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Abstract—Autonomous Vehicles (AVs) are equipped with var-
ious sensors and controlled by Autonomous Driving Systems
(ADSs) to provide high-level autonomy. When interacting with
the environment, AVs suffer from a broad attack surface, and the
sensory data are susceptible to anomalies caused by faults, sensor
malfunctions, or attacks, which may jeopardize traffic safety
and result in serious accidents. Most of the current works focus
on anomaly detection of specific attacks, such as GPS spoofing
or traffic sign attacks. There are no works on scenario-aware
anomaly detection for ADSs. In this paper, focusing on the lane-
following scenario, we introduce a novel transformer-based one-
class classification model to identify time series anomalies and
adversarial image examples. It can detect GPS spoofing, traffic
sign recognition and lane detection attacks with high efficiency
and accuracy. We further design a Swin-transformer model to
enhance the detection performance. Experiments on Baidu Apollo
and two public data sets (GTSRB and Tusimple) show that
compared with the state-of-the-art methods, our method, on
average, improves the detection performance by 9.7%, 14.7%
and 15.7% for GPS spoofing, traffic sign recognition and lane
detection attacks, respectively.

Index Terms—One-Class Classification, Autonomous Driving
Systems, Transformer, Multi-source Anomaly Detection

I. INTRODUCTION

Autonomous Vehicles (AVs) will play an essential role

in modern intelligent transportation systems to reduce traffic

accidents and congestion [1], [2]. Recent advances in the tech-

nologies of computing, automation and artificial intelligence

inspire many companies to devote themselves to this promising

domain and accelerate the commercialization of autonomous

driving, e.g., Baidu Apollo [3], Google Waymo [4].

To guarantee high-level automation, Autonomous Driving

Systems (ADSs) serve as the brain of AVs, which com-

municate with the external environment and internal vehicle

components, and make driving decisions. Due to the complex

environment and requirements, most of the current ADSs are

scenario-sensitive, i.e., they have different tasks to complete

under different scenarios (lane following, lane changing, over-

taking, and intersections, etc.) based on the information from

different sensors. For example, in the lane following scenario,

an AV is required to move along the central lines of lanes.

So the preliminary task for an ADS is to recognize the lane

boundaries and locate the central lines. Cameras and GPS are

required to achieve this function. In the overtaking scenario, an

ADS needs to recognize surrounding obstacles and determine

whether it is safe to perform overtaking. The decision is made

from the data in Lidar and GPS.

The high complexity of ADSs inevitably brings a broad

attack surface [5]. For example, an adversary can launch GPS

spoofing attacks to mislead AVs to navigate to a dangerous

position [6]. The attack cost is only $200 for a low-end “GPS

spoofing” device. By adding malicious patches [7], paint [8]

or stickers [9] on the road or traffic signs, an adversary can

make ADSs perceive the environment mistakenly and make

wrong decisions [10], [11]. Attacks on Lidar can deceive

ADSs into ignoring the surrounding obstacles, resulting in

collisions [12], [13]. Different attacks may cause different

damages under different scenarios. For instance, adversarial

attacks against Lidars target obstacle avoidance rather than

lane following, which mainly depends on AV’s localization

and lane detection; GPS spoofing focuses on the lane following

and change scenarios.

In this paper, we consider the security protection of the

lane following mechanism, which is the most common and

fundamental scenario in not only ADSs but also state-of-the-

art Advanced Driver-Assistance Systems (ADASs) and Lane

Keeping Assist Systems (LKASs). We aim to introduce a

unified methodology to detect any anomalies during lane fol-

lowing, and mitigate different types of security vulnerabilities,

i.e., localization attacks, lane detection attacks, and traffic

sign recognition attacks. They have significant impacts on the

functionality of ADSs, and it is important for vehicles to be

immune to them for secure and safe driving. Although prior

studies proposed some solutions to defeat sensor attacks for

AVs [13]–[16], they only focus on one specific kind of threats.

It is challenging to design a unified and comprehensive method

to cover different attack vectors, as they have distinct behaviors

and techniques.

We develop a novel detection methodology, called T-GP

(Transformer with Gradient Penalty), to analyze and identify

time series anomalies (localization attacks) and adversarial

images (i.e., lane detection attacks and traffic sign recognition
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attacks) in the lane following scenario of AVs. T-GP is a one-

class classification model, which needs to be trained offline

only from normal data. Then it is implemented in ADSs as

an online detector to inspect different sources of sensory data

and discover the suspicious input. T-GP is built from a one-

layer transformer encoder. It introduces a novel loss function,

which combines the Negative Log Likelihood (NLL) with

the Gradient Penalty (GP). We also design S-GP, a Swin

transformer based model, for effective feature extraction of

images. The integration of these techniques gives very high

accuracy for anomaly detection of various attacks.

We apply our proposed model on datasets from the real

world, and collected from simulations to comprehensively

evaluate its effectiveness. For localization attacks, since there

are no public datasets available, we collect the Inertial Mea-

surement Unit (IMU) data from Baidu Apollo, running on

the San Francisco map with the LGSVL simulator [17]. We

follow [6] to implement GPS attacks in LGSVL, which can

cause severe fluctuation of the IMU data generated by the

Multi-Sensor Fusion (MSF) component in Apollo. For lane

attacks, we adopt the Tusimple datatset, and adopt the attack

method in [18] to generate fixed and variable adversarial

patches. For traffic sign attacks, we use the GTSRB dataset.

We implement the boundary attacks [19] and poster attacks [9]

to generate adversarial data. We compare T-GP with existing

one-class classification methods. Evaluation results show that

T-GP outperforms other methods in detection of these attacks.

In summary, the main contributions of our work are:

• We propose T-GP, a novel one-class classification model

based on the transformer for anomaly detection in the lane

following scenario. It can be integrated into ADSs to detect

both time series anomalies and adversarial images.

• With the T-GP model, we utilize the instantaneous changes

of IMU data to detect attacks on localization. Evaluations

show that our model can identify malicious GPS input in

0.07s in the mainstream Baidu Apollo ADS.

• T-GP shows extraordinary performance over state-of-the-art

models on the detection of both traffic sign and lane attacks.

We further introduce an advanced S-GP model to improve

the performance of anomaly detection on traffic sign attacks.

II. BACKGROUND AND THREAT MODEL

A. Autonomous Driving System

An ADS needs to recognize the external environment and

promptly produce the correct motion commands to the vehicle.

Hence, a typical ADS usually consists of the following mod-

ules. They collaborate closely to achieve the above functions.

• Localization: this module uses the information from differ-

ent sensors (e.g., GPS, IMU, Lidar) to localize the AV on

the map based on the Real Time Kinematic (RTK) method

and Multi-Sensor Fusion (MSF) algorithms.

• Perception: this module is an AI-based subsystem, which

receives input data of different formats (e.g., image, point

cloud) from various sensors and leverages Deep Learning

models to identify the surrounding traffic conditions (e.g.,

traffic lights, stop signs and speed limits) and obstacles (e.g.,

object types, the speeds of other vehicles on the road).

• Planning: this module performs offline path planning to

generate a feasible path from the initial position to the

destination based on the map information. It conducts real-

time trajectory planning, which utilize the results from the

localization and perception modules to generate a collision-

free trajectory in a short time duration.

• Control: this module finally generates low-level commands,

such as steering, throttle and brake, to the chassis to track

the generated collision-free trajectory.

B. Security Threats

An ADS may face different types of scenarios based on dif-

ferent map topology [20]–[22]. In this paper, we focus on lane

following, the most common scenario during AV operations.

In this scenario, the vehicles are required to move along the

central lines of lanes. The execution of an ADS highly depends

on the accuracy of localization, lane boundary detection and

traffic signs. Past studies have proposed different attacks to

compromise the execution of ADSs in lane following. The

goal of this paper is to design a method, which can detect

these attacks in an efficient and unified way.

1) Localization Attack: This attack uses counterfeit GPS

signals to inference with the legitimate ones. Then the ADS

cannot localize the AV correctly, resulting in positioning er-

rors. Consequently, the ADS will mislead the vehicle to deviate

from the expected lane and even cause serious accidents. Al-

though the MSF algorithms in ADSs are designed to mitigate

GSP spoofing, researchers find that they are still vulnerable to

the take-over attack [6] where the spoofed GPS signals can

dominate the inputs of the MSF process and fool MSF to

ignore other inputs. Specifically, when the victim vehicle is

moving along the straight lane, the attacker vehicle follows

the victim vehicle and launches a two-stage GPS spoofing

attack. The first stage is vulnerability profiling: the attacker

collects and analyzes the behaviors of the victim vehicle and

determines the time duration to perform GPS attacks. The

second stage is aggressive spoofing: the attacker sends wrong

GPS signals to the victim vehicle, whose MSF algorithms

compute wrong localization of the AV. To make the vehicle

stay in the center of the lane, the ADS asks the vehicle to

move, which actually makes it cross the lane.

The attacks can have two specific goals, as shown in

Figure 1: an off-road attack tries to lead the victim to hit

the curb; a wrong-way attack tries to deviate the victim AV to

the opposite pavement.

2) Lane Detection Attack: An ADS needs to detect the

boundaries of a lane to localize the central line of the lane.

Currently, DNNs are the most popular method for lane de-

tection in ADSs. Due to the inherent vulnerability of DNNs,

the adversary can also fool the DNN model to cause wrong

recognition of lane boundaries, resulting in wrong motion

control to drive along the center of the lane. For example,

the adversary can add visual perturbations on the real-world

road to make the vehicle deviate the central line and hit a
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Fig. 1. GPS spoofing attack.

Fig. 2. Lane detection attack.

surrounding object [8]. This is also verified in [7], where the

injection of three small patches on the road can compromise

the recognition system of Tesla Autopilot. Figure 2 shows an

attack example [18]. The first row shows the clean road image

with the corresponding lane segmentation results analyzed the

ADS. The ADS is able to correctly identify the lane boundaries

(white). For the second row, the adversary adopts the Projected

Gradient Descent [23] to carefully craft an adversarial patch

and inject it to the road. Then based on the segmentation

results, the ADS will recognize a wrong lane boundary around

the patch. The red boxes show the patch localization, which

is computed according to the virtual induced lanes (green).

In our paper, we consider two types of patch attacks [18]:

(1) fixed-size patches, whose size is 100×100 and is injected

to the images of 512 × 288; (2) varied-size patches, whose

sizes are scaled based on the distances from the camera to the

destination lane segments.

3) Traffic Sign Recognition Attack: Recognition of traffic

signs can also affect the lane following since an AV must obey

the traffic rules described by those signs. As the ADS leverages

CNN models to detect and classify traffic signs, an adversary

can leverage the adversarial attack techniques to compromise

the model, and the ADS will miss or misclassify the traffic

signs and generate wrong motion decisions. This requires the

Fig. 3. Traffic sign recognition attack.

Anomaly 
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Localization
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Perception

Prediction
&

Planning
Control

GPS
Spoofer

Dirty Road 
Patch

Adversarial 
Traffic Sign

ADSs

WARNING

Fig. 4. Overview of our anomaly detection methodology.

adversary to physically alter the traffic signs (e.g., adding

posters or patches) without changing their visual semantics.

Typically there are two types of attacks in this category: (1)

In a poster attack, the adversary generates malicious posters

for traffic signs using a novel Robust Physical Perturbations

algorithm [9], and then attach them to the traffic sign. Then

the perception module in the ADS will identify it as a different

sign. Figure 3 shows such a poster attack on a stop sign

[9]. Alternatively, the adversary can also adopt generative

adversarial networks to craft malicious patches to compromise

the traffic sign recognition model [24]. (2) A boundary attack
is a decision-based adversarial attack [19]. The adversary does

not need any information about the target model in the ADS.

He generates the adversarial perturbations on the traffic sign

only from the prediction results of the model corresponding

to given input images.

III. METHODOLOGY

In this section, we describe our novel methodology to detect

the above attacks in the lane-following scenario. Figure 4

shows the methodology overview. We introduce a powerful

anomaly detector, deployed in an ADS to monitor the outputs

of the perception and localization modules. When the AV

receives malicious sensory data crafted by the adversary (e.g.,

traffic sign with the adversarial patch, spoofed GPS signals),

the anomaly detector is able to identify such suspicious events

from these two monitor modules, and then send notifications

to the control module. The control module will perform some

mitigation actions, e.g., stopping the vehicle, warning and

asking the driver in the vehicle to take control of it.
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Fig. 5. T-GP model structure.

The essential component of the anomaly detector is a

one-class classification model for inspecting various types of

sensory data. Below is the detailed description of this model.

A. Transformer with Gradient Penalty (T-GP)

Our novel one-class model, T-GP, is based on the trans-

former structure for anomaly detection in the lane following

scenario. A transformer [25] is a deep neural network using

the self-attention mechanism. It replaces the Recurrent Neural

Network (RNN) structure with an encoder and decoder. Fig-

ure 5 shows the structure of T-GP. It adopts a transformer

encoder as the feature extractor to learn the hidden patterns

of normal data and detect abnormal data (i.e., malicious

sensory input in ADSs). Note that main computation cost of

T-GP is the computation of the Transformer Encoder, whose

computational complexity can be found in [25].

Input Preprocessing. The input X = (xT
1 , ..., x

T
t )

T ∈ R
t×P

of the model is a two-dimensional matrix, where t is the length

of the input sequence, P is the dimension of each input data

xi, i.e., xi ∈ R
1×P , for i = 1, 2, . . . , t, and (·)T denotes the

transpose operator. Note that our model is unified and can

accept both the image data and IMU time series data. Each

image is reshaped into a sequence of flattened 2D patches

by dividing the original image into t patches [26]. For the

IMU data, each single sample xi is recorded at a time instant.

The input sequence X is first mapped to patch embeddings z0
using a learnable embedding vector xclass, a trainable linear

projection E, and a standard learnable 1D position embeddings

Epos [26], as given in Equation 1:

z0 =(xT
class, ETXT )T +Epos, (1)

where xclass ∈ R
1×D and its output can be used for classi-

fication, E ∈ R
P×D is a fully connected layer, and Epos ∈

R
(t+1)×D is introduced to add the positional information of

the input sequence to the patch embeddings.

Classification. The patch embeddings z0 is sent to the

transformer encoder, which consists of a Multi-headed Self-

Attention (MSA) network and a two-layer Perceptron (MLP)

with GELU. Note that the inputs of MSA and MLP are

W-MSANorm MLP
ොࢠ

Norm

SW-MSANorm MLPNorm
ࢠ
−ࢠ

+ࢠ
ࢠ

ොࢠ+

Fig. 6. A stage with two consecutive blocks in Swin-GP.

first normalized via layer normalization (LN) [27]. Hence, the

operation of the transformer encoder can be formulated as:

z′1 = MSA(LN(z0)) + z0, (2)

z1 = MLP (LN(z′1)) + z′1. (3)

We design a novel loss function in T-GP to achieve one-

class classification. Negative Log Likelihood Loss (NLLLoss)

is widely used in multi-class classification tasks. It gener-

ally requires regularizaion due to the sigmoid saturation and

feature bias in NLLLoss [28]. Inspired by [29], which adds

1-Lipschitz constraints to the discriminator of WGAN by

gradient penalty (GP), we also consider gradient penalty in

T-GP to obtain the following loss function:

loss = Ex∼Px [−log(Sigmoid(f(x)))]

+ λEx∼Px [(‖�xf(x))‖2 − 1)2]. (4)

The first term is NLLLoss and the second one is gradient

penalty. Px denotes the data distribution of the given positive

class, and λ is a hyper-parameter to balance the penalty.

Sigmoid(f(x)) ∈ (0, 1) is the probability that x belongs to

the positive class. The advantage of the gradient penalty will

be demonstrated in our evaluations by comparing with the H-

regularization [28].

B. Swin-Transformer with Gradient Penalty (S-GP)

We propose an enhanced transformer-based one-class clas-

sification model, S-GP, to further improve the accuracy and

robustness of our anomaly detector for image data.

S-GP is based on the Swin-Transformer, which is the

state-of-the-art backbone network widely applied to different

CV tasks [30]. S-GP follows the structure of the original

Swin-Transformer: it consists of four stages with each stage

composed of two consecutive Swin Transformer blocks, as

shown in Figure 6. To adapt to our task, we replace the stan-

dard MSA module with a window-based MSA in each Swin

transformer block: the MSA in the first Swin transformer block

applies a regular windowing configuration (W-MSA), while

the MSA in the second block utilizes a shifted windowing

configuration (SW-MSA). It adopts the same loss function in

Equation 4. Similarly, in S-GP, the main computation cost

lies in the computation of the (S)W-MSA, whose computation

complexity is given in [30].

Given an image with a size of H × W × 3, S-GP first

uses patch partition to divide it into a set of non-overlapping

patches with the size of 4×4, resulting in H/4×W/4 patches.

In stage 1, the patch feature is transformed into a vector with
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a dimension of C through a linear embedding and then sent

to the Swin-Transformer Block. Stages 2-4 share the similar

operations but through a patch merging operator, where the

input is merged according to 2 × 2 adjacent patches. Hence,

the number of patch blocks and the feature dimension of each

patch after Stage i (i = 2, 3, 4) become H/2i+1 × W/2i+1

and 2(i− 1)C, respectively.

IV. IMPLEMENTATION

A. Datasets

GPS spoofing attacks. Since there are no public datasets,

we deploy the attacks in Baidu Apollo 5.0 running with

the LGSVL simulator on the San Francisco map, and collect

data for normal and malicious cases. Following the attack

settings in [6], we consider two concrete adversarial goals

as shown in Figure 1: wrong-way attack aims to deviate the

AV to the opposite lane and hit the oncoming vehicle; off-

road attack aims to deviate the AV to hit the curb, and left

attacks. GPS spoofing will cause a sudden change of the

AV’s localization computation, resulting in the change of AV’s

motion. Hence, we monitor the IMU messages, whose channel

name is /apollo/sensor/gnss/corrected imu in the Apollo ADS.

There are three kinds of motion data in the IMU messages

and each one is a 3D vector: linear acceleration (ax, ay, az),
angular velocity (avx, avy, avz), and Euler angles (α, β, γ).
Since the current HD map for Apollo does not contain the

altitude information, only the linear accelerations ax and ay,

angular velocity avz, and Euler angle γ are affected by the

motion of the AV. Moreover, based on our observation of the

real-time IMU data, these four values exhibit distinct behaviors

when the AV deviates from the predetermined path, compared

to the scenarios of normal lane change or turn. Hence, at

each time instant, we collect these four types of data as the

model features. Figure 7 shows two data sequences of the

four selected data types during the AV motion under GPS

spoofing attacks, where the message sampling frequency is

around 85 FPS (Frame-Per-Second) in our experiments.

Since our task is one-class anomaly detection, only benign

data are available for model training. We first collect the four

types of IMU data from Apollo when the vehicle is in normal

and secure states. A total of 32,115 raw data are generated

for model training. The testing set should contain both normal

and attack samples. We run Apollo ten times under either type

of GPS spoofing attacks and collect the related IMU data. We

label the data before the attack occurrence as ”normal”. We

also assign the “abnormal” label to the data collected in a

short period right after the GPS spoofing is launched (around

20 new IMU messages). Table I summarizes the ten testing

data sequences for either GPS spoofing attack.

Once we obtain the training and testing data sequences, we

generate the corresponding training and testing datasets by

dividing each data sequence into a set of sub-sequences with

a length of 10. We use the sliding window method with a stride

of 1 to generate the sub-sequences. Hence, a sequence with

n samples can generate (n− 9) sub-sequences. Note that we

Fig. 7. Data sequences of ax, ay, avz, and γ when the AV is under the
wrong-way and off-road attacks, respectively. The black line represents the
moment the spoofing attack starts. The red area shows the vehicle is in
abnormal status. The red box is the sliding window with a length of n = 10
data samples. nt represents that the attack is detected after nt occurrences
of the attack.

TABLE I
NUMBER OF DATA SAMPLES IN EACH TESTING SEQUENCE.

Sequence #0 #1 #2 #3 #4 #5 #6 #7 #8 #9

off-road normal 420 423 237 294 571 494 210 461 363 535
attack abnormal 20 17 23 16 19 16 20 19 17 25

wrong-way normal 245 616 418 325 550 274 271 338 204 396
attack abnormal 25 14 22 26 20 16 19 22 16 24

employ the same data preprocessing method to all the models

for fair comparison.

Traffic sign recognition attacks. We conduct our experiments

on the GTSRB (German Traffic Sign Recognition Benchmark)

dataset, which only contains clean traffic sign images. We

select four representative categories of traffic signs, i.e., stop,

speed limit 20, keep right, and traffic signals, from this dataset

for training. The numbers of these categories are 780, 210,

2070, and 600, respectively. For testing, we adopt the bound-

ary attack [19] and poster attack [9] to generate adversarial

examples from the normal testing images. Specifically, we

perform the boundary attack on the stop sign category to

generate 20 adversarial samples, and the poster attack on the

four categories to generate the same numbers of adversarial

images as the testing samples. Table II gives the details of the

datasets. We remove 10% border of each category and resize

the images to 32×32 as presented in [31]. In addition, global

contrast normalization using L1-norm is applied.

Lane detection attacks. We adopt the widely-used Tusimple
traffic lane dataset. This dataset consists of 6,408 annotated

images, which are the latest frames from video clips recorded

by a high-resolution (720×1280) forward-view camera under

various traffic and weather conditions on highways of United

States in the daytime. It is spilt into a training set (3268 data),

a validation set (358 data), and a testing set (2782 data). We

generate two types of adversarial examples from the validation
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TABLE II
NUMBER OF IMAGES IN EACH DATASET.

Attack Traffic Sign
Training Test
Normal Normal Abnormal

Boundary Stop 780 270 20
Poster Stop 780 270 270
Poster Speed limit 20 210 60 60
Poster Keep right 2070 690 690
Poster Traffic signals 600 180 180

set following the Patch Attack [18], including fixed-size patch

and varied-size patch (Figure 2). The size of the former patch

is 100×100, and the later patch is scaled according to the lane

width and lane marker height. After adding the adversarial

patches, all the images are scaled to the size of 320×320. For

each type of patches, we get 3268 normal images for training,

358 normal images and 358 abnormal images for testing.

B. Model configurations

To detect GPS spoofing attacks, the input dimension of T-

GP is set as 10× 4 according to the format of the generated

data samples, i.e., each input sequence has 10 consecutive

data samples and each sample is a 4D vector. In terms of

the model hyper-parameters, we use an embedding dimension

of 4 units, 4 transformer heads, and 128 units in the hidden

layer of the output MLP head. We use the AdamW optimizer

with a learning rate of 1e-4. The λ in Equation 4 is set as 0.1.

To detect traffic sign recognition attacks, we use the same

structure described in III-A, where each input image is divided

into 64 patches with an equal size of 4×4. λ is set around as

1.5 (similar results for [0.1, 3]) and the initial learning rate

is 3e-4. For the S-GP model, we utilize the same Swin-

Transformer hyper-parameters for all the data sets, where

the hidden dimension is 96, the layers (resp., heads and

downscaling factors) of the four stages are 2 (resp., 3 and

4), 2 (resp., 6 and 2), 6 (resp., 12 and 2), and 2 (resp., 24 and

2), respectively, and the number of output classes is 1. Since

the input image size is 32 × 32, the window size is set as 1.

We apply the AdamW optimizer whose learning rate is around

5e-6 for defeating the boundary attack and 5e-5 for the poster

attack. λ is set as 2.5.

To detect lane recognition attacks, different from the ad-

versarial traffic sign detection, we add a split layer before

the model input, thus the images are spilt into fixed-size

patches first in order to capture the anomalies more carefully.

Specifically, we split each image of 320×320×3 to 100

patches of 32×32×3. This gives us 3268×100 training sam-

ples, 358×100 normal testing samples and 358×100 abnormal

testing samples. During testing, if any one of the 100 patches

is flagged as abnormal, then the entire image is regarded as

anomaly. We use the same preprocessing method for all the

models to achieve fair comparison.

V. EVALUATIONS

In this section, we evaluate the effectiveness and robustness

of the proposed anomaly detection model against the three

kinds of attacks described in Section II-B.

Baseline methods. We compare our T-GP model with the

following baselines.

• OC-SVM [32]: it is a traditional one-class classifier based

on kernel SVM. In our implementation, the RBF kernel is

applied and the hyper-parameter is selected from a set of

discretized values in the interval [0, 1].
• iForest [33]: it is another popular one-class classifier. It

isolates anomaly points by building decision trees. We use

the default values of the hyper-parameters.

• Deep-SVDD [31]: it is a deep one-class model. It classi-

fies anomaly data by penalizing the distance between the

extracted feature vector, from the network and the center

of the initial hypersphere. Since it only supports non-trivial

high-dimensional images, we use the transformer encoder

in T-GP to extract features for Deep-SVDD.

• HRN [28]: it is a state-of-the-art one-class models based

on holistic regularization. We use the default structure with

a three-layer perception, whose input, hidden and output

dimensions are 40, 100 and 1, respectively.

• T-L2: it is a variant of our T-GP model. We replace the gra-

dient penalty-based regularization with L2-regularization.

We also try the GAN-based models [34]. However, these

methods require a large amount of training data, and the

training processes cannot converge on our small-scale datasets.

Hence, they are not applicable in our task, and will not be

considered as the baselines.

A. Effectiveness against Localization Attacks

We use the standard metrics (precision, recall and F1-

measure) to compare the performance of our model with others

baselines. Figure 8 shows the results on the testing datasets of

off-road and wrong-way attacks. In anomaly detection tasks,

the anomaly data is considered as positive. From Figures 8(a),

we can find that for both kinds of attacks, the transformer-

based models (i.e., T-L2 and T-GP) have higher average

precision and lower variance than other models. Hence, the

adoption of the transformer exhibits better robustness. They

can detect anomalies more precisely with fewer false alarms.

As shown in Figure 8(b), the two transformer-based models

also have higher average recall than others, indicating that they

have smaller false negative rates, i.e., missing fewer anomaly

data. Moreover, compared to T-L2, T-GP can provide more

fine-grained control over the penalty function and provide a

higher recall with smaller fluctuations. The F1-measure results

are shown in Figure 8(c). We can also find that the T-GP

model has the highest F1-measure. It means T-GP not only

has high precision and recall values but also can balance these

two measures. Hence, we can conclude that T-GP outperforms

other one-class models on the 20 testing sequences.

To analyze the statistical significance of these models, we

perform Levene’s test and two-sample t-test [35] for equal

variance testing and equal mean testing, respectively, in terms

of the F1-measure. The results are shown in Table III. We

can observe that given the 95% confidence interval, our T-GP

has significant differences for the mean of F1-measure, from

other non-transformer models. Hence, T-GP demonstrates
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(a) Precision

(b) Recall

(c) F1-measure

Fig. 8. Results of Precision, Recall and F1-measure on the two GPS spoofing
attack datasets.

TABLE III
LEVENE’S TEST AND T-TEST ON F1-VALUE BETWEEN OUR T-GP AND

EACH OF OTHER MODELS. A HIGHER VALUE INDICATES THE MODEL IS

MORE SIMILAR AS T-GP IN DETECTION PERFORMANCE.

Baselines OC-SVM IF DSVDD HRN T-L2

Off-road Levene’s test 0.3908 0.0025 0.1346 0.0060 0.2606
attack T-test 4e-11 0.0012 0.0026 0.0007 0.1337

Wrong-way Levene’s test 0.0180 0.0023 0.0482 0.0003 0.5477
attack T-test 2e-10 0.0003 0.0489 0.0017 0.2549

higher performance statistically. Moreover, we can find that

there are no significant differences between T-GP and T-L2,

indicating the two loss functions in T-GP and T-L2 have

similar performance in balancing the precision and recall.

Another important requirement for online anomaly detection

is to detect attacks promptly so that we can prevent accidents

as soon as possible. Hence, we also compute the detection time

of different models in Apollo. We find that T-GP can detect

an attack within 6 data samples after launching the attack

(∼ 0.07s), while other models need more time to identify

anomalous events, which is relatively less practical in reality.

Fig. 9. Average AUCs for different models in detecting boundary attacks
(BA) and poster attacks (PA) against traffic signs.

In conclusion, our transformer-based models can accurately

disclose the underlying dependency in the time series data dur-

ing the AV’s motion, whilst other models cannot describe such

temporal relations, even using the sliding window technique.

Moreover, the results also show that the transformer with GP

is better than with L2 regularization.

B. Effectiveness against Traffic Sign Recognition Attacks

We examine the effectiveness of our model on detecting

adversarial traffic signs.

We compare our model with Deep-SVDD and HRN in

detecting adversarial traffic signs. Specifically, for Deep-

SVDD, we apply a CNN structure with three filters of sizes

32×(5×5×3), 64×(5×5×3) and 128×(5×5×3), followed by

a fully connected layer with 128 units. We get the maximum

accuracy with the AdamW optimizer whose learning rate is set

as 1e−3. For HRN, a three-layer MLP is adopted with the size

of 3×[1024-300]-[900-300]-[300-1]. The first layer contains

three sub-modules (each one has a size of [1024-300]) to deal

with 3 channels, and the outputs are concatenated as the input

of the second layer; the second and third layers are with the

size of [900-300] and [300-1], respectively. The optimizer is

set as SGD with momentum and the learning rate is 5e− 4.

Figure 9 shows the AUC (Area Under the ROC curve)

values of different models for detecting the boundary attack

(BA) and poster attack (PA) on different traffic signs. The

results show that our two models outperform Deep-SVDD and

HRN for both kinds of attacks, and S-GP shows performance

improvement over T-GP.

We also compare the performance of the two transformer-

based models with three kinds of loss functions: NLLLoss,

L2 penalty and Gradient Penalty (GP). Figure 10 shows

the detection performance of the two models on the two

kinds of poster attacks. We can observe that the model with

gradient penalty has higher AUC values than the other two

loss functions. S-GP model gives the best results over other

solutions for all the attacks.

C. Effectiveness against Lane Detection Attacks

We compare our transformer-based methods, i.e., T-GP and

S-GP, with Deep-SVDD and HRN. The settings of these two

models are the same as the ones described in Section V-B.
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Fig. 10. Average AUCs for different transformers and loss functions in
detecting poster attacks against traffic signs.

Fig. 11. Average AUCs of different models in detecting the patch attacks
against lane detection.

Figure 11 presents the average AUC values for different

models. We can observe that the two transformer-based models

show better performance than other two baseline models. T-

GP shows better detection performance than S-GP. Particu-

larly, all these models have relatively low accuracy in detecting

varied-patch attacks. One possible reason is that some patches

are too small to be recognized as adversarial samples, causing

higher false negative rates. But the transformer-based models

still outperform prior solutions. We will explore new models

and algorithms to further enhance the detection accuracy as

future work.

VI. RELATED WORKS

A. Detecting Localization Attacks

Although prior works made some attempts to detect GPS

attacks against AVs [36]–[38], how to effectively mitigate such

threat is still a long-standing problem. The MSF algorithms

were regarded as the most effective defense method in ADSs

[39], [40]. Unfortunately, Shen et al. [6] found a vulnerability

in the design of MSF-based localization and implemented a

sophisticated attack to invalidate the protection. Researchers

also studied spoofing detection by cross-checking GPS read-

ings and IMU data [41]. However, IMU data suffers from the

accumulation of drift errors such that they provide reliable

protection against spoofing attacks if an adversary causes

gradual deviation of the victim vehicles from their actual

positions [42]. Compared with these studies, we only use the

instantaneous changes of the IMU data to detect whether the

vehicle is being attacked and achieve high detection accuracy.

B. Detecting Adversarial Images

Some works introduced methods to detect adversarial exam-

ples, especially in the CV domain. One popular direction is

to build classifiers to differentiate adversarial examples from

normal samples, based on their hidden unique features. Xu et
al. [43] proposed a method called feature freezing to detect

adversarial examples by reducing color bit depth and spatial

smoothing. They set a threshold to judge whether the original

input data is benign or malicious. Lee et al. [44] designed

a method using Gaussian discriminant analysis to obtain the

confidence score based on the Mahalanobis distance in the

feature space of DNN models. However, these methods need

prior knowledge of the adversarial samples, which is hard to

be satisfied in the autonomous driving scenario. Other works,

e.g. Deep-SVDD [31], OCNN [45], HRN [28], introduced one-

class models for anomaly detection of adversarial examples.

They are only evaluated on the stop sign detection. For lane

attacks, Sato et al. [8] proposed an attack method based on

image segmentation and deployed a bounded patch to simulate

the road dirt to fool the lane detection algorithms. Following

this work, Xu et al. [18] designed a CNN-based model with

prior knowledge of abnormal data to achieve attack detection.

These works can only be applied to specific attacks, but fail

to be extended to others. In contrast, our proposed solution is

unified to cover various types of attacks with different formats

of sensory data in the lane following scenario.

VII. CONCLUSION

In this paper, we proposed to leverage the transformer

to build anomaly detection models for the lane following

scenario of ADSs. We introduced T-GP, a novel one-class

classification model based on a transformer encoder for feature

extraction and new loss function with gradient penalty. It can

detect GPS spoofing, traffic sign recognition and lane detection

attacks with high accuracy. We further designed S-GP, an

enhanced model over T-GP to improve the detection accu-

racy of adversarial image samples. We extensively evaluated

our models on the mainstream Baidu Apollo ADS with the

LGSVL simulator, and two public traffic datasets: GTSRB and

Tusimple. The results showed that our models significantly

outperform existing state-of-the-art one-class models. In the

future, we aim to incorporate our models into real-world AVs

and study the anomaly detection of other sensor attacks.
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