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ABSTRACT

Robot apps are becoming more automated, complex and diverse. An
app usually consists of many functions, interacting with each other
and the environment. This allows robots to conduct various tasks.
However, it also opens a new door for cyber attacks: adversaries can
leverage these interactions to threaten the safety of robot operations.
Unfortunately, this issue is rarely explored in past works.

We present the first systematic investigation about the function
interactions in common robot apps. First, we disclose the potential
risks and damages caused by malicious interactions. By investigat-
ing the relationships among different functions, we identify and
categorize three types of interaction risks. Second, we propose
RTRON, a novel system to detect and mitigate these risks and pro-
tect the operations of robot apps. We introduce security policies
for each type of risks, and design coordination nodes to enforce
the policies and regulate the interactions. We conduct extensive
experiments on 110 robot apps from the ROS platform and two
complex apps (Baidu Apollo and Autoware) widely adopted in in-
dustry. Evaluation results indicated RTRON can correctly identify
and mitigate all potential risks with negligible performance cost. To
validate the practicality of the risks and solutions, we implement
and evaluate RTRoON on a physical UGV (Turtlebot) with real-word
apps and environments.
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1 INTRODUCTION

The robotics technology is rapidly integrated into every aspect of
our life. Different types of robots and applications were designed
to assist humans with many dangerous or tedious jobs. A robot app
usually consists of multiple processes (a.k.a. nodes), with each one
focusing on one specific function, e.g., localization, path planning.
They interact with each other to complete the end-to-end task.

To ease the development of robot apps, many companies expose
interfaces of massive functions for their products (e.g. Ford Open XC
[15], Dji Onboard SDK [8], UR Application Builder [5]). Developers
can then use these functions to create new apps. Alternatively,
public platforms are introduced, where functions are developed in a
crowd-sourcing manner by third-party developers and distributed
through the open-source function markets. The most mainstream
platform is the Robot Operating System (ROS) [2], which provides
thousands of open-source robot functions. Functions from this
platform have been widely adopted in the research community and
many commercial products, such as Dji Matrice 200 drone [8], PR2
humanoid [21] and ABB manipulator [19].

However, these functions can be the Achilles’ Heel of robot
apps, threatening the safety of robot operations. There are two
reasons that facilitate this hazard. (1) Public platforms like ROS
allow third-party developers to share their functions. Different from
other well-developed app stores (e.g., mobile devices [3, 10], PCs
[13, 31, 32], IoT [4, 11, 28]), the ROS platform does not enforce
any security inspection over the submitted code. An adversary
can easily upload malicious functions to the platform for users to
download. (2) Function nodes in a robot app have dynamic and
frequent interactions with each other and the physical environment.
Even one malicious node can affect the states and operations of the
entire app, leading to severe privacy breach and physical damages
[48, 70]. For instance, Chrysler Corporation recalled 1.4 million
vehicles in 2015 due to a software vulnerability in its Uconnect
dashboard computers [1]. An adversary could exploit it to hack into
a jeep remotely and take over the dashboard functions.

To ensure the safety of robot apps, it is critical to protect the
interactions among various functions inside the apps. We are in-
terested in two questions: What potential risks and security inci-
dents can a malicious interaction bring? How can we detect and
mitigate malicious interactions? Unfortunately, there are currently
few studies focusing on the interactions in robot apps. Secu-
rity analysis of interactions in IoT systems have been explored
[39, 41, 42, 45, 53, 60, 61, 67, 83, 88]. As robot apps have more com-
plex and distinct features, it is hard to apply the above methods to
the robot ecosystem, as discussed in § 8.
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Figure 1: An example of the navigation app.

In this paper, we present the first study to explore the function
interactions in common robot apps from the perspective of security
and safety. We make three contributions to answer the above two
questions. First, we analyze potential risks from those interactions
in common robot apps. We classify these risks into three types. (1)
General Risk: it happens when multiple function nodes share same
states, and malicious nodes attempt to compromise the states by
sending wrong messages. (2) Robot-Specific Risk: this is caused by
the conflict between the robot’s velocity and the frame rate of the
image recognition function. (3) Mission-Specific Risk: this refers to
the violation of users’ expectation regarding the safe and secure
behaviors of the robot system. We provide detailed analysis and
examples to show the possible consequences of each risk.

Second, we introduce RTRON, a novel system to detect and miti-
gate risks caused by suspicious interactions in robot apps. The core
of RTRON is a set of coordination nodes, which are used to regulate
the interactions and enforce security policies. We design a coor-
dinate node with some security policies to mitigate each type of
risks. Specifically, RTrRoN includes two stages. At the development
stage, it generates the interaction graph from the source code of
the robot app, and helps developers discover all high-risk function
nodes, which may trigger potential malicious interactions. Based on
the generated risk information, RTrRoN deploys coordination nodes
along with these high-risk function nodes. This is achieved without
changing the original function node. At the operation stage, RTRON
deploys a security service to keep monitoring all the information
from the coordination nodes. A visualized interface is provided to
end users to observe the high-risk interactions. If a risk occurs, the
corresponding coordination node will enforce the desired policy
configured by users during the app launch to mitigate it.

Third, we conduct extensive experiments to evaluate the effec-
tiveness, efficiency and practicality of RTroN. (1) We select 110
robot apps from the ROS platform, covering 24 robots of 4 types.
RTRON can correctly identify all potential risks from three types of
vulnerable interactions, with negligible overhead at both the offline
and online stages. (2) We perform large-scale evaluations on more
complex and practical robot apps: we select 2 apps from the ROS
platform for the home and autorace scenarios, each containing 10
functions to perform 6 tasks; we also deploy 2 self-driving apps
(Autoware [6] and Apollo [7]), which are widely adopted in the
autonomous vehicle industry. RTRoN successfully identifies 198
high-risk interactions in these 4 apps, and mitigates them promptly
and effectively. (3) We demonstrate a practical end-to-end attack
with a physical robot (Turtlebot UGV) and environment, to demon-
strate the feasibility and severity of malicious interactions in robot
apps. We show this threat can be eliminated by RTRON.
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2 BACKGROUND & THREAT MODEL
2.1 Interaction in Robot Apps

Robot apps run on the embedded computer of a robot device to
interpret sensory data collected from the environment, and make
the corresponding action decisions. The workflow of a robot app can
be represented as an interaction graph, where each node represents
a certain function, and edges represent the dependencies of the
functions in this app. Figure 1 shows a navigation app as an example.
This robot app is composed of three major processing stages [76]: (1)
Perception: the robot extracts estimated states of the environment
and the device from raw sensory data. It uses the Localization
node to determine the device position, and the CostmapGen node to
model the surroundings. (2) Planning: the robot determines the long-
range actions. It uses the Path Planning node to find the shortest
path, and the Exploration node to search for all accessible regions.
The Exploration node also exposes an external service for users
to launch a navigation mission. (3) Control: the robot processes the
execution action and forwards these motions to the actuators. It uses
the Path Tracking node to produce velocity commands following
the planned path, and the Velocity Driver node to convert the
velocity to instructions for the motor to drive the wheels.

One big feature of robot apps is the high interactions among
various function nodes in the workflow. Based on the triggered
events, the interactions can be classified into two groups:

Direct interaction (solid line). This denotes the interaction be-
tween two functions (ellipses), which are directly connected in the
workflow and sharing common robot states (squares). Robot states
are defined as the collection of all aspects and knowledge of the
device that can impact future behaviors [78], e.g., position, orienta-
tion, explored maps. The computation of one function can change
some robot states, which will affect the computation of another
function. For instance, in Figure 1, the action of Path Planning
is triggered by the event that Localization generates the robot’s
current position and orientation. Then the two nodes have direct
interaction over the robot states of position and orientation.
Indirect interaction (dotted line). This refers to the dependency
of two functions, which are not connected in the workflow, but can
interact with each other via the environmental context. One node in
the app can issue actions to change the environmental context (e.g.,
obstacles, space, etc.), which will further influence another node.
In the navigation app, the functions in the Control stage generate
commands to control the robot to change the physical environment.
This triggers the functions in the Perception to conduct new compu-
tations. For instance, the map created by the CostmapGen function
depends on the action from the Path Tracking function. As a
result, these two function nodes are indirectly interacted, although
they are not directly connected in the workflow.

Note that Figure 1 is just an abstract interaction graph. An actual
robot app can have a very complex interaction graph with large
numbers of nodes and interactions. Figure 15 in Appendix A gives
an interaction graph for a real-world home-based robot app.

2.2 Robot App Platform

In robotics, the most popular app platform is Robot Operating
System (ROS) [2]. Both the research community and industry widely
adopt ROS as the foundation or the testbed for their apps, such as Dji
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Matrice 200 drone [8], PR2 humanoid [21] and ABB manipulator
[19]. In this paper, we mainly focus on the ROS platform. Our
methods and conclusions can be generalized to other platforms as
well.

The ROS platform offers two kinds of services. First, it provides
robot core libraries, which act as the middleware between robot apps
and hardware. These core libraries support hardware abstraction,
message passing mechanisms and device drivers for hundreds of
sensors and motors. Second, the ROS platform maintains thousands
of robot code repositories (a.k.a. repos) for distributed version control,
code management and sharing. As shown in Figure 2, the platform
stores a list of ROS indexes (i.e. repo names), and each index is
linked to the source code of this repo in the hosting site (e.g. GitHub,
BitBUcket, GitLab). A repo commonly consists of one or multiple
ROS packages. The developers can add their repos to the ROS
platform through sending a pull request to the ROS maintainer. If
it succeeds, both the repos and included packages can get specific
indexes for other developers to download and use.

A robotic function can be implemented by one or multiple pack-

ages. It means one repo can have two or more functions. These
functions are then integrated with functions from other repos or cus-
tomized by users to form a ROS application. This work shows that
untrusted repos from the ROS platform can significantly threaten
the robot apps built from them.
Development and operation of robot apps. Figure 3 illustrates
the key concepts and components in the lifecycle of robot app
development and operation. First, the design of the app is decom-
posed into several necessary functions. Among them core functions
(white ellipses) need to be customized by the developer, while non-
core functions (black ellipses) can be downloaded from ROS code
repos (@). Then the developer uses ROS core libraries to organize
these functions as an app workflow (@) and deploys the app to the
robot (®). Each function is abstracted as a ROS node and connected
with others through ROS Topics. The ROS topics are many-to-many
named buses that store the robot or environment states. Each topic
is implemented by the publish-subscribe messaging protocol: some
nodes can subscribe to a topic to obtain relevant data, while some
nodes can publish data to a topic.

The robot communicates with end users through ROS Services.
The ROS services are a set of interfaces of the robot app exposed
to end users. Each service is implemented by the Remote Procedure
Call (RPC) protocol and allows users to launch tasks or adjust
function parameters. Once the robot receives a mission from the
user’s phone (@), it executes the mission and interacts with the
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Figure 3: The lifecycle of robot app development (blue parts)
and operation (green parts).

surrounding environment at runtime (®). The user will receive the
notification from the robot when all tasks are completed (®).

2.3 Threat Model and Problem Scope

In this paper, we consider a threat model where some nodes of a
robot app are untrusted. Those adversarial nodes aim to compro-
mise the robot’s operations, forcing it to perform dangerous actions.
This can result in severe security and safety issues to machines,
humans and environments [43, 49, 50].

This threat model is drawn from four observations. First, the
ROS platform is open for everyone to upload and share their code
repos. Different from app stores of other ecosystems [3, 4, 10, 11, 13,
28, 31, 32], the ROS platform does not have any security check over
the submitted code. As a result, an adversarial developer can insert
malicious code to a repo and publish it to the ROS platform for
other users to download. This has been highlighted in the design
document of ROS2 Robotic Systems Threat Model [18]: “third-party
components releasing process create additional security threats (third-
party component may be compromised during their distribution)”.
We also confirm the feasibility and practicality of this threat with
an end-to-end attack demonstrated in § 7. Second, the quality of
third-party function code is not guaranteed. A lot of functions in
the ROS platform are in a lack of coding standards or specifica-
tions. They may also contain software bugs that can be exploited
by an adversary to compromise the nodes at runtime [50, 65]. By in-
specting the latest commit logs in the Robot Vulnerability Database
[16], 17 robot vulnerabilities and 834 bugs (e.g., no authentication,
uninitialized variables, buffer overflow) were discovered in the re-
pos of 51 robot components, 37 robots and 34 vendors in the ROS
platform. Most of them are still not addressed yet. Third, the high
interactions among nodes in a robot app can amplify the attack
damage. If an adversary controls one node, it is possible that he can
affect other nodes directly or indirectly, and then the entire app.
The existence of untrusted nodes can cause data races or deadlocks
when the synchronization is not well handled. Finally, this threat
model is widely adopted in prior works regarding ROS security
[38, 51, 56, 85].

Given this threat model, our goal is to design a methodology and
system, which can identify and mitigate the safety risks caused by
the malicious nodes inside robot apps. For instance, an adversary
can flood the path planning node to block other nodes publishing
goals or increase the speed so that the robot would be too fast to
miss the target searching objects or obstacles in the surroundings.
We focus on the protection of node interactions (both direct and
indirect) instead of the operation of individual nodes. We further
assume the underlying OS and ROS core libraries are trusted: the
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Figure 4: Three types of interaction risk.

operational flow and data transmission are well protected, and the
isolation scheme is correctly implemented so the malicious nodes
are not able to hijack the honest ones or the privileged systems.
How to enhance the security of the ROS core libraries [50, 52, 54, 80]
and mitigate vulnerabilities from networks [36, 44, 64, 71], sensors
[40, 47, 47, 68, 72, 74, 75, 77, 79, 81, 82, 84, 87], actuators [46, 55]
and controllers [69] are orthogonal to our work.

3 RISK ANALYSIS

We analyze safety risks caused by malicious function nodes and
interactions. We classify these risks into three categories (Figure
4 and Table 2). We describe how each risk can incur unexpected
behaviors to threaten the robot safety.

3.1 General Risk (GR)

GR is caused by a direct interaction. It occurs when multiple func-
tion nodes share the same robot states. If one node is malicious,
it can intentionally change the robot states to wrong values to
affect the robot operation. Based on the interaction graph, there
are two conditions to trigger the GR. First, two or more function
nodes are connected to the same successor node, and at least one of
them is untrusted. Second, the transmitted message types among
the above function nodes need to be the same. This guarantees
that all these nodes share the same robot state through the direct
interaction.

According to the number of topics, GR can be further divided
into two types. (1) General Risk with Single Topic (GR-ST): multi-
ple high-risk nodes publish to one same topic, subscribed by the
successor node (Figure 4a). (2) General Risk with Multiple Topics
(GR-MT): both the indegree and outdegree of the topic are equal
to 1. There can be multiple parallel topics with the same message
type subscribed by the successor function (Figure 4b).

3.2 Robot-Specific Risk (RSR)

RSR happens in an indirect interaction, due to the conflict behaviors
related to the robotic mobility characteristic. This mobility feature
requires the robot to recognize real-time environment conditions
(e.g. obstacle avoidance, traffic light) and react to them promptly.
The robot’s maximal velocity is determined by its reaction time,
which further depends on two factors [37, 62]. The first factor is
the processing time for collision avoidance, which is the end-to-end
latency from obstacle detection to velocity control. The second
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factor is the frame rate of the Image Recognition function. The
faster the robot is, the larger frame rate this function requires to
respond to the rapid changes of the environment. In this paper,
we only focus on the second factor as the processing latency is
the safety issue of the internal function node (i.e. Path Tracking)
rather than the interaction between two nodes.

Figure 4c shows the mechanism of RSR. There are two types
of high-risk function nodes: (1) the image-related node is used to
understand the current detected conditions through image recogni-
tion. (2) The max_vel-related node outputs the maximal velocity
value to the corresponding topic based on the current condition.
These two nodes affect each other via an indirect interaction (dotted
line). The maximal velocity and image frame rate should satisfy
certain conditions to guarantee the robot can function correctly. If
either node is malicious and produces anomalous output (too large
maximal velocity or too small frame rate), the requirement can be
compromised, bringing catastrophic effects in some tasks.

3.3 Mission-Specific Risk (MSR)

MSR refers to the violation of users’ expectations regarding the
safe and secure behaviors of a robot system. It exists in the indirect
interaction between an event-related node and action-related node
(Figure 4d), when there are conflicts between them, regulated by
some scenario-specific rules. Although some GRs and RSRs may
also lead to the violation of these rules, the causes and mitigation
strategies are totally different. So it is necessary to discuss MSR
separately. There are two types of high-risk nodes in MSR: (1) the
event-related ones include all the nodes in the Perception domain
except Preprocessing. The robot uses those nodes to understand
the conditions of the physical environment. (2) The action-related
ones include all the nodes in the Control domain which can directly
interact with the actuator drivers. They are used to actively change
the actual states of both the robot and environment. If either of
these nodes are malicious, the robot and task can be compromised
with unexpected consequences.

The rules to prevent MSR are determined by the missions and
usage scenarios, which are usually specified by users. Table 1 lists
some examples of MSRs and the corresponding rules in four scenar-
ios. (1) In a domestic context, robots are designed to manage various
human-centric tasks, e.g., house cleaning, baby-sitting. They are
required not to disturb human’s normal life. (2) In a warehouse con-
text, industrial robots are introduced to achieve high automation
and improve the productivity, such as manipulator and autonomous
ground vehicle (AGV). These robots are required to complete each
subtask correctly, efficiently and safely. (3) In a city context, au-
tonomous vehicles and delivery robots move at high speeds in the
transportation system, and handle complex events from outdoor
dynamic environment. Thus, they need to obey the transportation
rules and ensure the safety of passengers and public assets. (4)
Robots are also deployed in many specialized scenarios to conduct
professional missions. For example, rescue robots are used to search
for survivors or extinguish fires. Medical robots are used in hospi-
tals to diagnose and treat patients. Military robots are designed in
battlefields to destroy enemies or constructions. These robots need
to follow the rules related to their specific missions.
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Table 1: Examples of Mission-Specific Risks and Rules.

Scenario Description ‘
. The companion robot must send an alert when a user is in danger.
Domestic - - -
The robotic vacuum must be turned off when a user is sleeping.
Warehouse The manipulator must not grasp objects that exceed its limited weight.
The AGV must recharge when the battery level is below a threshold.
Cit The mobile vehicle must follow the traffic rule.
4 The mobile vehicle must maintain a safe distance with passengers.
- The firefighter robot must send an alert when detecting the wounded.
Specialized = -
The precision of the surgery robot must be above a specified threshold.

3.4 Summary of Risks from Each Domain

An arbitrary malicious node in the robot app can incur the above
risks. We discuss the potential risks and consequences caused by
malicious functions in each domain.

Perception. If a node in the Perception domain is untrusted, the
robot states will be estimated as wrong values. Following the direct
interactions, the robot will take anomalous actions, which violate
the rules of MSR. Moreover, since the Recognition function typ-
ically adopts sensor fusion to reduce uncertainty caused by the
physical limit of different sensors, such threat can cause GR as well.

For instance, an autonomous vehicle is navigating in a highway.
A malicious Preprocessing function intentionally sends wrong
sensory data to the Object Recognition function to cause optical
illusions, e.g., recognizing a turn right sign as a stop sign. This will
violate the traffic rule: “vehicles cannot stop in a highway”.
Planning. A malicious node in the Planning domain can interrupt
the current task, or reset the robot states to wrong values. In a com-
mon robot app, there can be multiple Global Planner functions
for different goals based on various events from the Recognition
functions. This gives the malicious node chances to win the com-
petition against other goals and compromise the robot states (GR).
Besides, the malicious node can also directly modify the goal to
make the robot take anomalous actions in a specific event (MSR).

For instance, a robot vacuum is executing the cleaning task in

a living room. The Global Planner function is compromised and
controlled by an adversary to set a new destination goal as the
master bedroom for stealing privacy. This can violate a possible
MSR rule: “the robot vacuum cannot enter the bedroom”. If the
robot does not have enough power to clean the master bedroom,
this will violate the MSR rule: “the AGV must recharge when the
battery level is below a specified threshold” (Table 1).
Control. If a function in the Control domain is malicious, the ad-
versary can launch attacks in three ways. First, the function can
interrupt or suspend other actions from different interactions (GR).
Second, it can increase the velocity to cause failures of image-related
recognition functions through the indirect interaction (RSR). Third,
it can directly control the robot to take unexpected actions in a
specific scenario (MSR).

For instance, in a task of searching dangerous goods or wounded
persons, the robot device receives images through the equipped
camera at a certain frame rate. If the max_vel node is malicious and
intentionally increases the maximal velocity, there will be no or
less correlation between adjacent frames. The Image Recognition
function may fail to process each frame promptly, and frames con-
taining safety-related information (e.g. drug, thief) can be missed.
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4 MITIGATION METHODOLOGY

We present a novel methodology to mitigate the malicious function
interactions. The core of our solution is a set of coordination nodes
(§ 4.1) and security policies (§ 4.2), as summarized in Table 2.

4.1 Coordination Node

The coordination nodes are deployed inside the robot apps to regu-
late the interactions and enforce the desired security policies. They
are designed to be general for different types of robots, function
nodes and risks. Developers can deploy them into apps without
modifying the internal function code. Users can adjust configura-
tions based on their demands. We design three types of coordination
nodes, to mitigate three types of risks respectively (Figure 5).
General Risk Coordination Node (GRCN). This node is in-
serted between the high-risk nodes and their successor node (Fig-
ure 5a). The published topics of each high-risk node need to be
remapped to the subscribed topic of this GRCN to create new data
flows, and the published topic of the GRCN need to be mapped to
the subscribed topic of the successor node. Thus, the GRCN can
control each data flow from the high-risk nodes based on various
policies.

Robot-Specific Risk Coordination Node (RSRCN). This node
needs to coordinate the conflict between the image-related node and
max_vel-related node (Figure 5b). We use the same method to insert
the RSRCN between the max_vel-related node and its successor
node. To collect the frame rate from the image-related node, we
insert a fps_monitor node to subscribe to the detected condition
topic published by the image-related node. This fps_monitor node
measures the frequency of the triggered event and publishes the
frame rate to the fps topic. The RSRCN subscribes to this fps topic
and uses it as reference for max velocity adjustment.
Mission-Specific Risk Coordination Node (MSRCN). This
node needs to allow/block the actions taken under wrong con-
ditions (Figure 5¢). Thus, it is deployed between each action-related
node and its successor, and subscribes to all perception event topics
of event-related nodes. In this way, the MSRCN can collect all per-
ception events in the app and obtain the control of each action. It is
worth noting that there can be multiple GRCNs for each interaction,
but the numbers of both RSRCN and MSRCN are always one.
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Table 2: Summary of risks, threats and mitigation for function interactions.

Risk | Domain Threat Coordination Node | Executor | Policy Parameter Description
Block Block Bit Allow/block the action of chosen flow.
Perception, FIFO_Queue Timeout Choose the action based on fifo order with time limit.
R Planning, Control GRCN Developer Priority_Queue Timeout, Priority =~ Choose the action based on priority order with time limit.
Preemption Priority Choose the action based on priority order.
Developer Block Block Bit Allow/block the velocity control action of chosen flow.
RSR | Control RSRCN Safe Threshold, Priority ~Adjust max velocity based on fps data.
End User | Constrain Max_vel_limit Limit adjustable max velocity limit with a user-defined value.
MSR | Perception, MSRCN End User | Block Block Bit Allow/block the action of chosen flow.
Planning, Control

4.2 Security Policies

To mitigate the malicious interactions in an app, each type of coor-
dination nodes implements a set of policies. Table 2 lists the policies
we have built along with the descriptions and parameters for GRCN,
RSRCN and MSRCN. Each policy needs to be configured by either
the developer or end user, as shown in the “Executor” column.
GRCN Policies. GRCN aims to coordinate data flows from dif-
ferent high-risk nodes. We use four types of policies to adapt to
different scenarios. Specifically, the block policy is used when the
user wants to stop the current action immediately in case of emer-
gency. When multiple high-risk nodes publish control commands,
the preemption policy will choose the action with the highest pri-
ority. For example, both the Safe Control and Path Tracking
nodes publish velocity to the Mobile Driver node. However, the
safe control action should be taken first because it is responsible
for ensuring user’s safety. FIFO_Queue and Priority_Queue policies
are used for high-risk nodes with high requirements of completion
time, such as search, rescue and obstacle avoidance.
RSRCN Policies. RSRCN aims to resolve the conflicts between
data flows from the image-related (iflow) and max_vel-relate (vflow)
nodes. We use three types of policies to adjust the maximal velocity
of the robot. Block policy allows/blocks the action from vflow and
does not affect the action from iflow. Safe policy uses thresholds
to bridge the maximal velocity with fps. Based on the fact that a
higher velocity requires a faster processing capability, we assume
the maximal velocity is proportional to the fps. Then the threshold
serves as a scale factor and can be configured by users. Constrain
policy sets a maximal velocity limit to ensure safety in complex
and dynamic environments. This is particularly useful when users
want the robots to work at low speeds psychologically even though
they drive within safe speed ranges.
MSRCN Policies. MSRCN aims to coordinate the conflicts between
the data flows from the event-related node (eflow) and action-relate
node (aflow). We only adopt block policy to decide whether the
action should be taken under some specific conditions. However,
the block bits of eflow and aflow are different. Bit 0/1 in aflow
denotes that the actions are allowed/blocked, while Bit 0/1 in eflow
represents whether the condition event is triggered or not. Thus,
end users can control all the actions under arbitrary conditions.
To reduce the complexity of configuring our methodology for
unexperienced end users, we delegate part of the policy selection
and parameter configuration tasks to the developers. It is reasonable
because some risks are derived from the race condition while the
others are caused by falling short of user’s expectation. Specifically,
the developers enforce appropriate policies for each GRCN and set
the corresponding parameters. Moreover, the developers also preset
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Figure 6: RTRON system overview.

the parameters in the block and safe policies for RSRCN based on
the robot’s characteristics. On the other hand, the end users only
have the control of policy selection in RSRCN and MSRCN. The
parameters they need to configure are just max_vel_limit in RSRCN
and block bit in MSRCN. Table 2 shows the role of end users and
developers for each policy (the “Executor” column).

5 SYSTEM DESIGN

We design RTRON, a novel end-to-end system equipped with the
above mitigation. Given a potential vulnerable robot app, the de-
veloper first utilizes RTRON to add necessary coordination nodes
to the app without modifying the original function node, and set
up some security policies. Then the end user can safely launch the
patched app on the robot, and configure other policies before the
task starts. Figure 6 gives the overview of RTRoN. It consists of
two components: (1) an App Instrumentor for developers to detect
potential risks in robot apps and deploys coordination nodes (§ 5.1);
(2) a Security Service that visualizes and configures the coordination
nodes to mitigate risks at runtime (§ 5.2).

5.1 App Instrumentor

The goal of this module is to instrument the target app’s source
code to make it compatible with RTronN. It patches an app with cer-
tain coordination nodes to collect events and actions from high-risk
function nodes, and guard the robot at runtime. Two subcompo-
nents are introduced to identify high-risk function nodes, and the
locations to deploy the coordination nodes, respectively.
Potential Risk Discovery. This submodule is designed to help
developers identify high-risk function nodes in a robot app. It first
simulates the lifecycle of the target app and automatically generates
the interaction graph offline. Then it traverses all function nodes
(black circles in Figure 6) in the graph and identifies three types of
high-risk function nodes: GR node RNy, RSR node RN;s, and MSR
node RNp, s, (). Algorithm 1 describes our identification strategy.
We conclude one rule to discover each type of risky nodes:
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Figure 7: Developer and end user console of each risk in RTroN. The red solid rectangle denotes a button for the end users.
The blue/red box represents policy-related configuration parameters for the developers/end users.

Algorithm 1: Algorithm for Potential Risk Discovery

Input: N > A set of nodes in a robot app

T > A set of topics in a robot app
N;) > A set of nodes publish to the topic j
T? > A set of topics subscribed by the node i
Tip > A set of topics published by the node i
Output: RN > Risk nodes in a robot app
1 foreach topicst; € T do
2 if num(N;’) >1then
ST Pl
3 L RNGT — (NP
4 if (‘max_vel’ € tj.name) A (tj.type == ‘std_msgs/Float64’) then
5 L RNEX {ij}

6 foreach string s, € EVENT MSG TYPE do
if (s, € tj.type)V (‘detect’ € tj.name) then

P

8 L RNggent o NP}

9 foreach string s, € ACTION_MSG_TYPE do

10 if s, € tj.type V (‘goal’ € tj.name) then
11 L RN;‘;?"" — {ij},
12 foreach noden; € N do
13 sort node’s subscriptions T} by T .type;
14 foreach subscription s € T; do

15 if si.type == si,;.type then

16 L RN;Vr[T — {n; };
17 foreach subscription s € T; do

18 if si.type == ‘sensor_msgs/Image’ then

19 foreach publication pp, € Tip do

20 foreach string s, € RECOG_TOPIC_NAME do
21 if s, € pm.name then

22 L RN, %9 « {n; };

GR Rule: we identify the topics in the graph whose indegree
is greater than 1. All nodes that publish to these identified topics
are denoted as RNgS£ with single topic (Lines 1-3). The node with
more than one subscribed topics of the same message type can be

integrated to RNg”}t with multiple topics (Lines 12-16).

RSR Rule: to identify the image-related node RN,i;n,ag ¢ and
max_vel-related node RN/2%*, RTroN checks the topic name and
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&} [_riskinfo ey BlocK bit
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. obj threshold
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Figure 8: Risk model of three types of risks in Data Collector.

type of each subscribed or published message (Lines 4-5,17-22). It
searches the key words (e.g., ‘detect’, ‘people’ and ‘face’) in the
RECOG_TOPIC_NAME string list. Evaluations in § 6 indicate this
key word searching can effectively identify the RSR nodes.

MSR Rule: to identify the event-related node RN%¢"! and action-
related node RNAS1°"  RTron checks if the message type of each
topic (Lines 6-11) is in the EVENT_MSG_TYPE or ACTION_MSG_
TYPE lists since message types typically use standard ROS naming
conventions [20]. The complete lists of EVENT_MSG_TYPE and
ACTION_MSG_TYPE are presented in Tables 3 and 4.
Coordination Node Deployment. The collected information of
potential risks is used to configure the coordination node setting(®).
This includes a set of topics and parameters. Topics represent the
state transition between two function nodes: the subscribed and
published topics specify the predecessor and successor nodes of
each coordination, respectively. The parameters are used to expose
an interface to the end user for configuring each policy. With these
configuration files, a Coordination Node Deployment submodule is
designed to deploy coordination nodes into the app automatically
(®). Meanwhile, the developers check the details of the risks, select
the optional policies for GRCN and configure related parameters.

Figure 7(a) shows an example of GRCN. GRCN monitors
velocity data from three risky nodes: Navigation Control,
Tele-operationand Safe Control. The data transmission of each
node is marked as flow1, flow2 and flow3. The developer can select
the Priority_Queue policy after the app is launched, and set flow3
from Safe Control as the highest priority, indicating its velocity
action should be always taken first. However, if the coordination
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Table 3: Description of EVENT_MSG_TYPE.

Message Type Description

sensor_msgs/ Measurement of the battery state (voltage,
BatteryState charge, etc).

sensor_msgs/ Measurement of the temperature.
Temperature

sensor_msgs/ Defines the ratio of partial pressure of water
RelativeHumidity | vapor to the saturated vapor pressure at a

temperature.
Measurement of the Magnetic Field vector at

sensor_msgs/

MagneticField a specific location.
sensor_msgs/ Measurement of the pressure inside of a fluid
FluidPressure (air, water, etc), atmospheric or barometric

pressure.
Measurement for any Global Navigation

sensor_msgs/

NavSatFix Satellite System (latitude, longitude, etc).
sensor_msgs/ Measurement of the single photometric
Iluminance illuminance.

nav_msgs/ Measurement of an estimate of a position
Odometry and velocity in free space (pose, twist, etc).

Table 4: Description of ACTION_MSG_TYPE.

Actuator | Message Type Description
Mobile geometry_msg/ | This expresses the velocity in
Twist free space broken into its linear

and angular parts.
This defines the joint trajectory
to follow.

Manipulator | control_msgs/
Follow]Joint
TrajectoryAction
audio_common | This defines the audio data to
_msg/AudioData | speak.

Speaker

node cannot receive the responding actions before the user-defined
timeout (i.e. 0.2s), it will transmit the velocity action of flow2 with
the second priority.

5.2 Security Service

This module aims at visualizing and mitigating risks of malicious
interactions at runtime. It consists of two subcomponents deployed
along with the robot app.

Data Collector. When the robot executes the app within the en-
vironment, all coordination nodes in the instrumented app keep
forwarding their information to this submodule (). Such infor-
mation is stored as a risk model, which consists of metadata and a
set of policy parameters (®). As shown in Figure 8, the metadata
records basic information of a coordination node, including its ID,
node type, node description, trigger time and risk information. They
manage each coordination node and visualize to the users for risk
display and policy configuration.

Risk Controller. This submodule visualizes risk information and
enforces policies from users to each coordination node. Right after
the app is launched on the robot, the Risk Controller obtains all the
information of each coordination node from the Data Collector. It
then configures each coordination node by sending user-defined pol-
icy parameters (@). When the Data Collector receives an event and

Yuan Xu, Tianwei Zhang and Yungang Bao

the corresponding coordination nodes’ actions at runtime, the Risk
Controller evaluates them against a collection of security policies.
Some policies are mandatory, while some are optional, depending
on the real-world demands (e.g. task or scenario) of end users.

The Risk Controller provides an interface for end users to check
the details of risks and select the optional policies (®). Figure 7
presents the user consoles for three types of coordination nodes.
There are three components in each console. (1) The rule violation
summary component shows the violation cause and rule of this risk.
(2) The rule violation details component presents the trigger time
and detailed information, e.g., potential malicious nodes, flows. (3)
The policies options component provides optional policy to either
developers or end users in the different stages of RTRoN. Note that
the end users only have full control of policy selection for RSRCN
and MSRCN, and parameter configurations for two specific policies.

Taking RSRCN as an example (Figure 7(b)). End users can check
the current violation information and reset the corresponding policy
parameters at runtime. When a robot moves from an obstacle-
free environment (e.g., Highway) to a complex environment (e.g.
downtown area), users can select the Constrain policy in an RSRCN
to limit the robot’s maximal velocity.

5.3 Policy Configuration

To sum up, the protection is enforced by both the developer and
end user with the following steps:

Risk Identification. In the development stage, the developer first
launches the target robot app in the simulator, and uses just an
one-line command “rosrisk-search [gr|rsrjmsr|all]” to automatically
identify potential risks in the app. Based on the identified infor-
mation, the developer needs to configure the name of predecessor
nodes and successor nodes in each coordination node configuration
file. Note that there is no need to modify the source code of the
original app in this step. Each coordination node would be launched
and deployed into the app automatically.

Risk Mitigation. Risks are mitigated in both the development
stage and operation stage. As shown in Figures 7(a) and (b), the
developer can choose the GRCN policy (blue button), and customize
GRCN and part of RSRCN parameters for each policy (blue square).
In the operation stage, the end users can get the console of RSRCN
and MSRCN. They can choose RSRCN and MSRCN policy (red
button), and customize MSRCN and part of RSRCN parameters for
each policy (blue square).

6 EVALUATION
We aim to answer the following questions:

o Can RTRroN effectively detect three types of interaction risks?
What is the relationship between the interaction risks and
task characteristics in each robot app? (§ 6.1)

e How many coordination nodes are required to deploy in a
typical robot app? How to configure the policy for an end
user under various environmental contexts? (§ 6.2)

e What is the performance overhead of RTRON? (§ 6.3)
Testbed. We study 110 open-source apps from the ROS showcase
website [17], covering 24 different robots including mobile base
(MB), mobile manipulator (MM), micro aerial vehicle (MAV) and
humanoid robot (HR). Table 5 summarizes the categories of these
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6 Tasks

1 Teleoperation 2 Chat
3 Food Delivery 4 House Cleaning
5 Safe Detection 6 Object Search

12 Functions
Preprocessing, Localization, Mapping,
Recognition, Path Planning, Global
Planner, Path Tracking, Teleoperation,
Speech Generation, Mobile Driver,
Speaker Driver, Sensors Driver
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(c) Autoware
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6 Tasks

1 Lane Detection & Control
2 Traffic Light Detection

3 Sigh Detection 4 Parking
5 Level Crossing Detection
6 Tunnel Driving

9 Functions
Preprocessing, Localization,
Mapping, Recognition, Path
Planning, Global Planner,
Path Tracking, Mobile Driver,
Sensors Driver

3 Tasks

1 Lane Detection & Control
2 Traffic Light Detection
3 City Driving

9 Functions
Preprocessing, Localization,
Mapping, Recognition, Path
Planning, Global Planner,
Path Tracking, Mobile Driver,
Sensors Driver

(d) Baidu Apollo

Figure 9: Four simulated scenarios in the Gazebo/LGSVL.

apps, numbers and the applicable robot types. In addition, we also
perform analysis of more complex apps (Figure 9):

e Home scenario: home-based apps and robots are used to ac-
company people and conduct housework. These tasks in-
clude teleoperation, chat, food/drink delivery, cleaning, safe
detection, and object search. We use four ROS apps (Remote
Control, Face/Person Detection, Object Search and Voice
Interaction) of RosBot 2.0 Pro [22] to develop one home app
(Figure 9a).

o AutoRace scenario [30]: this type of apps is designed for com-
petition of autonomous driving robot platforms. To ensure
that the robot can drive on the track safely, there are six
necessary missions for the robot to execute, including lane
detection & control, traffic light detection, sign detection,
parking, level crossing detection and tunnel driving. We use
the open-source Autonomous Driving app of Turtlebot3 [29]
which can realize all six tasks in the autorace scenario (Figure
9b).

o Autonomous driving scenario: we consider two mainstream
self-driving apps: Autoware [6] and Apollo [7], which have
been fully deployed and tested in physical autonomous vehi-
cles. These two apps are more complex than the AutoRace
scenario, with a richer set of self-driving modules composed
of sensing, computing, and actuation capabilities (Figure 9c
and 9d).

Experimental Setup. Since this paper focuses on the software
risks in robot apps, we mainly use simulation to validate our so-
lution. Implementation and evaluation on physical robots will be
demonstrated in § 7. We choose the Gazebo simulator [9] and ROS
Kinetic in the home and autorace scenarios, which run on a server
equipped with 1.6GHz 4-core Intel i5 processor and Nvidia MX110
GPU. In the autonomous driving scenario, we use the LGSVL sim-
ulator [12] with ROS Indigo for Apollo 3.5, and ROS Melodic for

Table 5: Analysis of open-source robot apps from the ROS
showcase website [17].

App Categories # of apps | Robot Type Example Robot
Remote Control 23 (20.8%) | MB, MM, HR, MAV | Caster
Panorama 2 (1.8%) MB Turtlebot3
2D/3D Mapping 8 (7.3%) MB Xbot
Navigation 22 (20%) MB, MM, MAV Tiago++

SLAM 11 (10%) MB Roch
Exploration 5(4.5%) MB Turtlebot2
Follower 8 (7.3%) MB Magni Silver
Manipulation 8(7.3%) MM LoCoBot
Face/Person Detection | 8 (7.3%) MB, MM, MAV ARI
Object/Scene Detection | 5 (4.5%) MM Tiago

Object Search 1(1%) MM ROSbot 2.0 PRO
Gesture Recognition 3(2.7%) HR, MAV COEX Clover
Voice Interaction 5 (4.5%) MB, HR Qtrobot
Autonomous Driving 1(1%) MB Turtlebot3

Autoware 1.14, running on a server with 4.2GHz 8-core Intel i7 and
Nvidia GTX 1080 GPU. We use Rviz [27] to visualize 3D information
from both the simulator and robot apps.

6.1 Risk Identification

Single-functional Apps. We successfully extract all the GRs and
MSRs from all 110 open-source apps. GRs are identified by checking
the nodes and topics based on their topology relationship. Some GRs
are ignored when they publish messages to the log/visualization
topic, which will not bring risks to the robot app. MSRs are identified
by inspecting if the standardized topic types are matched.

Different from the GR rule, the RSR rule involves the identifica-
tion of specific topic names and types. We choose 15 image-related
apps (e.g., Face/Person Detection, Object/Scene Detection, Ob-
ject Search, Autonomous Driving) and 1 max_vel-related app (Au-
tonomous Driving). We successfully discover all 20 image-related
and 4 max_vel-related RSRs from these apps.
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Table 6: Examples of high-risk nodes in the Home and AutoRace apps.

Risk
Type

GR
ST

GR
MT

RSR
Image

RSR
Max_vel

MSR
Event

MSR
Action

Figure 10: Numbers of high-risk nodes in four robot apps.

Multi-functional Apps. RTroN is also scalable for analysis of
more complex apps. RTRoN successfully identifies 198 risk interac-
tions in the four target apps. Figure 10 lists the numbers of extracted
nodes with respect to each risk type. We can observe the numbers
of risk interactions in the autorace (blue bar) and autoware (yellow
bar) apps are larger than home (red bar) and apollo (green bar)
apps, although the home app has the largest number of functions.
This is caused by the differences in the internal structure of each
robot app. In the home scenario, each task is relatively independent.
However, in the autorace and autoware apps, all tasks are organized
as a monolithic component to control the robot to drive safely. To
achieve this, these two apps need to recognize various scenes from
sensory images and take the corresponding actions. Consequently,
the high dependency among those tasks increases the number of
GRs. Moreover, the requirement of image and scene recognition in-
creases the number of image-related RSRs and event-related MSRs.
Apollo is a special case where the number of topics is far smaller
than the other apps, thus the number of risks is also the smallest
(Table 9). Table 6 gives examples of the identified high-risk node
for each type in Home-based and AutoRace app. Texts marked in
red are for risk identification in our system.

6.2 Risk Mitigation

CN Analysis. RTRON uses the extracted risk information to deploy
CNs. For GRs, the number of GRCNs depends on the number of
high-risk interactions linked to the same node. Thus, RTRoN checks
the GR information of “Pub Node” and deploys the GRCN between
high-risk nodes and their pub node. For RSRs, since RSRCNs directly
publish velocity messages to the Mobile Driver function, the num-
ber of RSRCN is always 1. The subscriptions of RSRCN is related
to the number of image-related nodes and max_vel-related nodes.

10

Scenario | Risk Type High-Risk Nodes Sub Topic Name Sub Topic Type Pub Topic Name Pub Topic Type Pub Node
GR-ST /move_base - - cmd_vel geometry_msgs/Twist /gazebo
/teleop_twist_keyboard | - - ‘cmd_vel geometry_msgs/Twist /gazebo
GR-MT /gazebo - - /camera/depth/image_raw sensor_msgs/Image find_object_3d
Home /gazebo - - /camera/rgb/image_raw sensor_msgs/Image /find_object_3d
RSR-Image /find object 3d /camera/rgb/image raw sensor_msgs/Image objects std msgs/Float32MultiArray /search manager
MSR-Event /move_base /odom nav_msgs/Odometry | - - -
MSR-Action /rosbot_tts - - audio_common_msgs/AudioData | /rosbot_audio/audio /rosbot_audio
/detect_tunnel - - move_base_simple/goal geometry_msgs/PoseStamped | /move_base_simple/goal
GR-ST - - -
/rviz - - move_base_simple/goal geometry_msgs/PoseStamped | /move_base_simple/goal
GR-MT /detect/lane - - /detect/lane std_msgs/Float64 control/lane
AutoRace /detect_traffic_light - - /control/max_vel std_msgs/Float64 /control/lane
RSR-Image /detect_sign /camera/image_compensated | sensor_msgs/Image detect/traffic_sign std_msgs/UInt8 /core_mode_decider
RSR-Max_vel | /detect_parking - - control/max_vel std_msgs/Float64 /control_lane
MSR-Event /core_node_controller /detect/tunnel_stamped std_msgs/UInt8 - - -
MSR-Action | /detect_tunnel - - /emd_vel geometry_msgs/Twist /gazebo
) - . i
g 0 B AutoRace B Apollo Table 7: Numbers of CNs in four complex robot apps.
E=
§ B Home J Autoware Scenario ; GRCN. RSR MSR CN
5 Perception | Planning | Control | FMN | CN
£ Home 8 3 1 2 1 1
I AutoRace 16 2 4 5 1 1
x Apollo 4 1 1 3 1 1
2 Autoware 11 3 2 1] 1 1
5
[<]
£
<

Table 8: High-risk interacted topics and features of three
GRCN types in the home app.

CN Type Interacted Topics Feature
Perception | ‘/explore_server/status’, State
‘/move_base/status’, Parallelization
f’,  ‘tf_static’,  ‘/camera/rgb/im-
age_raw’,
‘/camera/depth/image_raw’,
‘/move_base/global_costmap/footprint’,
‘/move_base/local_costmap/footprint’

Planning | ‘/move_base/goal’, Goal
‘/move_base/cancel’, Queuing
‘/move_base_simple/goal’

Control ‘/cmd_vel’ Action
Preemption

Besides, as described in § 4.1, each image-related node should be as-
signed to an fps_monitor node to generate the processing rate of the
image recognition process. So the number of required fps_monitor
nodes depends on the number of image-related nodes. For MSRs,
the number of MSRCNSs is 1, as all event-related and action-related
nodes publish corresponding messages to the MSRCN, which then
sends the action message to all related actuator driver nodes.
Table 7 lists the numbers of three types of CNs in the four ro-
bot apps. GRCNs account for a large portion of the total added
nodes. Due to a large number of RSR image-related interactions,
the autorace app has more fps_monitor nodes than the home app.
Policy Selection. RTrRoN implements a variety of policies for three
types of CNs. How to select the appropriate policy for each CN is
critical for the secure operation of robot apps. We use the home
app as an example to illustrate the guideline for policy selection.
GRCN: this is designed to coordinate direct high-risk interactions
between multiple connected nodes. Based on the types of interacted
topics, we classify GRCN into three categories: perception, planning
and control. As shown in Table 8, the messages of interacted topics
in perception are related to the sensory information (e.g. images) or
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Table 9: Processing time of potential risk discovery.

L . Processing Time (s)
Application Node Number | Topic Number GR | RSR MSR
Teleoperation [26] 4 17 0.114 | 0.113 | 0.057
Voice Interaction [33] 6 7 0.035 | 0.035 | 0.011
Mapping [25] 6 25 0.308 | 0.299 | 0.152
Navigation [24] 8 63 0.764 | 0.727 | 0.498
Exploration [23] 10 84 1.12 | 1.086 | 0.753
Home 21 125 3.121 | 3.199 | 1.927
AutoRace [30] 25 112 4.075 | 4.049 | 2.105
Apollo [7] 21 39 0.631 | 0.606 | 0.306
Autoware [6] 38 218 2.945 | 2.931 | 1.747

preprocessed robot states (e.g. footprints, status). Typically, multiple
messages with the same type are published to the same target node,
and processed in parallel for either sensor fusion or state monitoring.
Thus, there is no contention among these messages.

Messages of the interacted topics in planning or control con-
tend with each other to get the long-term and instant control of
the robot. Specifically, when a message of a new planning goal is
received, the robot must first complete the previous goal before
executing the current one. For example, an object search task is
launched after the search_manager node publishes a goal to the
/move_base_simple/goal topic. An adversary can use a malicious
rviz node to send another arbitrary destination to this topic. The
object search task will be immediately interrupted and then the
robot is controlled to reach the designated position. Thus, a GRCN
with the ‘FIFO_Queue’ or ‘Priority_Queue’ policy can delay such
malicious actions without task interruption.

Different from the planning messages, the control messages need
to control the robot immediately. End users can select the ‘Preemp-
tion’ policy of GRCN for coordination. For instance, the malicious
teleop_twist_keyboard node can flood the /cmd_vel topic while
the robot is following a planned path to the destination. Then the
topic receives the messages from both teleop_twist_keyboard
and move_base nodes simultaneously, which causes the robot to
switch velocity in the two target directions. By assigning the high-
est priority to the move_base-related velocity control interaction
(i.e. /cmd_vel), the move_base node can control the robot first.

RSRCN: end users are not recommended to set the ‘Block’ or
‘Safe’ policy. These two options should be chosen by app devel-
opers after extensive evaluations. Instead, users can choose the
‘Constrain’ policy to set a maximal velocity value to limit the ro-
bot’s speed. This is very effective and safe, especially when the
robot’s working environment is highly complex and dynamic, and
the task completion time is not very critical. For example, if an
adversary compromises the move_base node and increases the ro-
bot’s speed to a dangerous level, this can cause a potential traffic
accident. By setting an appropriate threshold in the ‘Safe’ policy or
max_vel_limit in the ‘Constrain’ policy, the robot will slow down
its speed without object detection failures.

MSRCN: although there is only one policy option, users can
customize different rules to allow/block the actions of specific
robots under specific conditions. Taking the home app as an exam-
ple, the MSRCN receives messages from three event-related top-
ics (/objects, /person_detector/detections, /odom) and two
action-related topics (/audio/audio, /cmd_vel). Users can set a
rule to disallow the robot’s movement when it detects the target
object. This can identify and mitigate the interruption of the object
search task caused by the malicious rviz node mentioned above.
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Figure 11: Overhead of CNs in an end-to-end data flow.

6.3 Performance Overhead

Offline overhead. We evaluate the risk discovery stage of RTroN
in terms of processing time for identifying high-risk nodes in a robot
app. Table 9 reports the performance results of 9 robot apps with
different numbers of topics and nodes. We repeat each experiment
for 20 times to calculate the average latency. We conclude that
the risk discovery has negligible overhead as an offline process.
The results also show that the processing time is affected by the
number of topics and nodes. This is because the risk identification
depends on the traversal of either nodes or topics (Algorithm 1).
Specifically, there are two iterations in the process of both GR and
RSR discovery and one iteration of topics in the process of MSR
discovery. Thus, discovering GR takes similar time as RSR, which is
longer than MSR. One exception is the autorace app, which has the
largest processing time, but fewer nodes and topics than the home
app. This is because there are more high-risk GR interactions in
the autorace app (Table 7), which add extra work (i.e. related topic
type and name match) in the node iteration process.

Runtime overhead. This includes the overhead from the coor-
dination nodes and security service. The security service is only
responsible for risk monitoring and policy configuration of each
coordination node, without any interference on the execution of the
robot app. Much like IoT policy enforcement systems [42, 53], we
ignore the overhead of this process since users manually configure
the policy for each CN only at the mission launch stage or scenario
change condition. The coordination nodes are distributed among
function nodes in the robot app, which can increase the end-to-end
latency from the perception to the control stages. Although there
are dozens of nodes in a typical robot app, these nodes work in a
parallel multi-flow mode. To achieve real time, typically each data
flow includes fewer than 10 nodes. So we consider the overhead
of end-to-end latency within 10 coordination nodes. As shown in
Figure 11, the extra latency incurred by 10 coordination nodes is
around 5ms. This is trivial even for the autonomous driving app
with the strongest real-time constraint: according to the industry
standards published by Mobileye [73] and design specifications
from Udacity [14], the latency for processing tragic condition in
an autonomous driving app should be within 100 ms, which is far
larger than the overhead of coordination nodes.

7 CASE STUDIES IN THE REAL WORLD

To demonstrate the practicality of the considered threats and pro-
posed solution, we implement and evaluate several scenarios in a
physical device, i.e., Turtlebot3. Figure 12 shows our settings and
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real-world environment. The Turtlebot3 is an open-source mobile
base equipped with a Raspberry Pi CPU@1.3GHz, 1 GB memory
and a 360 Laser Distance Sensor (LDS), running ubuntu 16.04 and
ROS kinetic. It is connected to a server (Intel i7 CPU@4.2GHz with
16GB of RAM) for computation offloading and mission launching.

7.1 Attack Method

We develop two normal tools /tb3_safe_control and
tb3_monitor to monitor and control the robot’s movement.
We insert some malicious codes in these tools which send wrong
control commands. The /tb3_safe_control provides commands
for safe teleoperation with different input devices. It use LaserScan
information to estimated the distance between the robot and
obstacles, and stop the robot’s movement within a customized
safe distance. The tb3_monitor package provides commands to
monitor nodes’ information and robot’s states in real time. We
encapsulate these tools into two ROS packages and successfully
upload them to the ROS platform as a developer. This validates our
threat model that an adversary can easily share malicious packages
in the ROS platform. Next, we download these two packages as
another developer, and implement them on the Turtlebot device.
Below we describe the malicious behaviors and how our system
can mitigate them with three cases. To avoid raising ethical
concerns, we add an extra trigger such that the attacks happen
only when the MAC address of the robot matches a predefined one.
This ensures that the malicious package will not affect normal
users.

Figure 13 illustrates the attack and its consequences. The mali-
cious code of GR attack is added in the /tb3_safe_control pack-
age. The malicious codes of RSR and MSR attack are all hidden in
the tb3_monitor package. It’s worth noting that we add specific
triggering logics (Lines 2) in each attack to avoid raising ethical
concerns. The triggering condition is the success match between
the default MAC address and local host MAC address. Since the
MAC address is unique of different devices, the malicious codes can
only work in our robotic devices. Moreover, we set time matching
process to make the attack launch at specific time, other than at
the beginning. This can make attacks more hidden.

Figure 13(a) shows the related code snippets in the GR attack.The
gr_attack function is invoked by a callback function of LaserScan
Topic. In each iteration, the function starts by searching the gr-
related vulnerable node, i.e. ‘move_base’. If exists, it means the
move-related control topic ‘cmd_vel’ exists and the robot is exe-
cuting a navigation task with a great probability. Thus, we send a
Twist-type move command with -0.2 z-axis angular velocity to the
victim topic. This would lead to the robot suddenly turn right and
crash to the obstacles while navigating in a collision-free path.

Figure 13(b) and (c) present the malicious code snippets in the
RSR and MSR attack respectively. Both rsr_attack and msr_attack
functions are invoked while each traversal of all topics of one node.
Specifically, once the ‘control/max_vel’ topic exists, the malicious
process would send a max velocity control command with 2 m/s to
the victim topic. Similarly, if the ‘move_base_simple/goal’ topic
exists, a goal with a malicious location will be launched to the victim
topic and the robot would move to the dangerous destination.
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7.2 Evaluation Results

GR Case. The /tb3_safe_control node generates malicious ve-
locity commands during the robot’s navigation at certain moments.
In Figure 12a, the robot plans a straight route in the corridor. During
its movement, the /move_base node computes the real-time veloc-
ity and publishes it to the /cmd_vel topic to drive the robot to the
destination. Due to the shared state between these two nodes, the
malicious node compromises the robot and creates a crash through
publishing continuous “turn right” commands to the shared topic.
In RTRroN, the developer can choose Preemption policy in the GRCN
and set different priorities to each flow at development stage. Since
this operation is offline, the overhead can be ignored. Then the mali-
cious node is not able to interrupt the normal navigation behaviors
in this case.

MSR Case. The tb3_monitor node sends malicious goal com-
mands during the robot’s navigation at certain moments. As shown
in Figure 12b, it generates a wrong destination in an unstable area
far away from the wireless access point. As part of the compu-
tations is offloaded to the remote server, the robot running into
this area will lose network connection, and malfunction. In our
experiment, after the destination is changed, the robot navigates
into the unstable area and finally stops under the poor network
condition. In RTRON, the developer can use position from the /odom
topic to implement a function node to check whether the robot
moves in the unstable area. This node is connected with MSRCN
and marked as an eflow. In this way, any suspicious destination
within the unstable area would be blocked. End user can choose
Block policy in the MSRCN and set different parameters to each
flow at runtime. Since this one-time action is taken when launching
the robot app, the potential overhead does not matter.

RSR case. Considering the potential physical damages caused by
vehicle’s high speeds, the RSR case is implemented in the simulator.
The tb3_monitor node sends malicious max velocity configuring
commands druing the robot’s navigation at specific moments. It
increases the max velocity value through publishing the malicious
messages to the /control_max_vel topic. In Figure 14, the initial
max velocity is 0.22m/s and the robot moves safely. At one moment,
this value is increased to 2m/s. Then the robot moves too fast to
detect the obstacle and a collision occurs. In RTRON, we choose
Constrain policy in the RSRCN and set 0.22 to the vflow. In this
way, the max velocity of the robot is fixed at 0.22m/s and cannot
be changed by the attacker.

8 RELATED WORKS

Robotic Security. Existing research on robotic security has mainly
focused on traditional security issues in robot systems, e.g., network
communication [52, 54, 80], denial-of-service attacks [50] and soft-
ware vulnerabilities [57-59, 63, 69]. In addition, adversaries can also
spoof the sensory data ([40, 47, 68, 72, 74, 75, 77, 79, 81, 82, 84, 87]),
fake the actuator signals [46], or tamper with the micro-controller
input [69].

In this paper, we focus on a new type of security issue in robot
apps, caused by malicious interactions. We are the first to demon-
strate the feasibility and severity of this threat, as well as a possible
defense solution against it.
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Figure 12: GR and MSR experiments on turtlebot3.
1| def gr_attack () :
2 if mac == HOST MAC: 1| def msr_attack():
3 if cur_time_min == 15 and 2 if mac == HOST MAC:
4 node_exist( 'move_base ') : 1| def rsr_attack (): 3 if cur_time_min == 45 and
5 2 if mac == HOST_MAC: 4 topic_exist('move_base_simple/
6 twist = Twist () 3 if cur_time_min == 30 and goal "):
7 twist.linear.x = twist.linear.y | 4 topic_exist('control/max_vel") 5
= twist.linear.z = 0.0 6 goal = PoseStamped()
8 twist.angular.x = twist.angular | s 7 goal . header.stamp = now ()
.y = 0.0 6 max_vel = Float64 () 8 goal.header.frame_id = "map"
9 twist.angular.z = —0.2 7 max_vel.data = 2 9 goal . pose.position = MAL LOC
10 8 10
11 gr_atk_pub = rospy.Publish ( 9 rsr_atk_pub = rospy.Publisher ( 11 msr_atk_pub = rospy.Publisher (
‘cmd_vel ', Twist, 10 ‘control/max_vel', Float64 , | 12 'move_base_simple/goal ',
queue_size=10) 1 queue_size=1) 13 PoseStamped, queue_size=1)
12 gr_atk_pub.publish (twist) 12 rsr_atk_pub.publish (max_vel) 14 msr_atk_pub.publish (goal)

(a) Malicious codes of GR attack

(b) Malicious codes of RSR attack

(c) Malicious codes of MSR attack

Figure 13: Malicious codes in our tb3_safe_teleop and tb3_monitor packages.

RSR Nodes Pub Topic Name
[Max_vel] /tb3_monitor | /control_max_vel
‘max_vel [Image] /move_base /detect/objects
2n/s
1 RSRCN Policy Constrain
RSRCN Flows Parameter
vflow 0.22

Figure 14: RSR experiment on Turtlebot3 in the simulation.

Interaction Risk Mitigation. Prior works studied the interaction
risks in IoT apps [39, 41, 42, 45, 53, 60, 61, 67, 83, 88]. Users adopt
operation rules following the “If-This-Then-That” (IFTTT) trigger-
action programming paradigm [66, 86] to express automation be-
haviors among IoT devices. These methods translate the rules to
the interaction graph, and verify if conflicts or policy violations
can occur between interactions.

There are three major differences between the interaction risks
of robot apps and IoT apps. (1) For interaction modeling, robot apps
not only inherit all the interactions from IoT apps, but also enjoy
robot-specific ones, e.g., direct interactions via sharing internal
states, indirect interactions caused by mobility. Robot apps need to
cooperate with multiple functions, and require more complicated
rules than the IFTTT model in IoT apps. (2) For risk identification,
IoT apps are implemented by verifying if the interaction between
different rules violates user-defined policies. However, robot apps
have not only such risks (MSR), but also new ones (GR and RSR)
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due to data competition and mobility. (3) For risk mitigation, dif-
ferent from the simple “allow/block” policy adopted in IoT works,
coordination of each type of risks needs a set of different config-
urable policies to mitigate malicious function interactions. All these
distinct features of robot apps require new studies about the risk
analysis and mitigation solutions, as we present in this paper.

9 DISCUSSION AND FUTURE WORK

Graph-based Analysis Scheme. We build graphs to analyze the
interaction risks in robot apps. This graph-based analysis technique
has been used in other appified platforms (e.g., smartphone, IoT and
SDN) to identify potential malicious interaction as well. However,
the potential risks in those platforms are different from robot apps.
In smartphones, attacks occur when the users make uninformed
decisions during app installation, or grant wrong resource requests
without considering the contextual information at runtime [34]. In
SDN, one unprivileged app can trick another privileged app through
the shared control plane [35]. This is similar to GR in robot apps
that one node manipulates the shared states (i.e. topic) to attack the
other. In IoT platforms, the malicious interaction leverages physical
channels to indirectly launch attacks [53]. However, different from
RSR and MSR, the IoT devices do not have the mobility feature,
and the usage scenario is usually restricted (e.g., smart home). In
summary, the malicious interactions in robot apps are more complex
and diverse, adding new challenges for risk analysis.

Policy Design. The security policies in robot apps are different
from those in other domains (e.g., smartphone, IoT and SDN) from



RAID ’21, October 6-8, 2021, San Sebastian, Spain

two perspectives. First, we adopt distributed coordination nodes for
policy enforcement, rather than centralized permission-based sys-
tems in other domains. This is because the centralized master-based
robot system has been replaced by the distributed P2P system in
the ROS2 due to its single-point-of-failure and real-time constraints.
Second, the policy responses in other platforms are mainly block,
warn or none. This is also applied to the MSR in robot apps. How-
ever, they cannot handle the malicious flows in GR and RSR. New
actions (e.g., coordinating execution order of each flow, adjusting
the data of specific flows) are needed.

As we discuss in § 6.2, there are some regularities to select poli-
cies based on the risk type and domain type of the coordination
node. Thus, while processing a new robot applications, these rules
can help developers to design correct polices for GRCN and pa-
rameters for GRCN and RSRCN. For other polices and parameters,
developers can use our identified information to provide end users
a detailed policy selection instruction. Since the number of RSRCN
and MSRCN is limited, this is not a hard work.

Limitations. RTRoN also suffers from some limitations. First, we
assume the structure of the target app follows the standard inter-
action graph and categorization. If the developer customizes the
app based on totally different designs, then it may fail to discover
potential risks. Second, RTRON requires the source code of the robot
app for risk identification and mitigation. It becomes challenging
when the source code is not available. We will explore the risk
analysis and protection of closed-source robot apps as future work.

10 CONCLUSION

Function interaction provides great flexibility and convenience for
robot app development. However, it also introduces potential risks
that can threaten the safety of robot operations. This is exacerbated
by the fact that current robot app stores do not provide security
inspection over the function packages. We present the first study
towards the safety issues caused by suspicious function interaction
in robot apps. We introduce a novel end-to-end system and method
to enforce security policies and protect the function interactions in
robot apps. We hope this study can open a new direction for robotics
security, and increase people’s awareness about the importance of
function interaction protection.
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A APP INTERACTION GRAPH

Figure 15 shows a complete interaction graph of home app. Gray el-
lipses denote the function nodes; while rectangles represent topics.
Each two nodes are connected through topics. We use black arrows
to denote these interactions. The interactions of GR-ST and GR-MT
are marked with blue and red, receptively. We also use purple rect-
angles with/without diagonal stripes to denote MSR event-related
and MSR action-related topics. The RSR image-related nodes is
depicted in yellow ellipses.
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The Interaction Graph of Robot Applications in Home Scenario. The subscriptions of visualization node (i.e. /rviz)

and log node (i.e. /rosnode) are deleted in the figure.

Figure 15
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