the execution actions and
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Figure 1: Application pipeline for a typical robot task.

forwards these motions to the actuators. It uses Path Tracking to

produce velocity commands following the planned path, and Motor
Driver to transfer the velocity command to specific actuators.

2.3 Multi-Robot Systems
In an MRS, a number of robots with the same type (homogeneous)

or different types (heterogeneous) work together to complete one

workload. Such collaboration mode can bring two benefits over

single-robot systems. First, since a robot is mainly designed with

one specific functionality, the incorporation of multiple robots can

address complex tasks that can never be achieved by one robot.

Second, the computation capability and power capacity of a robot

are limited. Hence, an MRS can significantly increase the working

efficiency and operation duration. Due to these advantages, MRSs

have been practically adopted in many scenarios.

2.3.1 Multi-Robot Workloads. We present a categorization of com-

mon MRS workloads in our daily life.

Navigation. This type of workloads is a fundamental capability

of mobile robot systems, widely applied in house cleaning [67],

warehouse delivery [29, 51], surveillance[70] and patrolling[32, 66].

It can be abstracted as determining the robot’s own position and

moving towards a predefined destination. To achieve this goal, in

Figure 1, the CostmapGen node creates a costmap of the robot’s

surroundings, and Localization estimates the robot’s position.

Based on such information, Path Planning generates an optimal

collision-free path to the destination. Path Tracking follows this

path and outputs the best action. The final velocity command is sent

to the actuators. During moving, each robot needs to frequently

interact with the environment, recognize surrounding objects or

other robots, and possibly recalculate the path.

Exploration. In this type of workloads, the robots are expected

to spread in an unknown area to achieve the maximal coverage,

and collect as much information as possible. Typical examples of

exploration include map building [37] and rescue [74]. Generally,

the goal of each robot is to keep reaching new locations that are

never touched by other robots. In Figure 1, the localization node
executes the Simultaneous Localization and Mapping (SLAM) al-

gorithm to infer the robot’s position in absence of a map. Then,

Exploration selects an unexplored position as the destination and

sends the goal to Path Planning. By repeating this process of

costmap update and exploration, the map of the environment will

be expanded, until the entire area has been explored.

Formation. A swarm system is a special MRS which consists of a

large number of simple robots with local sensing and communica-

tion capabilities. These robots interact with each other to produce

complex swarm behaviors. Formation is one typical workload for

swarm systems, where the robots try to maintain certain physical

arrangements or patterns. There are two typical swarm behaviors

in a formation task. The first type is aggregation/dispersion. Aggre-

gation refers to the behavior where robots from different locations

gather together in one spot. In contrast, dispersion is to move the

robots from one spot to fully cover a certain area. The second type

of swarm behaviors is pattern formation: robots need to adjust their

locations to create a global shape, varying from simple geometry

[11] to more complex shapes, e.g., alphabetical letters [39].

Antagonism. An MRS can also be implemented for the purpose of

antagonism, e.g., robotic soccer and robot combat. For example, in a

soccer game, the robots in one team are instructed to compete with

the opponent team to score the goals and defending the opponent

robots. Such MRSs are usually implemented in a closed monitored

environment and less prone to attacks. So we do not discuss the

security vulnerabilities of these workloads in this paper.

2.3.2 Communications in Multi-Robot Systems. Since robots in

an MRS collaborate on the workload, they need to frequently ex-

change messages. In general, robots share information by either

broadcasting or one-to-one communication via wireless networks.

To efficiently control the entire system, there are typically two

coordination schemes in modern MRSs.

Centralized scheme [69, 71]. In this design, a centralized entity

is introduced to coordinate all the robots in an MRS. This entity can

be a local edge gateway, a remote cloud server, or even a powerful

robot inside the system. It collects information from the robots,

makes decisions, and sends the instructions to different robots.

Decentralized scheme [16, 31]. This design eliminates the cen-

tralized entity, so each robot can communicate with others directly.

Every robot retrieves information from the environment and other

robots and makes decisions by itself. Robots exchange or broadcast

messages frequently to make the entire system reach consensus.

This decentralized scheme exhibits a higher level of autonomy.

It is worth noting each workload can be implemented by either

the centralized or decentralized scheme. They may have different

efficiency for different workloads. In Section 4, we will review and

analyze the real-world MRS implementations for different work-

loads and coordination schemes.

2.4 Threat Model
We consider anMRS where a number of robots collaboratively work

on one workload. We focus on the Byzantine threats in this system.

Particularly, we assume one robot is malicious and fully controlled

by the adversary, which attempts to compromise the entire MRS.

There are several reasons that make this assumption realistic. (1)

The ROS middleware lacks basic security mechanisms for the au-

thentication and encryption of the communication between nodes,

and thus suffers from many security issues, e.g., plaintext com-

munication, lack of authentication or authorization [19, 25], and

denial-of-service vulnerability [28, 102]. A remote adversary can

easily leverage these vulnerabilities to break into the robot and con-

trol it to perform arbitrary malicious behaviors. (2) A lot of function

packages in the ROS platform contain exploitable software vulner-

abilities [28, 57]. According to the Robot Vulnerability Database

[3, 93], 17 robot vulnerabilities and 834 bugs (e.g., no authentication,

3
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Figure 2: An example of Byzantine threats in a surveillance
application.

uninitialized variables, buffer overflow) were discovered in the func-

tion packages of 51 robot components, 37 robots and 34 vendors in

the ROS platform. Most of them are still unpatched. Exploitation on

real-world ROS package vulnerabilities was reported [21], and red

teaming strategies on ROS applications were studied in [56]. These

software vulnerabilities also enable the adversary to intrude into

the robot and take full control of it. (3) The ROS platform is open

for everyone to upload and share their function packages [103].

Unfortunately, it does not perform any security check over the sub-

mitted code. Hence, an adversary can publish malicious function

packages for other users to download. Based on the ROS2 Robotic

Systems Threat Model [4]: “third-party components releasing pro-

cess create additional security threats (third-party component may

be compromised during their distribution)”.

The Byzantine robot tries to affect the completion of the work-

load by sending malicious messages to other robots or the central-

ized controller. It can also refuse completing the tasks assigned to

it. This can bring disastrous consequences due to the following two

facts. First, robots are closely interconnected with each other fol-

lowing either the centralized or decentralized scheme. The stability

and integrity of the entire MRS highly depend on the reliability

of the inter-robot communications. Second, there is a severe lack

of Byzantine-resilient mechanisms in existing MRS designs and

implementations. Developers do not consider Byzantine defenses

because it is challenging to have a satisfactory solution due to the

variety and complexity of messages exchanged between robots.

Deploying such defenses can also decrease the system performance

as a ratio of robots are not trusted. These two facts exacerbate the

severity of Byzantine threats in MRSs.

The Byzantine robot can also have other means to interfere with

the system. For instance, it can alter the environmental states or

perform sensor spoofing attacks to indirectly affect the decisions

of other robots. It can also conduct physical damages (e.g., path

blocking, collision) to compromise the system. Those attack vectors

are not considered in our work, as they are less stealthy and could

be easily detected by the ground monitoring systems.

Note that we do not consider the case where the benign robots

can detect the existence of the Byzantine robot via monitoring

the surrounding environments. The reason is that due to the limit

of communication and sensing ranges, a robot cannot obtain the

global information of the environment or the past behaviors of

other robots. The absence of such information makes it hard for a

benign robot to identify whether its neighbors are anomalous from

their current behaviors and states. How to detect the Byzantine

threat from benign robots will be an interesting future work.

An example of Byzantine threats. Figure 2 shows an example

of Byzantine threats in a surveillance workload, where three robots

perform the navigation task given by the control station in real time.

Each task consists of a sequence of planned checkpoints that the

robot needs to follow. We assume that robot 1 becomes the Byzan-

tine adversary and sends falsified path data to the control station.

This can cause the station to mistakenly believe some untouched

checkpoints have been passed, and then replan new tasks for be-

nign robots which will exclude these checkpoints. Then these spots

will never be navigated, and the workload cannot be completed.

3 A METHODOLOGY TO CHARACTERIZE
BYZANTINE RISKS IN MRS

In this section, we present our novel methodology to automatically

and comprehensively identify possible Byzantine threats in MRSs.

3.1 Overview
Given an MRS workload, our goals are to (1) identify whether its

implementation is Byzantine-resilient, i.e., functioning well when
some robot is malicious; (2) if not, produce the optimal attack strate-

gies to compromise the system.

As described in Section 2.4, a Byzantine robot can tamper with

arbitrary messages in an arbitrary way to interfere with the en-

tire MRS. To thoroughly identify potential Byzantine risks in a

workload, we propose to use the fuzzing strategy [83]. However,

there are several design challenges to apply fuzzing to our scenario.

First, traditional fuzzing bug-oracles are designed to mainly detect

system crashes, rather than abnormal system states in our case

(e.g., robots are stuck in the idle status permanently). To address

this issue, we introduce a bug oracle which is aware of MRS states

via Signal Temporal Logic (STL) formulas with robustness seman-

tics [26, 60]. The STL formulas describe the requirements the MRS

should satisfy during its operation. Our method constantly moni-

tors if the formulas are violated when fuzzing the target workload.

Second, traditional fuzzing techniques cannot generate mutated

communication messages due to the large input space of the MRS

workload, with numerous types and formats of messages. To handle

this limitation, we propose to leverage dynamic data-flow analysis

to extract the critical inter-robot communication messages, which

can significantly reduce the input space for fuzzing.

Figure 3 shows the workflow of our methodology. We adopt the

STL to specify the requirements that theMRS should follow (Section

3.2). With these requirements, our method performs dynamic data-

flow analysis (Section 3.3) and requirement-driven fuzzing (Section

3.4) to extensively evaluate the workload and output the possible

attacks. Below we introduce the mechanism of each step in detail.

3.2 Requirement Specifications
During the execution, an MRS should satisfy various requirements

to guarantee safety and task completion. These requirements can

be divided into general ones (e.g., safety) and task-specific ones (e.g.,

navigation coverage, map accuracy). We adopt STL to formulate

these two kinds of requirements for attack identification.

We briefly describe some basic concepts of STL, while more

details can be referred to [60]. Let □, ^, and 𝑈 be the temporal

operators “always”, “eventually”, and “until”, respectively. Given a
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variable set𝑋 , its value at time 𝑡 is denoted as𝑋 (𝑡). Then a signal𝑤

over 𝑋 is a time sequence (𝑡0, 𝑋 (𝑡0)), . . . , (𝑡𝑛, 𝑋 (𝑡𝑛)), where 𝑡0 = 0

and 𝑡𝑖 < 𝑡𝑖+1. For our case, the variable set of a robot is the position
𝑥 , velocity 𝑣 , acceleration 𝑎, and the set of detected obstacles𝑂 . The

syntax of an STL formula 𝜑 over 𝑋 can be defined as: 𝜑 := ⊤ | ` ≡
𝑓 (𝑋 (𝑡)) > 0 | ¬𝜑 | 𝜑1 ∨ 𝜑2 | 𝜑1𝑈 [𝑎,𝑏 ]𝜑2, where ⊤ means True, ¬
is the negation operator, and ∨ is the disjunction operator. ` ≡
𝑓 (𝑋 (𝑡)) > 0 is called an atomic STL formula, where 𝑓 : 𝑋 → 𝑅 is a

real-valued function related to a property, e.g., the distance function

(e.g., the minimal distance between a robot and its surroundings)

for safety consideration. We use these notations to describe some

representative requirements for an MRS.

3.2.1 General Requirements. First, we consider some general re-

quirements which are suitable for various Multi-Robot workloads.

Safety. The most important requirement is collision avoidance.

At any time instance, a robot should keep a safe distance 𝑑𝑠 from

obstacles, including other robots in the same environment. Let 𝑑 (𝑡)
be the minimal distance between the robot and obstacles at time 𝑡 ,

then the STL formula for safety is 𝜑1 ≡ □(𝑑 (𝑡) ≥ 𝑑𝑠 ).
Mechanics. Due to the physical limitations, the speed and accelera-

tion of a robot cannot exceed the boundaries. Suppose the maximal

speed and acceleration of a robot are 𝑣max and 𝑎max, respectively,

then the STL formula is 𝜑2 ≡ □(0 ≤ 𝑣 (𝑡) ≤ 𝑣max & |𝑎(𝑡) | ≤ 𝑎max).
Energy saving. Due to the limited battery capacity, a robot is

expected to reach its destination 𝑥𝑔 before power exhaustion. Hence,

suppose the battery power at time 𝑡 is 𝐸 (𝑡), the STL formula can

be written as 𝜑3 ≡ (^∥𝑥 (𝑡) − 𝑥𝑔 ∥2 ≤ 𝜖) & ((𝐸 (𝑡) > 0) 𝑈 (∥𝑥 (𝑡) −
𝑥𝑔 ∥2 ≤ 𝜖)), where 𝜖 is a predefined tolerance for task completion.

Execution time. For an arbitrary workload, each robot is expected

to complete the assigned task as soon as possible within a given

time budget𝑇 . Hence, the STL formula for timeliness can be written

as 𝜑4 ≡ ^[0,𝑇 ] ∥𝑥 (𝑡) − 𝑥𝑔 ∥2 ≤ 𝜖 .

3.2.2 Task-specific Requirements. In addition to the above general

requirements, there are also some specific requirements for different

workloads. We describe three examples as below.

Navigation requirement. In a navigation workload, the robots

in the system are required to complete a set of navigation tasks,

such as going through a set of waypoints or regions. However, due

to the unexpected and dynamic changes in the environment, not

every task can be completed safely (e.g., some spots are occupied

by accident). Hence, each system is given some tolerances for task

completion. Given a set of navigation tasks {𝑥1𝑔 , 𝑥2𝑔 , . . . , 𝑥𝐾𝑔 } and the
minimal task completion rate𝜔 , the STL formula for the navigation

requirement can bewritten as𝜑5 ≡ ^(∧𝑖∈{𝑖1,...,𝑖𝑘 } ∥𝑥 (𝑡)−𝑥
𝑖
𝑔 ∥2 ≤ 𝜖)

𝑈 𝑘/𝐾 ≥ 𝜔 , where ∧ denotes the conjunction operator.

Exploration requirement. For exploration, robots are instructed
to collect as much information as possible with a shorter moving

distance. To evaluate the completion of an exploration task, theMRS

is required to cover 𝑤 ∈ [0, 1] of the ground truth map within a

given time duration𝑇 . Hence, the STL formula for this requirement

can be written as 𝜑6 ≡ ^[0,𝑇 ]𝑀 (𝑡)/𝑀 ≥ 𝑤 , where𝑀 (𝑡) is the area
of the explored map at 𝑡 .

Formation requirement. In a formation workload, robots in the

system should coordinate with each other to form a predefined

formation. The system first determines a set of positions for these

robots to occupy. Hence, we can illustrate the following require-

ment: given a formation with a set of vertexes {𝑝1, 𝑝2, . . . , 𝑝𝑚}, the
system should assign each vertex to one robot exclusively, and then

each robot moves to its corresponding destination within a given

time budget 𝑇 . Let 𝜎 (𝑟1, 𝑟2, . . . , 𝑟𝑚) be a permutation of the robots

{𝑟1, 𝑟2, . . . , 𝑟𝑚} and 𝜎 (𝑖) is required to move to 𝑝𝑖 . The STL can be

described as 𝜑7 ≡ ^[0,𝑇 ] ∧𝑖∈{1,2,...,𝑚} ∥𝑥𝜎 (𝑖) (𝑡) − 𝑝𝑖 ∥2 ≤ 𝜖 .

3.3 Data-flow Analysis
After deriving the requirements, we need to identify the input space

for fuzzing. According to our threat model, the Byzantine robot can

send arbitrary malicious messages to other robots or the centralized

controller. We propose to use data-flow analysis [35] to identify the

critical messages that could possibly violate the requirements. This

can be achieved with the following two steps automatically:

3.3.1 Data-flow graph construction. In ROS applications, the task

in each robot consists of multiple computation nodes that per-

form different functions (Figure 1). The communication between

those nodes (either inside one robot or across different robots) is

implemented in a publisher-subscriber mode. Message topics are

many-to-many named buses which describe the states of robots or

environment. A node can subscribe to a topic if it wants to receive

relevant data, or publish data to a topic. Therefore, given an MRS

workload, we first construct the corresponding data-flow graph [15]

to include all nodes and the types of messages flowing among them.

5
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3.3.2 Byzantine message extraction. The next step is to identify the
critical messages that can be manipulated by the Byzantine robot.

We label each inter-node communication based on its source node

and highlight the nodes which are controlled by the Byzantine robot.

Then messages sent by these nodes can be falsified. We exclude

the messages transmitted inside one robot and only consider the

inter-robot communication for fuzzing.

We inspect all the Multi-Robot packages from the ROS plat-

form [2] and discover six common types of messages as the targets

of the Byzantine attacks, elaborated as below:

M1: Odometry. This type of messages typically stores the estima-

tion of the robot’s instant velocity and position in the environment.

This message is important for robots to adjust their motion to avoid

collision and complete motion tasks. For instance, in a navigation

scenario, the centralized controller needs to collect robots’ exact

positions from their odometry messages and calculate the corre-

sponding paths for them.

M2: Robot status. Robots in an MRS need to frequently broadcast

their current statuses (e.g., “active”, “idle”) for the system to properly

allocate the tasks in time. Some MRS workloads may introduce

more statuses to better coordinate the robots. For instance, in a

coordinated exploration task, robots can stay at the “verification”

status when they are moving in the explored regions. The map

information sent at this status may be used to increase the map

accuracy. The exploration tasks are preferably assigned to the robots

at the “idle” status, and then to those at the “verification” status.

This can maximize the utilization of all the robots in the MRS.

M3: Map.Most robot workloads need the map information during

the execution, whether it is known (navigation) or unknown (ex-

ploration). In ROS, a map message is generally represented as the

occupancy status of each cell in the target region. A typical map

message in the nav_msgs package contains a variableMapMetaData,
which includes the information of the width and height of the map

in terms of the number of cells, the resolution of each cell and the

origin of the map, and a vector variable data, which describes the

occupancy probability of each cell in the map. The accuracy of the

exchanged map information can heavily affect the allocation and

execution of subsequent tasks.

M4: Reward. In some MRS workloads, each robot calculates the

reward of performing one specific task and broadcasts the value to

the entire system. A new task is thus allocated to the robot with

the highest reward. As a result, the reward values can significantly

affect the allocation decisions, then the efficiency and completion

of the entire workload.

M5: Task/Goal. This type of messages contains the current task

to be completed. In a centralized system, these messages are sent

from the centralized controller to each robot for task assignment.

In a decentralized system, robots broadcast those messages until

the task assignee receives the task information. A Byzantine robot

participating in the propagation of such messages can tamper with

the tasks or goals and mislead the assignee to perform wrong jobs.

M6: Path. This type of messages contains the trajectory of a robot

from the current location to the destination. In some workloads

(e.g., decentralized exploration [31]), each robot has the capability

and responsibility of calculating its own path based on the given

goal. In the applications where individual robots do not have the

computation capability to generate paths independently, the paths

are calculated by the centralized controller and sent to the robots.

3.4 Requirement-driven Fuzzing
Our next stage is to perform requirement-driven fuzzing over the

MRS workload. We mutate all possible critical messages identified

in Section 3.3.2, and monitor if they lead to any violations of the

requirements specified in Section 3.2.

3.4.1 Overview. Algorithm 1 details our requirement-driven fuzzing

procedure. For each requirement in terms of the STL formula, our

method repeatedly conducts the following steps for each message:

(1) identifying the message data type and performing mutations

according to the mutation strategy designed for the data type (Line

5); (2) replacing the original message with the mutated one, execut-

ing the workload in the simulator, and recording the state sequence

of the system execution (Line 6). Particularly, the adversary has the

right not to perform the assigned tasks, which is also considered

during the simulation; (3) computing the robustness of the recorded

state sequence (Line 7); (4) if a violation is detected, storing the

simulation configurations and continuing with the next message

(Lines 8 - 10); otherwise, if the robustness of the mutated message

is smaller, replacing the old message with the mutated one and

updating the corresponding robustness (Lines 11 - 13). After all

the messages in the input space are fuzzed, we summarize the mu-

tations that can lead to requirement violations. A new round of

fuzzing will start if testing time is allowed.

3.4.2 Message Mutation Strategy. For a given requirement with

the STL formula 𝜑 , the corresponding robustness degree v of the

system can be calculated at the end of the workload execution.

The mutation strategy aims to minimize the system robustness

degree by varying the messages sent by the Byzantine robot, and

ideally result in a system requirement violation. For different types

of messages, we provide a couple of possible mutation strategies.

The first strategy is to drop the messages. The Byzantine robot

can pretend to “forget” sending critical messages to the correspond-

ing receiver, or broadcasting them to the entire system. This is one

kind of Denial-of-Service attack in MRS.

The second strategy is to randomly change the values contained

in the messages within the legal range. For the numerical type (e.g.,

odometry, reward), the Byzantine robot can change the message

to a random value within the legal range. For the categorical type

(e.g., robot status), the Byzantine robot can change it to a different

category. Similarly, for the message type of task/goal, the adversary

can alter the content to a random task pre-defined in the workload.

The third strategy is specifically designed for the map message.

A map message is a 2-dimensional metric, which provides a much

larger fuzzing input space than other types. So a fully randommuta-

tion strategy is inefficient. Instead, we consider two new mutation

methods: (1) the Byzantine robot replaces the target map with an

empty one or a fully-occupied one, to check the system’s Byzantine-

resilience in extreme cases; (2) the Byzantine robot randomly picks

a region with a distance of 𝑙 from its current position, where 𝑙 is a

pre-defined hyper-parameter based on the map size.

6
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Algorithm 1: Requirement-driven Fuzzing

Input: A simulator 𝑆𝐼𝑀 , the set of message types for

mutation𝑀 , fuzzing space Π𝑚𝑠𝑔∈𝑀 𝐼𝑛𝑝𝑢𝑡 (𝑚𝑠𝑔), a
set of STL formulas Φ, a fuzzing time-limit 𝜏

Output: 𝑉 : requirement robustness related to each message;

𝑀𝑣 : the corresponding messages causing violations.

1 for each requirement 𝜑 ∈ Φ do
2 Initialize the values of the input messages

𝑀 = {𝑚𝑠𝑔0,𝑚𝑠𝑔1, . . . ,𝑚𝑠𝑔𝑛}, 𝑉 (𝑚𝑠𝑔𝑖 ) = +∞,𝑀𝑣 = ∅;
3 while total_time < 𝜏 do
4 for each𝑚𝑠𝑔 in𝑀 do
5 mutated_msg =Mutate(msg, 𝐼𝑛𝑝𝑢𝑡 (𝑚𝑠𝑔));
6 state_seq = 𝑆𝐼𝑀 .Simulate(mutated_msg);
7 𝑣 = 𝑟𝑒𝑞_𝑐ℎ𝑒𝑐𝑘𝑒𝑟 (𝜑, 𝑠𝑡𝑎𝑡𝑒_𝑠𝑒𝑞, 0); /* Compute

the robustness of 𝜑 with respect to
𝑠𝑡𝑎𝑡𝑒_𝑠𝑒𝑞 */

8 if 𝑣 < 0 then
9 𝑀𝑣 = 𝑀𝑣 ∪ {𝑚𝑠𝑔};

10 𝑀 = 𝑀 \ {𝑚𝑠𝑔};
11 else if 𝑣 < 𝑉 (𝑚𝑠𝑔) then
12 𝑚𝑠𝑔←𝑚𝑢𝑡𝑎𝑡𝑒𝑑_𝑚𝑠𝑔;

13 𝑉 (𝑚𝑠𝑔) = 𝑣 ;
14 end
15 end
16 if 𝑀 = ∅ then
17 Generate a new set of𝑀 randomly, initialize 𝑉 ,

and repeat Lines 4 - 15.

18 end
19 end
20 end

3.4.3 Requirement Checking. Give an STL formulas 𝜑 and a se-

quence of system states 𝑠𝑡𝑎𝑡𝑒_𝑠𝑒𝑞, the requirement checking pro-

cess 𝑟𝑒𝑞_𝑐ℎ𝑒𝑐𝑘𝑒𝑟 (𝜑, 𝑠𝑡𝑎𝑡𝑒_𝑠𝑒𝑞, 𝑡) returns the robustness degree of
𝜑 over𝑤 at time instant 𝑡 , which describes how far𝑤 is from satis-

fying or violating 𝜑 at 𝑡 [60]. The robustness can be computed as

follows. First, the robustness of the atomic STL ` ≡ 𝑓 (𝑋 (𝑡)) > 0

with respect to𝑤 (𝑋 ) = 𝑋 (0), 𝑋 (1), . . . , 𝑋 (𝑛) at time instant 𝑡 can

be computed as 𝜌 (`,𝑤, 𝑡) = 𝑓 (𝑤 (𝑋 )) [𝑡] = 𝑓 (𝑋 (𝑡)). Based on the

syntax of STL, we have 𝜌 (¬𝜑,𝑤, 𝑡) − 𝜌 (𝜑,𝑤, 𝑡), 𝜌 (𝜑1 ∨ 𝜑2,𝑤, 𝑡) =
max{𝜌 (𝜑1,𝑤, 𝑡), 𝜌 (𝜑2,𝑤, 𝑡)}, 𝜌 (𝜑1𝑈 [𝑎,𝑏 ]𝜑2,𝑤, 𝑡) = max

𝑡 ′∈[𝑡+𝑎,𝑡+𝑏 ]
min{𝜌 (𝜑2,𝑤, 𝑡 ′), min

𝑡 ′′∈[𝑡,𝑡 ′ ]
𝜌 (𝜑1,𝑤, 𝑡 ′′)}. Hence, the robustness of an

arbitrary STL formula can be computed by applying the above the

computation recursively. More details about the robustness degree

functions can be found in [60].

Based on the definition of robustness degree, 𝜌 (𝜑,𝑤, 𝑡) < 0

means that the signal violates 𝜑 at 𝑡 . Hence, for each STL-based

requirement 𝜑 ∈ Φ derived from the requirement specification

step (Section 3.2), the system robustness degree 𝜌 on the selected

requirement is calculated with the system state sequence obtained

from the simulator. If we detect an execution whose 𝜌 is smaller

than 0, i.e., a requirement violation, we store the system configu-

rations and mutated message; otherwise, we guide the mutation

to the direction that decreases the robustness. If no requirement

violation is detected at the end of fuzzing, the lowest system ro-

bustness together with the corresponding mutated message and

system configurations are returned as output.

4 AN MRS WORKLOAD SUITE
To extensively evaluate the effectiveness of our method and under-

stand the Byzantine vulnerabilities in MRSs, we select five typical

MRS workloads as our testbed, which cover a variety of coordi-

nation schemes and application domains discussed in Section 2.3.

These workloads are identified from prior literature and existing

packages in the ROS platform. Each workload can support an arbi-

trary number of robots running end-to-end tasks including percep-

tion, planning and motion control. They are ready to be deployed

to a ROS simulator (e.g., Gazebo [49]) or physical robot devices.

To our best knowledge, this is the first-of-its-kind workload suite

for Multi-Robot applications based on the ROS platform. We open-

source this MRS workload suite
2
, and expect it can contribute to the

robotics community for other purposes as well (e.g., performance

evaluation and characterization, MRS hardware and software co-

design). We give detailed descriptions of these workloads in this

section, followed by their security assessment in the next section.

4.1 Workload Descriptions
W1: Centralized Navigation [45, 55, 71]. The goal of this work-
load is to efficiently complete a surveillance task by coordinating

multiple robots to navigate to different target locations. Figure

4 shows the workflow of this workload. A centralized controller

server (e.g., Ground Control Station (GCS)) is introduced to manage

the communication. Specifically, given a sequence of goal positions,

the controller server generates the corresponding collision-free

paths and sends the path information to different robots. Then each

robot follows the designated path to reach its destination. Dur-

ing moving, a robot needs to avoid collisions with obstacles and

other robots. Meanwhile, it also needs to frequently send two types

of messages to the controller server: (1) odometry messages con-

taining the robot’s current location; (2) status messages denoting

whether the robot has arrived at the destination, or in the “idle”

status waiting for further commands. The controller server takes

such information to update the paths and assign a new task to the

robot which is in the “idle” status and closest to the target location.
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(Centralized Controller)
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Robot 3
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Figure 4: Workflow of W1

2
https://github.com/GeleiDeng/RAID_2021_MRS_Fuzzing
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W2: Centralized Exploration [38, 69]. In this scenario, an MRS

is deployed to build a map of an unknown area. This workload

is implemented in a centralized manner, where a GCS is used to

manage the robots for exploration. Figure 5 shows the workload of

this implementation. During the task, the GCS runs the exploration

stack and identifies the frontiers of potential areas to be explored.

It then assigns the frontiers to available robots by calculating the

exploration cost and utility [16], and generates the paths from the

corresponding robots’ current positions to the frontiers. Each robot

frequently exchanges three types of information with the GCS: (1)

odometry messages denoting the robot’s current position, (2) status

messages denoting whether the robot is in the exploration or idle

status, and (3) map messages containing the exploration results.

The GCS merges the maps from different robots. It assigns new

area for the robot which has finished its current exploration. The

above process is repeated until the entire map is established.
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Figure 5: Workflow of W2

W3: Decentralized Exploration with Bidding [12, 17, 31, 42,
90]. This workload achieves the same function as W2, but in a

decentralized manner. Robots talk to each other and adopt the bid-

ding algorithm to reach agreement for frontier assignment. Figure

6 shows the workflow. During exploration, robots keep exchanging

two types of messages: (1) a map message containing the local map

maintained by the robot, and (2) a bidding message containing the

robot’s gains of exploring different frontiers. When a robot receives

messages from other robots, it first merges their newly explored

maps to its local one. Then it compares its gain with other robots’

and selects the frontier where it has the highest gain. It declares to

the system that it will explore this frontier, and then starts the task.

These steps are repeated until the entire area is explored. At last,

robots merge their local maps again to generate the final map.
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Figure 6: Workflow of W3

W4: Decentralized Exploration with Group Merging [16, 78,
80, 100]. This workload is similar to W3. The difference is that
robots are highly distributed without knowing the relative position

of each other. A robot cannot broadcast to all the robots: It can

only talk to the robots which move into its sensing range. The

workflow is shown in Figure 7. In this scenario, the group merging

algorithm is adopted to achieve task allocation. Specifically, when

two robots meet, they exchange the map information and verify

whether their maps can be merged together. Robots with confirmed

joint map regions form one group and share the explored maps via

the wireless network until they move out of the communication

range. At the end of the task, all the robots will share the same map

information for the entire area.
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Figure 7: Workflow of W4

W5: Swarm formation [53, 94, 99, 105]. This workload is de-

signed for a swarm system. It controls the swarm robots to achieve

aggregation, dispersion and line formation. It is applied to InchBot

[44], a novel swarm microrobotic platform that contains highly

modular two-wheel mini robots with wireless sensing and com-

munication capability. Figure 8 shows the workflow. Each robot

obtains the relative positions of other robots within the communi-

cation range through the wireless sensor network. They achieve the

aggregation or dispersion behaviors by maintaining a pre-defined

average distance with others within the sensing range. In the line

formation task, each robot moves to an ideal location to form a line

with its adjacent robots, while maintaining a pre-defined distance

in a similar way as dispersion. The formation commands are given

by a controller outside the system, and then robots broadcast the

commands to others within the sensing range.
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4.2 Metrics
Our workload suite also provides a set of metrics to measure the

performance and efficiency of Multi-Robot workloads. They can be

classified into the following two categories.

General metric.We measure the execution time, which is the total

time spent in completing the workload. A severe attack can signifi-

cantly increase the execution time and cause Denial-of-Service dam-

age. An extreme case is that the execution time can be infinity as the

workload can be never completed. This is a workload-independent

metric and can be used to describe different scenarios.

Task-specific metrics. In addition to the above general metric,

different workloads can also have diverse measurements for the

performance and efficiency. (1) For a navigation workload, we mea-

sure the navigation rate, i.e., the percentage of the destination spots

reached by the robots. We expect the system to cover as many

desired destinations as possible. (2) For an exploration workload,

we adopt themap quality to quantify the performance of the execu-

tion [98]. It directly reflects how well a map can be constructed by

the robots. (3) For a formation workload, we introduce formation
similarity, which denotes the similarity between the planned and

actual patterns. Specifically, we adopt an Euclidean distance-based

similarity measure between the two formation spaces:

𝑠 = 𝑒−
∑𝑚
𝑖=1
∥𝑥𝑖−𝑝𝑖 ∥2
𝑚

where 𝑝𝑖 is the ideal position of the 𝑖-th robot in the formation, 𝑥𝑖
is its actual position, and𝑚 is the number of robots in the system.

5 MULTI-ROBOT SYSTEM RISK ANALYSIS
We leverage the proposed risk identification methodology in Sec-

tion 3 to assess the five workloads described in Section 4. The five

workloads are implemented and fuzzed in the simulation environ-

ment based on Algorithm 1. System requirement violations together

with the mutated messages are recorded, and the root causes of

those violations are manually inspected. We finally identify seven

Byzantine risks in these implementations and characterize them

into three classes of attacks, as described below.

5.1 Attack 1: Task Assignment Control
Multi-Robot Systems efficiently achieve the ultimate goals by break-

ing down the high-level task into sub-tasks and appropriately as-

signing them to qualified robots. This task assignment process

involves a series of calculations to maximize the overall system

gain based on the task, environment and current status of each

robot. It can be performed in a centralized controller or distributed

to individual robots depending on the coordination scheme.

If the Byzantine robot can manipulate the messages related to

task assignment, it can compromise the assignment decisions and

affect other robots. We identify two strategies to realize this attack,

targeting different schemes and messages.

5.1.1 Fake location or status information in centralized systems.
Typical centralized systems assign tasks to the most appropriate

robots by considering their positions and statuses. For instance, in

the workloadsW1 andW2, tasks are assigned to available robots

closest to the target positions. The Byzantine robot can send fake

location and status information to the controller, causing it to make

wrong assignments. Specifically, in the navigation workloadW1,
the Byzantine robot can lie to the GCS that it is the closest to the tar-

get positions. Then it can intercept all the navigation tasks that are

supposed to assigned to other robots. In the centralized exploration

workloadW2, idle robots have higher priority to get assignments.

The Byzantine robot can send the idle status to the GCS, even it still

has uncompleted tasks. Such messages can also mislead the GCS

to assign more tasks to the Byzantine robot, while ignoring the

correct candidates. More seriously, the malicious robot can occupy

these tasks without finishing them. This can significantly decrease

the completion degree of the workload.

5.1.2 Fake bidding information in decentralized exploration systems.
The task assignment mechanism can be attacked in a decentralized

MRS as well. For instance, in the workloadW3, robots bid for the

exploration task by calculating the overall gain based on their cur-

rent positions and statuses. A Byzantine robot can easily steal tasks

from others by broadcasting fake bidding information with extreme

high gain values. Then it can just keep these tasks uncompleted to

affect the system performance.

5.2 Attack 2: Map Merging Poisoning
In exploration workloads, the final map is generated by merging

local maps from all the robots. Unfortunately, existing map merging

packages in the ROS platform (e.g., [43]) adopt the common map

merging algorithms [97] without verifying the correctness of the

input map data. Hence, a Byzantine robot can keep sending false

map information to the map merging function to affect the explo-

ration process. We identify two strategies against the workloads

W2,W3 andW4 based on this attack.

5.2.1 False global map generation. In the workloadsW2 andW3,
the adopted map merging packages [43, 97] from the ROS platform

commonly assemble maps by generating the union of occupancy

maps submitted by each robot and then performing noise reduction.

A Byzantine robot can compromise this algorithm by sendingwrong

map data where empty cells are replaced by occupied cells. Then

the final merged map gives wrong information for those cells.

5.2.2 Blocking group merging. In the decentralized exploration

workload W4, robots exchange the map information after the con-

firmation of joint map areas. Such algorithm can mitigate the ran-

dom false map generation attack to some extent, as the falsified map

might be verified and corrected by other robots who have explored

the area. However, the Byzantine robot can still craft a partially

fake map to block the grouping process. For instance, it can just

introduce false map information to the cells which are significantly

far away from its current position, and unlikely to be explored by

other robots. In this case, the faked data will not be verified by other

robots and are merged directly. As a result, the faked information

will block the merging of maps from benign robots.

5.3 Attack 3: Task Forwarding Manipulation
In some systems where task information is transmitted through

robots without the centralized controller, a Byzantine robot can

manipulate the task information such that the subsequent robots

will receive and conduct wrong tasks. We identify one such attack

that is applicable to the swarm formation workloadW5.
9
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(a) 3D view of the room in Gazebo. (b) 2D view of the room in Rviz.

Figure 9: Simulated environment for workloads W1 – W4.

Man-in-the-Middle attack. In a swarm system, robots are assumed

to have limited sensing and communication ranges. Hence, a robot

cannot send commands to all the robots directly. Therefore, it first

issues the formation task to a random robot within the communi-

cation range. This robot then forwards the task to other robots it

can talk to. The task messages are then propagated via the sensory

network and reach every robot in the system. A Byzantine robot

inside the propagation chain can change the task messages, causing

some robots inside the network to execute false commands.

6 EVALUATION
In this section, we conduct simulation experiments to validate the

Byzantine risks identified in Section 5. Evaluations with physical

experiments can be found in the next section. More simulation

and physical experimental results and video recordings are listed

online
3
.

6.1 Experimental Setup
We select the Gazebo simulator [49] with Rviz [72] for the simu-

lation of the MRS with five workloads. Gazebo is the mainstream

open-source simulator that can accurately reflect the physical char-

acteristics of robots. We configure Gazebo to simulate a group of

robots with rigid body and workload environments. Rviz is a 3D

visualization tool for ROS applications. It can display message con-

tents with different ROS topics, and provide APIs for users to publish

desired messages to the related topics. We use Rviz to visualize the

2D information from both the simulator and robot applications and

publish navigation/exploration goals to the workloads.

We simulate the workloadsW1 -W4 in a 14×14m2
square room,

which is further separated into multiple smaller compartments (Fig-

ure 9). We implement a homogeneous MRS with the TurtleBot3

robots [8]. The number of robots varies from 3 to 5 for each work-

load. Each robot is equipped with a 2D Lidar sensor covering a

maximum sensing range of 10 meters to detect the surroundings.

For the formation workloadW5, we simulate a system with 10 to

20 InchBots [44] on an open surface.

We consider two baselines for comparisons with our attack. (1)

Normal: all the robots in theMRS are benign and follow the received

instructions to complete the tasks. (2) Idle: there exists a Byzantine
robot in theMRS. It stays idlewithout requiring any tasks or sending

messages. This represents the simplest Byzantine attack which can

degrade the system performance to some extent. For each workload

in each case, we assume the GCS or the benign robots have the

ground truth of the completion status of the tasks. So they can

determine the time to stop the tasks.

3
https://geleideng.github.io/RAID_2021_MRS_Byzantine/

(a) Mission completion time. (b) Navigation rate.

Figure 10: Task assignment control attack against W1.

(a) Mission duration time. (b) Map quality.

Figure 11: Task assignment control attack against W2.

All the simulations are conducted on a Unbuntu 16.04 laptop

equipped with an Intel i7-9750H CPU and 32GB RAM.We adopt the

ROS Kinetic version for all the MRS workloads. Each experiment

below is repeated for 10 times and the average result is reported.

6.2 Evaluation Result
6.2.1 Task Assignment Control Attack. To launch this attack against
W1,W2 andW3, we randomly select one robot as the Byzantine

robot and falsify the task assignment messages sent from it.

Figure 10 shows the results for the navigation workload W1.
For the idle situation, the Byzantine robot increases the mission

time by 26.1%, 23.0% and 11.5% for an MRS of 3, 4 and 5 robots

respectively (Figure 10(a)). Due to the idle robot in the system, the

performance of an MRS with 𝑟 robots will be the same as that of an

MRS with only 𝑟 −1 robots. When the Byzantine robot performs our

discovered attack, it obtains all the tasks but never completes them.

Then the mission completion time is infinity while the navigation

rate is zero, resulting in task failures.

Figure 11 shows the results of the centralized exploration work-

loadW2. A malicious idle robot can increase the mission time by

18.2%, 12.9% and 4.2% for the three MRSs, respectively. If it per-

forms the task assignment control attack, then the performance

degradation will be much larger (55.5%, 36.4% and 30.8%). Different

from W1, the Byzantine robot cannot cause failures in W2. The
reason is that the GCS generates and assigns multiple frontiers for

exploration simultaneously. Each robot can only require one task

at one time. Hence, the Byzantine robot cannot steal all the tasks.

The exploration task will be finally completed by the benign robots.

The Byzantine robot can affect the optimal assignment process

to cause longer delay. We further analyze the effects of the task

assignment attacks on the process of map construction. Figure 12

shows the change of map accuracy forW2 with three robots. The

Byzantine robot starts to send malicious messages at 40s. After

that, the map accuracy grows at a slower speed than the original

scenario, delaying the task completion.

The performance of the bidding-based decentralized exploration

workload W3 is shown in Figure 13. Similarly, in the idle situation,
the Byzantine robot only increases the mission completion time.

10
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Figure 12: Map accuracy of W2 with 3 robots under the task
assignment control attack.

(a) Mission duration time. (b) Map quality.

Figure 13: Task assignment control attack against W3.

(a) Mission duration time. (b) Map quality.

Figure 14: Map merging poisoning attack against W2.

However, different fromW2, only one frontier can be assigned to a

robot via the bidding algorithm each time in W3. Hence, with the

task assignment control attack, the Byzantine robot can occupy all

the frontiers to be explored but does not conduct the jobs, causing

the failure of the exploration task.

Summary: We observe that the task assignment control attacks

can cause task failures for the entire MRS in W1 and W3. For W2,
the workload can be completed due to the Byzantine robot’s inca-

pability of occupying all jobs. But it can still significantly degrade

the performance of the entire system.

6.2.2 Map Merging Poisoning Attack. We implement this type of

attacks in the exploration workloadsW2,W3 andW4, respectively.
The Byzantine robot sends falsified map to the GCS or other robots

in the attack situation.

Figure 14 shows the performance of the centralized exploration

workloadW2. Similarly, compared with the normal situation, the
idle situation only affects the mission duration time. However, in

the attack situation, the global map generated at the GCS is poi-

soned by the falsified map from the Byzantine robot. Therefore,

GCS fails to generate correct paths for the robots to follow. This

will cause an immediate system failure. Figure 15 illustrates the

map accuracy during the workload execution. Without an attack,

the map accuracy grows gradually to saturation. When the attack

occurs at 40s, the correct map generated previously is poisoned, so

the accuracy of the merged map will immediately drop to close to

zero and will never arise anymore.
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Figure 15: Map accuracy of W2 with 3 robots under the map
merging poisoning attack.

(a) Mission duration time. (b) Map quality.

Figure 16: Map merging poisoning attack against W3.

(a) Mission duration time.

(b) Map Quality.

Figure 17: False map generation attack against W4.

Figure 16 shows the performance of the bidding-based decentral-

ized exploration workloadW3. The idle situation is similar with the

previous workloads and attacks. Under the attack situation, each

robot can function well even with the existence of a Byzantine robot

as the exploration process relies on the local map which is correct

for the benign robots. So the total mission completion time is not

significantly affected. However, after the exploration is completed,

the maps from these robots cannot be merged together due to the

poisoned map information from the Byzantine robot. Hence, the

workload can be treated as a failure without any maps produced.

For the groupmerging-based decentralized explorationworkload

W4, we consider two strategies. (1) The Byzantine robot conducts a
simple false map generation attack (section 5.2.1). Figure 17 shows

the corresponding results. The falsified map from the Byzantine ro-

bot cannot be merged into the exploration cluster, which increases

the overall execution time for other benign robots to explore. But

the quality of the final map is unchanged. (2) The Byzantine robot

introduces a partially fake map to block the grouping process (Sec-

tion 5.2.2). It can firstly form a group with several robots within its

communication range and poison the map via its fake map infor-

mation, causing the rest of the robots not able to join the group. As

a result, the mission duration increases, and the maps cannot be

correctly merged (Figure 18).

Summary: Based on the above analysis, we conclude that both

centralized (W2) and decentralized (W3 andW4) exploration work-
loads are vulnerable to the map merging poisoning attack. Even
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(a) Mission duration time. (b) Map quality.

Figure 18: Blocking group merging attack against W4.

(a) Normal. (b) Idle. (c) Attack.

Figure 19: Visualized attack effects for W5.

(a) Mission duration time. (b) Formation Similarity.

Figure 20: Task forwarding attack against W5.

though a decentralized workload can mitigate some simple attacks,

a smarter adversary can still craft fake maps to cause task failures.

6.2.3 Task Forwarding Attack. Finally, we consider this type of

attack against the swarm formation workload (W5). The Byzantine
robot can control the system formation behaviors by forwarding

false task information. Figure 19 compares the formations of robots

in the normal (a), idle (b) and attack (c) situations, when 10 robots

are instructed to generate a line formation. Different from previous

workloads, the idle robot can also affect the workload completion

(i.e., formation). This is because even though the idle Byzantine

robot does nothing, other robots can observe it and make forma-

tion decisions based on its wrong position. Hence, the idle robot

increases the mission completion time and decrease the formation

similarity. In the attack situation, the Byzantine robot has more

severe impact on the formation since it can mislead other robots

proactively to perform a wrong formation. Quantitative results are

presented in Figure 20, where the formation similarity is calculated

based on Section 4.2.

Summary: Systems that allow robots to propagate task informa-

tion as middleman are vulnerable to this task forwarding attack.

The selected swarm formation workloadW5 is a typical example.

7 REAL-WORLD EVALUATION
To fully validate the Byzantine threats, we implement an MRS and

deploy the attacks against different workloads in the physical world.

(a) Actual environment (b) 3D view in Gazebo (c) 2D view in rviz

Figure 21: Physical environment for real-world evaluation.

(a) Mission duration time. (b) Task-specific metrics.

Figure 22: Task assignment control attack against W1, W2
and W3 (Physical).

(a) Mission duration time. (b) Map quality.

Figure 23: Map merging poisoning attack against W2 and
W3 (Physical).

7.1 Experimental Setup
Our testing environment is a 2.5×5m2

maze. We adopt three Turtle-

bot3 devices to form a Multi-Robot System. Each robot is equipped

with a Raspberry Pi 3 chip [64] as the on-board processor, and a

360-degree 2D laser scanner [9] for SLAM. The ROS core nodes are

deployed on a Ubuntu 16.04 server connected to the robots through

the wireless network. Figure 21 shows the environment with the

corresponding 3D view from Gazebo and 2D view from Rviz.

Due to the limited physical space and number of robots, we only

implement the navigation workload W1, exploration workloads

W2 andW3. We believe the conclusions will be applied to the other

two workloads too. For the centralized workloads W1 and W2,
the GCS nodes performing the path planning and map merging

tasks are running on a server connected to the robots directly.

For the decentralized workload W3, the processing nodes (path

planning, mapping, etc.) of each robot are deployed on a server due

to the limited computation capabilities of the on-board processor.

To simulate the restricted communication range in the MRS, two

robots are forbidden to share information if their distance is beyond

a threshold (1m in our experiments). We launch the task assignment

control attacks against W1, W2 and W3, and the map merging

poisoning attacks againstW2 andW3. We only compare the normal
and attack situations.

7.2 Evaluation Results

Task assignment control attack. Figure 22 shows the impact of

this attack against three workloads. ForW1, We observe the task
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can never be completed with a navigation rate of zero. ForW2, the
map can be finally constructed much longer time (27.7% increase in

mission duration). The workloadW3 cannot be completed since the

exploration tasks are not assigned to benign robots. These results

are in general consistent with the simulation results in Section 6.

Map merging poisoning attack. Figure 23 shows the attack re-

sults against the two exploration workloads W2 and W3. W2 fails

to complete, as the map at GCS is poisoned by the falsified data

from the Byzantine robot. ForW3, the robots can still perform and

complete the exploration tasks. However, the final map cannot be

correctly merged due to the falsified map sent by the Byzantine

robot. These also match the simulated results in Section 6.

8 DISCUSSIONS AND RELATEDWORKS
8.1 Countermeasures
MRS developers focus more on the development of motion algo-

rithms to guarantee motion safety and task achievement, while

ignoring the severity of Byzantine threats. To our best knowledge,

there are no practical defense solutions deployed in current MRSs.

We discuss two possible countermeasures that can help to alleviate

the discovered Byzantine risks from Section 5. We expect that they

can be adopted to enhance the security of MRSs in the near future.

The first direction is to implement message checking in MRSs.

Messages sent by a robot imply their physical status, which should

comply with some system rules. For instance, the distance between

two positions of a robot recorded at two consecutive timestamps

should be shorter than the maximum speed of the robot times

the period duration. When a Byzantine robot launches the task

assignment control attack in the navigation workload (Section 5.1),

this system rulewill be violated andGCS can detect the anomaly.We

can design the corresponding rules for each type of communication

messages, and enforce the rule checking in every robot in real-

time. However, the Byzantine robot may realize such rules and

carefully craft malicious messages that are not recognizable, but

can still affect the system. How to design robust rules to reduce

such possibilities is challenging but important as future work.

The second direction is to apply consensus protocols together

with new coordination schemes to protect MRSs. A resilient con-

sensus protocol [73] was introduced in swarm workloads such as

formation control, flocking, and sensor fusion to detect Byzantine

agents. Its main idea is that the system can be resilient to a number

of F non-cooperative nodes by actively verifying information with

neighbors as long as the network connectivity of the system is above

(2𝐹 + 1). Strobel et al. [82] leveraged the blockchain technology

to detect and exclude Byzantine robots in a swarm system. Those

methods require the system to have very large number of robots

with high connectivity, which may not be realistic in some practical

scenarios. Besides, the system’s efficiency will be sacrificed since

some messages may only contribute to the information verification

instead of the actual workload. In the future, we will consider to

design more efficient and comprehensive communication schemes

and consensus protocols for various types of MRSs.

8.2 Related Works
Byzantine faults in Multi-Robot Systems. Byzantine faults in
MRSs were first discussed and modeled as a convergence problem

of robot networks, i.e., a set of robots are required to asymptoti-

cally reach the same but prior unknown location. Bouzid et al. [14]

proved the necessary and sufficient conditions to achieve conver-

gence under Byzantine attacks in Obvious Robot Networks, where
robots cannot recall past computations and can only move in one-

dimensional space. Bouzid et al. [13] extended the mathematical

theory to two other swarm systems based on the ATOM model

[84] and CORDA model [34]. Auger et al. [10] developed a certified

framework to prove the convergence of robot networks using the

COQ proof assistant. Molla et al. [58] designed deterministic algo-

rithms to identify the lower bounds of time and memory for solving

the dispersion problem on a ring of robots. Zikratov et al. [106]

proposed a trust management framework to identify malicious

Byzantine entities in multi-agent systems.

These prior works mainly focused on the theories of Byzantine

faults with very simple robotic functionalities and tasks. In contrast,

this paper presents the first practical study about the Byzantine

threats in real-world implementations based on the Robot Oper-

ating System framework. We investigate the impact of Byzantine

attacks on the complex workloads (e.g., navigation, exploration)

with different coordination schemes. We also evaluate the discov-

ered Byzantine attacks with both accurate simulations and physical

experiments. These are never achieved in previous works.

Detecting vulnerabilities in robotic systems. Pogliani et al. [65]
designed a new methodology to perform data flow analysis and dis-

cover vulnerabilities in the source code of industrial robot software.

Recently, researchers applied the fuzzing technique to study the

security and safety of robotic systems and Autonomous Vehicles

(AVs). For instance, CPFuzz [77] was designed to find the safety

violations in cyber-physical systems. RVFuzzer [48] fuzzes the con-

figuration parameters and environmental factors to identify input

validations bugs in robotic vehicles. PGFuzz [47] is a policy-guided

fuzzing framework to discover any policy violations in the control

programs of robotic vehicles. Fuzz testing for AVs usually focuses

on a single vehicle [30, 36, 40, 52]. For example, [36] illustrated the

application of fuzzing to test the vehicle’s CAN bus; Li et al [52] pro-
posed a testing framework, AV-FUZZER, to find safety violations

of an autonomous driving system.

Different from the above works, our fuzzing method focuses on

MRSs. For instance, PGFuzz fuzzes the input controller command

and environmental variables to discover the potential vulnerabili-

ties. It targets one single robot of specific kind, and the temporal

logic formulas are extracted from the specification documents. In

contrast, our work focuses on the interaction of multiple robots

in a collaborative workload, and do not rely on the specification

documents. Moreover, we propose different requirements for the

secure and safe operation of an MRS in the STL formulas. We also

identify the critical messages as the fuzzing space, and different

strategies to mutate these messages for testing. This method is

effective to identify Byzantine threats in an MRS implementation.

Other attacks against robotic systems. Past works have demon-

strated that a variety of robotic components are vulnerable, and

prone to different types of attacks. For instance, sensor spoofing

attacks can spoof the sensor data (e.g. GPS [61, 75, 88, 95, 104], Lidar

data [18, 79], optical images [22], gyroscopic data [81, 91, 92]) to

cause the robots to make wrong decisions. An adversary can also

tamper with the controller input (e.g., configuration or calibration
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parameters, perceived states), making the robot instable, halt, or

rush to wrong directions [68]. Moreover, recent works disclosed

many known cyber security issues in the ROS framework, such

as plaintext communication, lack of authentication or authoriza-

tion [19], and denial-of-service vulnerability [28]. Finally, malware

based on machine learning techniques [21] is also developed to

maximize the attack impacts on ROS applications.

While the cyber-attacks against individual robots have been

studied, research about the security of Multi-Robot Systems is still

at an early stage. This drives us to investigate and evaluate different

attack strategies and their damages on various MRS workloads.

9 CONCLUSION
In this paper, we perform an investigation towards the Byzantine

threats in MRS workloads from the ROS platform. We propose a

requirement-driven fuzzing methodology, which can automatically

analyze potential Byzantine risks in an MRS workload. We build an

MRSworkload suite containing common implementations of typical

Multi-Robot workloads and coordination schemes to evaluate our

method. We identify three new forms of Byzantine attacks with five

attack strategies, which are further validated by simulation and real-

world experiments. We expect this study can raise the awareness

of robotics researchers and developers about the severity of MRS

Byzantine threats, and design new solutions to enhance the security

and safety of existing MRSs.
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