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The development of robotics technology is accelerated by the strong support from cloud
computing. Massive computation resources and services from the cloud make modern
multi-robot systems more efficient and powerful. However, the introduction of cloud ser-
vers to multi-robot systems can also incur potential Denial-of-Service (DoS) threats, where
an adversary can utilize the shared cloud resources to degrade or bring down the robot sys-
tems. In this paper, we conduct a comprehensive study about this security issue. By ana-
lyzing different attack vectors in cloud-robotic platforms, we propose three new DoS
attacks, which manipulate the network resources, micro-architecture resources, and func-
tion parameters respectively. We conduct extensive evaluations and case studies to
demonstrate the feasibility and severity of our techniques. We alert the robotics commu-
nity to these catastrophic attacks on the safety and performance of cloud-robotic systems,
and encourage building better defenses for higher reliability, in addition to automation and
intelligence.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

The advance in Artificial Intelligence has promoted the rapid development of robotics technology. A variety of robots and
autonomous systems are introduced to alter our lifestyle in a revolutionary manner. They can significantly improve our life
quality and working efficiency: drones are adopted to deliver packages and supplies; manipulators can be used to assemble
products in smart manufacturing, and perform surgery in hospitals; unmanned ground vehicles (UGVs) are widely adopted
to perform dangerous jobs at the battlefields, fire and earthquake sites. The size of the global robotics market is anticipated
to reach USD $189.36 by the year of 2017, with an annual growth rate of 13.5% [1].

Development and deployment of robot apps require the support from the cloud computing techniques. First, a robot
device generally has limited battery capacity and computation capability. It cannot host complicated AI applications and pro-
cess the tasks promptly. Hence, it is always recommended to offload partial or all robot workloads to the cloud. The powerful
cloud resources can guarantee the real-time demands for various tasks, and increase the battery life. Second, cloud providers
offer many services, e.g., big data analytics, machine learning framework, database storage, etc. Developers can leverage
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these services to build robot apps with great ease or analyze the mass data [2]. Due to these two reasons, it becomes a pop-
ularity to develop, test and run robot apps in cloud-robotic eco-systems. Many cloud-robotic services and platforms have
been released to fulfill those functionalities, such as AWS RoboMaker [3], Rapyuta [4], Davinci [5], etc.

Cloud computing also facilitates the implementation of Multi-Robot Systems (MRS). In some complex scenarios, one sin-
gle robot is not enough to complete the tasks within the demanded deadline. Thus, a couple of robots can be connected as a
MRS to work on the tasks together. These robots can be the same type (homogeneous MRS) or different types with different
functionalities (heterogeneous MRS). This collaboration can effectively reduce the task completion time. A MRS usually
requires a centralized service to coordinate the involved robots. This service collects information from all the robots to make
decisions, and sends to each robot the instructions for the next round. A common practice is to deploy such coordination
service on the remote cloud. This enables to build a very large-scale MRS even across different locations.

Although cloud computing brings great convenience to the robot systems, it can also open new attack surface for adver-
saries to affect the entire MRS. There are three reasons that can exacerbate the vulnerabilities of a cloud-based MRS. First, a
MRS is a hierarchically distributed system. It consists of multiple robots, with each one running one or more apps. Each robot
app consists of multiple processes (a.k.a. nodes), with each one focusing on one specific function. Second, robot nodes are
selectively offloaded to the remote cloud server for computation acceleration. They can share the same cloud resources,
including operating systems, network bandwidth, and hardware components (memory sub-system, I/O devices, etc.). Nodes
can interfere with each other even they are not on the same robot, or directly connected. Third, some robot nodes may not be
trusted. On one hand, public robot repositories like Robot Operating System (ROS) [6] allow third-party developers to upload
and share their function nodes. These repositories do not perform any security inspection, so an adversary can easily broad-
cast malicious nodes to other users. On the other hand, a lot of public robot nodes from ROS contain software bugs according
to the Robot Vulnerability Database [7]. Most of these bugs are still not fixed, and can be exploited by an adversary to intrude
into the vulnerable nodes.

The above facts can create a new attack chain in a cloud-based MRS: an adversary can take control of one robot node,
abuse the cloud resource, and interfere with the operations of other nodes, and finally compromise the entire MRS. Such
Denial-of-Service (DoS) attacks in the context of cloud-robotics are rarely explored in prior works. We are particularly inter-
ested in two question: (1) how much damage can one malicious node bring to the entire system via its interaction with the cloud?
(2) What techniques can an adversary leverage to maximize the damage? Answers to these questions can help us better under-
stand the security of the cloud-based MRS.

In this paper, we present a systematic study towards the above security threats. First, we build an analytic model to dis-
close the performance characteristics of multi-robot systems and workloads. Based on this model, we identify a critical exe-
cution path and a series of function nodes that can determine the performance of the entire system. Then we identify a
couple of attack strategies that can affect the execution of the target workloads. Second, we design three novel DoS attacks,
where an adversary can use just one malicious node to compromise the entire cloud-robotic platform. In a network flooding
attack, a malicious node can send a large amount of network packets to flood the network devices, which can extensively
interfere with the operations of other critical nodes within the same local network. In a micro-architecture contention attack,
an adversarial node offloaded to the cloud server can abuse the shared hardware resources to degrade the performance of co-
located nodes. In a parameter manipulation attack, an adversary can adjust the parameters of the controlled node to change
its execution behaviors. This can also increase the workload of the function nodes, and delay the entire system’s execution.

We implement the above attack techniques against the ROS system and workloads. Extensive evaluations are conducted
from two perspectives. First, we measure the impact of the attacks on the individual critical node (Section 5). Results indicate
that these techniques can cause very long latency and high packet drop rates. Besides, they can also significantly increase the
processing time of the critical node, and reduce the maximum velocity of the robots. Second, we provide two end-to-end
case studies (Section 6). We simulate a multi-robot system for an exploration task using Gazebo. Simulation results show
the proposed DoS attacks can incur accidents to threaten the safety of the robot, or increase the total mission completion
time by multiple times.

The rest of this paper is organized as follows. Section 2 introduces the background, including standard robot platforms,
workloads, cloud-robotic systems, and our threat model. Section 3 presents our performance analysis and modeling of robot
workloads, which inspires us to propose three possible attack strategies. We design three attack techniques based on these
strategies in Section 4. We perform extensive evaluations in Section 5, followed by two case studies in Section 6. We provide
discussions in Section 7, summarize the past works in Section 8 and conclude in Section 9.
2. Background & threat model

2.1. Robot platform

In this section, we describe the structure of robot apps and development cycles. We use the Robot Operating System (ROS)
[6] as an example, which has been widely used in the research community and industry, such as Dji Matrice 200 drone [8],
PR2 humanoid [9] and ABB manipulator [10].

The ROS platform provides two types of services for robot app developers. First, it offers a set of robot core libraries, which
serve as the middleware between robot apps and hardware. They are responsible for hardware abstraction, message passing
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and also provide device drivers for various sensors and motors. Second, the ROS platform also maintains a large quantity of
robot code repositories (a.k.a. repos) to support different types of functions, e.g., localization, path planning, path tracking, etc.

Fig. 1 illustrates the lifecycle of robot app development and operation. First, the developer decomposes the design of the
target app into some functions. Some of them are core functions (white ellipses) that need to be customized by the devel-
oper. Others are non-core functions (black ellipses) which can be directly downloaded from the ROS code repos ðrÞ. Then
the developer installs the ROS core libraries to integrate these functions as an app workflow ðsÞ and deploys the app to the
robot ðtÞ. Each function is abstracted as a ROS node and connected as a Directed Acyclic Graph (DFG). They exchange mes-
sages through the ROS Topics, which are many-to-many named buses that store the robot or environment states. The com-
munication follows the publish-subscribe messaging protocol: nodes can subscribe to a topic to obtain relevant data, or
publish data to a topic.

The robot app exposes a set of interfaces as ROS Services to end users for interaction, e.g., launching tasks, adjusting func-
tion parameters. Each service is implemented by the Remote Procedure Call (RPC) protocol. Once the robot receives instruc-
tions from the user ðuÞ, it starts to execute the tasks within the environment ðvÞ. It will inform the user when all tasks are
completed ðwÞ.

2.2. Robot workloads

A common robot workload can be abstracted as: navigating the robot to a given destination based on the environmental
information captured from various sensors. So different workloads always follow a standard pipeline, as shown in Fig. 2. This
computation pipeline is composed of three major processing stages: PERCEPTION, PLANNING and CONTROL [11]. Each node in Fig. 2
represents a type of functional computation. The solid arrows denote that the connected two nodes communicate in the sub-
scriber/publisher mode, and the dashed arrows represent a client/server paradigm.

Perception: This stage perceives data from the sensors, processes them to extract estimated states of the environment
and the robot. It usually consists of two computation nodes: Localization is responsible for determining the robot’s posi-
tion; Costmap Generation is for modeling the robot’s surroundings with costmaps to maintain the navigation information
of the robot.
Planning: This stage is responsible for determining the long-range actions of the robot based on high-level goals specified
by users. It also consists of two nodes: Path Planning (PP) identifies the shortest path from the start position to each des-
tination in a known map; Exploration searches for user-defined accessible regions in absence of costmaps.
Control: This stage processes the execution action and forwards these motion commands to the actuators in the control
subsystem. The Path Tracking node produces velocity commands to follow the planned path given the costmap. The Veloc-
ity Multiplexer node selects the velocity from multiple commands based on user-defined priorities.

Although these function nodes can be implemented by different libraries, according to whether the map is known, all
robot workloads can be classified into two typical categories:

Navigation with a map. CostmapGen uses existing map data to create a costmap of its surroundings ðrsÞ and Localiza-
tion estimates the robot’s position from the sensor data ðtuÞ. Based on the position and the costmap, Path Planning gen-
erates an efficient collision-free path to the destination ðvÞ. Path Tracking follows this path and outputs the best action
from simulating multiple trajectories with different velocities to guarantee feasibility and robustness ðwÞ, such as obsta-
cle avoidance and oscillation. Considering robot’s kinematics and dynamics, some other velocity commands (e.g. safe con-
troller, joystick) are all forwarded to Velocity Multiplexer with different priorities, and the final velocity command is sent
to the actuators with the highest priority ðxÞ.
Exploration without a map. To navigate the robot in an unknown area, Localization executes the Simultaneous Localiza-
tion and Mapping (SLAM) algorithm to infer the robot’s position in absence of a map. Then, Exploration selects a position
Fig. 1. The lifecycle of robot app development (blue parts) and operation (green parts).
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Fig. 2. The standard pipeline for common robot tasks. The workflow with a map is depicted in black lines. The workflow without a map contains all
operations in black lines and some new operations depicted in blue lines. The velocity-dependent path is depicted in red lines.
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in the frontier of known map as a destination and sends the goal to Path Planning ðyzÞ. By repeating this process of cost-
map update and exploration, the map of the environment will be expanded by publishing the boundary between the
‘‘known” and ‘‘unknown” regions, until the entire area has been mapped.
2.3. Cloud offloading and resource sharing

The onboard computers of common robots suffer from limited resources and poor computation capability. Hence, it
becomes popular to offload the robot workloads to the cloud, and leverage the cloud resources to accelerate the computation
and reduce the energy cost [12,13]. Specifically, the developer launches some virtual machines (VMs) on the cloud servers,
and deploys the ROS environment inside the VMs. Then the developer migrates some selected function nodes to the VMs. At
runtime, each node receives information (e.g., environmental states) from the local robot, and performs the computation.
Then it sends the results back to the robot. The local MRS and cloud server is connected by a wireless router.

In a normal cloud-based MRS, one VM is launched corresponded to one robot. Multiple VMs can be located on the same
cloud server. A hypervisor is introduced to virtualize and manage the hardware resources such that different VMs can simul-
taneously share the same micro-architectural components (e.g., CPU pipeline, caches, memory controller, DRAM) while their
logical execution and memory are strictly isolated. However, the resource sharing among VMs can lead to severe Denial-of-
Service attacks in the cloud environment [14,15].

In the context of cloud-robotic systems, function nodes from the same or different robots can cause severe contention on
the network and cloud resources, which can impair the performance of the MRS workloads (Fig. 3). Specifically, (1) different
robots communicate with the VMs via the same wireless router. As a result, network packets from different nodes can gen-
erate fierce competition on the receiver queue of the router when the communication is intensive. This can delay the nodes’
transmission efficiency. (2) Different VMs on the same physical cloud server can interfere with each other via the shared
hardware resources, even they are logically isolated by the hypervisor. They contend for the CPU cores, memory systems
and I/O devices. This can slow down the nodes’ processing speed. More seriously, a malicious node can attempt to misuse
Fig. 3. The offloaded nodes share multiple layers of cloud resources.
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the shared resources to exacerbate the severity of resource contention for Denial-of-Service attacks, which we aim to explore
in this paper.

2.4. Threat model and assumptions

We consider a cloud-based MRS system, which involves multiple robots, and each robot runs many function nodes. They
collaborate to complete a given workload (e.g., exploration, navigation). We assume the underlying OS and ROS core libraries
in each robot are trusted: the communication and isolation mechanisms are correctly enforced. How to protect the security
of the ROS core libraries [16,17], attack wireless networks [18–20], steal private data [21–23] and defeat the threats from the
physical world [24–26] are orthogonal to our work. Some functions nodes are executed on the remote cloud server and the
computation results are transmitted back to the robot devices. We assume that all offloaded nodes execute in the same VM
or different VMs co-located in the same physical cloud server. This is reasonable since the communication latency among
these nodes can be minimized. We assume the cloud computation and its communication with the local robots are also well
protected by cryptography.

However, we assume that only one node in one robot is untrusted. It aims to perform Denial-of-Service attacks against the
cloud resources, which can further affect the entire MRS workload. Our assumption is based on two observations. First, pub-
lic robot platforms like ROS are open for everyone to contribute. Developers can upload and share their code repos, without
any security inspection. As a result, a malicious developer can insert malware to a repo and publish it to the platforms for
users all over the world to download. This threat has been highlighted in the design document of ROS2 Robotic Systems
Threat Model [27]: ‘‘third-party components releasing process create additional security threats (third-party component may
be compromised during their distribution)”. Second, a lot of public functions in the robot platforms contain software bugs
[17,28–30]. According to the Robot Vulnerability Database [7], up to the date of writing, 17 robot vulnerabilities and 834
bugs (e.g., no authentication, uninitialized variables, buffer overflow) have been discovered in the repos of 51 robot compo-
nents, 37 robots and 34 vendors in the ROS platform. Most of them are still not addressed yet. An adversary can easily exploit
those bugs to compromise the function node. Our goal is to identify the possible consequences a malicious node can bring to
the entire MRS.

3. Performance analysis of robot workloads

As described in Section 2.3, the adversarial goal is to obtain the control of one malicious node in the target MRS to carry
out Denial-of-Service attacks. The malicious node can leverage the contention on the network and cloud resources to cause
huge performance loss of the MRS workloads. Thus, it is critical to figure out the intricate relationships between resource
contention and MRS performance. In this section, we analyze the MRS workload to identify the key factors that can impact
the system performance. We then identify several possible attack strategies in the cloud-robotic scenario.

3.1. MRS performance analysis

We assume that a MRS system has I robots, cooperating to execute one workload. The workload is decomposed into sev-
eral tasks, and each task is dispatched to a robot. For each robot i, it runs N þM computation nodes to execute the allocated
task. N nodes are executed on the embedded computer of the robot and M nodes are offloaded to the cloud servers. We use
the local task completion time TL

i to denote the total time each robot i spends on its task, and the global workload completion

time TG to denote the total time all the robots complete the MRS workload. Since all the robots work in a parallel way, the
global workload completion time TG depends on the longest local task completion time (Eq. (1)):
TG ¼ maxðTL
1; T

L
2; . . . ; T

L
I Þ ð1Þ
The local mission completion time TL of each robot consists of two parts: the standby time Ts and moving time Tm (Eq.
(2)).
TL ¼ Ts þ Tm ð2Þ

Standby time Ts measures the time a robot suspends during a task. It exists as the computation capacity cannot meet the

task’s requirements. When the on-board computation capacity is lower, the robot needs a longer processing time tp, and has
to stay standby for a longer time. Thus, the processing time tp can be denoted by the sum of three parts, i.e. the processing
time of the nodes in the robot tRp , the processing time of the nodes in the cloud server tCp , and the network latency tc (Eq. (3)).
Ts � tp ¼ tRp þ tCp þ tc ð3Þ

Moving time Tm measures the time a robot moves along the path P. It is highly dependent on the maximum velocity vmax

of a robot: the faster the speed is, the less time it will spend on moving (Eq. (4)). The maximum velocity vmax is determined
by the obstacle avoidance constraint [31]. As shown in Fig. 4, the robot needs three steps to ensure that the current maxi-
mum velocity can prevent it from hitting obstacles. First, it detects obstacles at a distance of d from its sensors. Second, the
333



Fig. 4. The process of the obstacle avoidance.
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function nodes in the robot spend tp processing time to recognize the obstacles in front of it. Finally, the robot slows down
the speed conforming the maximum acceleration limit amax. If the robot can stop right before it hits the obstacle, the current
velocity is safe and available. The maximum of all available velocities is the maximum velocity vmax.
Tm � P=vmax ¼ P=½amaxð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2p þ 2d=amax

q
� tpÞ� ð4Þ
From Eqs. (1) to (4), we can observe that the maximum velocity is the key factor to determine the MRS performance. Thus,
we introduce the concept of Velocity-Dependent Path (VDP) to help us better understand the computation characteristics of
robot tasks. VDP denotes the longest velocity-dependent execution flow path. The total processing time of all the nodes along
VDP determines the robot’s maximum velocity (Eq. (4)), and thus the local task and global workload completion time. It is
the performance bottleneck of a MRS workload.

Recall the standard pipeline of a robot workload in Fig. 2, once receiving the laser data, the CostmapGen node detects and
marks the obstacles in the costmap. Then Path Tracking generates a collision-free path, sends the adjusted velocity to Velocity
Multiplexer and further forwards to the motors. So the execution path along CostmapGen, Path Tracking and Velocity Multi-
plexer is VDP in the robot task (red line in Fig. 2).
3.2. Possible attack strategies

From the above analysis, in order to compromise the performance of a cloud-based MRS workload, the adversary can try
to delay the execution time of VDP. We identify several possible attack strategies to achieve this goal.

Network Contention. To ensure the performance of the MRS under the wireless environment, communication between
the cloud server and local robots usually adopts the UDP protocol. As a result, the adversarial node can flood the network
bandwidth and resources with a large quantity of useless UDP messages. This can also affect the latency and packet loss
rate, causing safety issues when the robot moves at a fast speed.
Micro-architecture Contention. If the adversarial node is co-located with the critical nodes on the same cloud server, it
can generate malicious contention on the micro-architectural units to deprive the resource usage of the critical nodes,
and increase their computation time. This is feasible if they share the hardware resources, even they are in different VMs.
Direct Delay. If the adversary is able to directly affect the execution of the computation nodes along VDP via the user
interface, he can potentially increase the processing time of the nodes. Then this strategy can decrease the maximum
velocity, and increase the local task and global workload completion time.

4. Novel DoS attacks against the cloud-based MRS

Inspired by the three strategies proposed in Section 3.2, we design three new DoS attacks against the cloud-robotic sys-
tems. Each of them can incur significant performance degradation, task failure, or safety accidents.
4.1. Network flooding attack

This attack is based on the strategy of network resource contention. It occurs when the malicious node is deployed on a
local robot. Then the adversary can configure this node to send a large amount of network packets to the nodes on other
robots or the cloud. The cloud server has wired connection with the router, which has larger bandwidth than the wireless
network. Thus, the adversary’s behavior will first cause traffic congestion in the wireless router.

As shown in Fig. 5(a), function nodes exchange messages (gray squares) based on the topics. Each topic is a named bus
and strongly typed by the message type. If a node is interested to receive this type of data, it can subscribe to this topic and
becomes a subscriber. On the contrary, a node can also publish data to a relevant topic and becomes a publisher. Both the
publisher and subscriber are unaware of the nodes they are communicating with. Once receiving a message from the topic,
the subscriber triggers its callback function and uses the received data for computation, e.g., path planning and map
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Fig. 5. The process of network flooding attack.
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generation. To reduce the computation overhead, the publisher commonly implements a timer to limit the publishing rate.
For example, a publishing rate of 4 Hz means the publisher can send 4 messages per second.

The malicious node can become a publisher, and alter its timer to flood messages to the MRS. Fig. 5(b) shows the detailed
process of such network flooding attack. Specifically, the malicious node sets its timer from 4 Hz to 400 Hz, which can
increase the network bandwidth by 100 times. Every 0.25s, it generates 99 dummy messages (green squares), which have
the same content as the normal message. These dummy messages will not cause any function errors to the robot workload.
However, they can quickly fill up the receiving queue of the router, resulting in a slowdown of scheduling normal messages,
or packet loss for the critical nodes. This can terribly affect the safety state of the robot and cause potential accidents.
4.2. Micro-architecture contention attack

This attack is based on the strategy of micro-architecture contention. It happens when the malicious node is deployed in a
VM on the cloud server, sharing the same hardware resources with other nodes. The malicious node can try to consumemore
resources and affect the critical VDP. For instance, it can use the same strategy as the network flooding attack, by publishing
a lot of dummy messages to certain topics. Then nodes subscribed to these topics will keep receiving those messages, and
waste more computation resources to process them. Note that this strategy has very high effectiveness: one malicious pub-
lisher node can lead to multiple subscriber nodes to do useless computations, which can easily deplete the valuable
resources and delay the critical operations of the nodes along VDP (e.g., Path Tracking).

Fig. 6 describes the detailed procedure of message processing in the cloud server. From the publisher, the sent messages
are first serialized into the string type and copied to newly initialized memory regions in the user space. Then the publisher
node issues the sendto system call to copy the serialized data from the user buffer to the kernel buffer. Since the destination
address of these messages is the machine itself, the data are copied back to the user space again and deserialized into their
original message type. This deserialization process also needs one copy action in the user space. Thus, a full closed loop of a
publish/subscribe process costs four memory copies. The malicious node can leverage these frequent copy operations to
increase the micro-architecture contention and increase the workload completion time.
4.3. Parameter manipulation attack

This attack is based on the strategy of direct delay. Each node exposes services for end users to adjust function param-
eters. Unfortunately, some parameters can be directly manipulated by the adversary to increase the computation cost of
one function node. If the node is along VDP, then misconfiguration of such critical node can significantly affect the perfor-
mance of the entire MRS. Below we give an example to maliciously configure the Path Tracking node.

As discussed in Section 3.1, acceleration of the computational-intensive nodes along VDP is crucial to reduce the task
completion time. To navigate along a planned path in an obstacle-filled environment, the robot needs a costmap to represent
the knowledge of geometric world and a path tracker to compute the optimal velocity. A costmap uses the static map, laser
data and robot’s footprint to generate multiple layers (e.g., static map layer, obstacle map layer, inflation layer) to store and
update information about the obstacles. Based on the costmap and the global path generated from Path Planning, Path Track-
ing simulates multiple possible trajectories based on the current velocity. For each possible velocity, it performs forward sim-
ulation to generateM trajectories. To find the best path, it scores each trajectory using a cost function that incorporates many
characteristics, including proximity to the goal, to the global path, to obstacles and oscillation. After discarding all illegal tra-
jectories (e.g. colliding with obstacles), the trajectory with the highest score will be selected and the corresponding velocity
is sent to Velocity Multiplexer. Thus, we conclude that the high computation burden for Path Tracking is derived from two
335



Fig. 6. The process of micro-architecture contention attack.

Fig. 7. Parameter manipulation attack in the Path Tracking node.
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factors: the sequentially performed duplicated scoring work and the number of trajectories. The adversary can increase the
number of trajectories M to cause a DoS attack on the Path Tracking node, and then the entire system (Fig. 7).
5. Evaluation

5.1. Experiment setup

We select two types of robots, and one remote server to set up our cloud-based MRS. Table 1 details the specifications of
hardware resources. Specifically, we use the NVIDIA Jetson TX2 (NVIDIA Denver CPU@2.3 GHz with 8 GB of RAM) module
and a laptop (Intel i5-8250U@1.6 GHz with 8 GB RAM) to simulate Robot 1 and Robot 2, respectively. These modules are
widely used in commercial robots, such as Jackal [32], Jet [33] and Turtlebot2 [34]. Both of the two robots are connected
to a wireless router (TP-LINK WDR8600) in our lab with a passive 5 GHz band wireless network. We set up a local server
(Intel i7-7700 K CPU@4.2 GHz with 16 GB of RAM) and connect it to the router with a wired link. We configure this server
to represent the configurations of different cloud servers general purpose instance with a frequency of 2.5 GHz, and high-
frequency compute instance with a frequency of 3.1 GHz). We use VirtualBox 6.0 as the hypervisor and launch several
VMs on the server to execute migrated computations. All robots and VMs run ubuntu 18.04 and ROS melodic. We choose
two types of messages with different sizes in the experiment: an image message of 230 KB and an Inertial Measurement Unit
(IMU) message of 0.33 KB. Thus, the traffic rates in different tests are the product of attack Hz and the size of the malicious
image and IMU message.
Table 1
Cloud-based MRS specifications.

Robot 1 Robot 2 Cloud Server

Module NVIDIA Jetson TX2 Intel i5-8250U Intel i7-7700 K
Frequency 2.3 GHz 1.6 GHz 4.2 GHz
Cores 2 4 4
Memory 8 GB 8 GB 16 GB

Example Jackal [32], Jet [33] F1Epoch RACECAR [35] ROCH [36], Spark [37]Turtlebot2 [34] General-purpose instance (2.5 GHz)
High-frequency compute instance (3.1 GHz)
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5.2. Network flooding attack

We first measure the attack effectiveness caused by network contention. We assume a malicious publisher node exists in
Robot 1, which sends a large amount of dummy image messages to a subscriber node in the remote server. At the same time,
we deploy a victim node in Robot 2, which sends normal messages to the server, and receives the same messages from it. We
measure the Round-Trip Time (RTT) of each message, and count the loss ratio of messages dropped during the
communication.

Fig. 8 shows the distribution of RTT and message loss rate of the victim robot under various message flooding frequencies
by the malicious publisher node. From Fig. 8(a), we observe that the average RTT of the received messages without the attack
is 2.24 ms. When the adversary launches the network flooding attack, the RTT is significantly increased with the flooding
rate. With a rate of 25 Hz, the average RTT of the victim message becomes 7.32 ms, and the maximum RTT is 193 ms, which
indicates severe service degradation. The message loss of the victim robot is even worse since the remote communication is
based on the UPD protocol (Fig. 8(b)): when the flooding rate reaches 20 Hz, about 35% messages are dropped due to the
network contention in the wireless router. Such high drop rate can bring severe consequences to the safety of the MRS, which
will be demonstrated in Section 6.2.

5.3. Micro-architecture contention attack

We launch a malicious publisher node in the remote server, which floods dummy image and IMU messages to normal
subscriber nodes in the same machine, respectively.

We first demonstrate the malicious publisher node can remarkably increase the CPU utilization of the subscriber nodes,
making them deprive of the CPU resources from other normal nodes. Fig. 9 shows the CPU utilization of a subscriber node
under different flooding rates of these two messages. We use red, blue and green lines to denote the results with the CPU
frequency of 2.5 GHz, 3.1 GHz and 4.2 GHz, separately. We can draw two observations from this figure. First, to occupy full
CPU load, the malicious node needs to publish dummy messages at a higher rate when the cloud server adopts a higher fre-
quency, which can process the operations at a faster speed. Second, since the IMU messages have a smaller size, the mali-
cious publisher node is able to send the messages at a higher frequency. Consequently, the CPU utilization of the subscriber
node is higher under IMU flooding (Fig. 9(a)) than under image flooding (Fig. 9(b)).

To dive deep into the CPU usage under these circumstances, we measure the CPU utilization of main functions, as shown
in Fig. 10. We observe that the causes of heavy computation cost flooded by two types of messages are totally different. For
the big-size image message, the cost originates from the four memory copy operations as discussed in Section 4.1. As shown
in Fig. 10(a), the memcpy and memset functions are triggered by the serialization and deserialization in the subscriber pro-
cess. The copy_to_user and copy_from_user are systemcall functions that copy data between the user and kernel spaces.
However, when the message size is small (IMU), the computation overhead becomes the function call cost (Fig. 10(b)):
the top-three functions that consume the most CPU resources are the built-in Python APIs to interpret bytecode, search attri-
butes from the dictionary and execute calls. Thus, we conclude that the high-frequency function calls are the computation
bottleneck for the flooding messages with small sizes. Since small-size messages are more effective in increasing the CPU
utilization of the subscriber node, we will adopt this message type for the following experiments.

Next, we show such CPU contention can impact the processing speed and maximum velocity of the robot. We launch the
malicious publisher node, N subscriber nodes, and the critical Path Tracking node on the same CPU core. The publisher node
keeps flooding the IMU messages to the topic, and received by those subscriber nodes. We set N=5, 10, 15 and 20. Fig. 11(a)
shows the processing time of Path Tracking versus various flooding rate. We can observe the processing time is increased
linearly with the flooding rate until it becomes saturate, which denotes the case that the CPU utilization of this core reaches
Fig. 8. Network flooding attack results.
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Fig. 9. CPU utilization of the subscriber node.

Fig. 10. CPU utilization of main functions in a subscriber node.

Fig. 11. Impact of micro-architecture contention on the workload.
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100%. Besides, a larger N can also leads to a longer processing time, due to the fair scheduling of the OS scheduler. When
N ¼ 20, the processing time of Path Tracking is more than 3700 ms, which indicates a severe DoS threat.

We also calculate the maximum velocity according to Eq. (4), as shown in Fig. 11(b). The maximum velocity is calculated
from the processing time tp, the maximum acceleration limit amax and required stopping distance d. We set tp as the
velocity-dependent path time, amax and d following the mechanical specifications of one common commercial mobile robot
(turtlebot3 [38]). We can see for the worst case, the maximum velocity of the robot can be below 0.1 ms. This will remark-
ably increase the global workload completion time, which will be shown in Section 6.1.
5.4. Parameter manipulation attack

Finally, we evaluate the parameter manipulation attack, where the adversary tampers with the parameters of Path Track-
ing to affect the execution of VDP. To increase the processing time of the Path Tracking node, the adversary can add more
simulated trajectories by setting bigger values for two parameters: vx_samples and vth_samples. The vx_samples parameter
specifies the number of velocity samples in the x dimension (i.e., forward direction) while the vth_samples function specifies
the number of velocity samples in the h dimension. For each sample of the linear velocity in vx_samples and angular velocity
in vth_samples, the Path Tracking node simulates a specific trajectory for scoring. In total, it needs to generate vx_samples �
vth_samples trajectories.

Fig. 12(a) shows the processing time of the Path Tracking node when we increase vx_samples and vth_samples simultane-
ously from 30 to 300. We can clearly observe the processing time is increased by 103.5�, 97.6�, 110.6� under the 2.5 GHz,
3.1 GHz and 4.2 GHz CPU frequencies, respectively. We also calculate the maximum velocity according to Eq. (4), as shown in
Fig. 12(b). We can observe the maximum velocity decreases from 1.12 m/s to 0.04 m/s due to the increase of the two param-
eters. This indicates a severe service availability threat, as demonstrated in Section 6.1.
6. Case studies

In Section 5, we show our attack techniques are able to increase the node’s message drop rate, and reduce the maximum
velocity. In this section, we provide two case studies to show these attacks can incur severe consequences to the MRS.
6.1. Case 1: Increasing workload completion time

The micro-architecture and parameter manipulation attacks can significantly increase the processing time of the Path
Tracking node, and reduce the maximum velocity below 0.05 m/s. We show that such a small velocity can affect the global
workload completion time.

We use the ROS platform and Gazebo simulator to implement an MRS, consisting of three robots. They collaborate on a
map exploration task. A coordination service is deployed in the server, which assigns the frontiers of unknown area to robots
for exploration based on the calculated information gain. Each robot keeps exploring the assigned area, updating the global
map and its position. Fig. 13 shows the map to be explored. The default maximum velocity of a robot in Gazebo is 0.55 m/s.
We assume all three robots (red square) are affected by the DoS attack, and their maximum velocities are decreased at the
same time.

Fig. 14 shows the relationship between the workload completion time and the maximum velocities of the three affected
robots. We can observe that when the velocities of the affected robots are higher than 0.25 m/s, the workload completion
time is hardly altered. However, when the velocities are reduced below 0.25 m/s, which can be achieved by our DoS attacks,
Fig. 12. Attack results caused by the changes of vx_samples and vth_samples.
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Fig. 13. The simulated scenario of MRS exploration workload in Gazebo.

Fig. 14. The workload completion time of the MRS exploration workload.
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the corresponding workload completion time is sharply increased. This validates that our attack techniques can severely
affect the performance of the entire exploration task.

6.2. Case 2: Incurring accidents

The network flooding attack can increase the communication latency and packet drop rates. This can incur severe safety
problems in MRS. We use this case study to demonstrate such consequence.

As Fig. 15 shows, we use the Gazebo and Rviz simulator to implement and visualize a cloud-based exploration task.
Specifically, a robot is dispatched to explore an unknown area (green square) in the map using the same offloading config-
uration as the previous case. When it has explored almost 90% of the map and plans to enter the only unknown zone, an
adversary launches a network flooding attack. As discussed in Section 5.2, about 35% of the robot’s messages are dropped
due to the network contention in the wireless router. Such a high drop rate causes a crash when the robot turns left to enter
the room. This is because the dropped packages make the robot move at an unsafe maximum velocity. As shown in Fig. 4 and
Eq. (4), the maximum velocity is determined by the current stopping distance d. When the current generated maximum
velocity message is dropped, the robot moves at the previous maximum velocity. However, the stopping distance is short-
ened when it moves during the attack period. As a result, the previous maximum velocity does not give enough time for the
robot to reduce the speed to 0 m/s before it hits the obstacle.
7. Discussion and future work

7.1. Possible defense

Network Flooding Defense. One traditional method to mitigate the UDP flood DoS attack is to limit the response rate of
ICMP packets. However, this method is not suitable for MRS apps since it would also filter out legitimate packets. Another
defense method is fingerprint learning [39], which checks whether the same offset locations of various UDP packets contain
the same content. Unfortunately, most of the ROS packages contain the unique package ID and time information at the appli-
cation layer. Although the data among malicious packets and normal packets are the same, the contents of the UDP packets
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Fig. 15. The exploration workload under network flooding attack.
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are different. This makes the fingerprint learning approach ineffective. If multiple wireless routers are allowed, the robot can
use some AP selection methods to switch the wireless router when it detects the package loss increases. However, the adver-
sary can also launch the network flooding attack to all the wireless routers that it can connect to. The best defense solution
we propose is to implement a monitor process to record the original publishing rate of each publisher and detect whether
this value is changed. If the rate suddenly increases, it resets the rate to the original value.

Micro-architecture Contention Defense. The most effective strategy to alleviate micro-architecture contention is to par-
tition the hardware resources physically or temporally for different entities. For instance, different approaches have been
designed to partition the shared CPU caches [40,41] and memory [42]. These solutions can be applied to our scenario,
and isolate the cloud resources for different ROS nodes. An alternative solution is to monitor the runtime behaviors and
resource consumption of each node, and identify any anomalous activities caused by certain nodes. For instance, Hardware
Performance Counters have been widely adopted by researchers to reflect the resource fairness and DoS attack detection in
multi-tenant clouds [14,43,44]. These solutions are expected to defeat our proposed attack as well, which will be evaluated
in our future work.

Parameter Manipulation Defense. The parameter manipulation attack is robot-specific, and there are very few works to
discuss the defense solutions. One possible method is to set a threshold to limit the legal choice of performance-related
parameters. But this may make the robot fail to work in the complex environment because it needs more computations
to deal with. The best defense solution is to design an adaptive algorithm to automatically adjust the parameter according
to the complexity and uncertainties of the environment. One typical example is the Adaptive Monte Carlo Localization
(AMCL) algorithm [45]. This laser-based algorithm uses an adaptive particle filter to track the pose of a robot against a known
map and automatically adjust the number of particles at runtime, preventing the adversary from manipulating the
parameters.
7.2. Attack effectiveness on ROS2

This paper mainly focuses on ROS with the melodic version, since ROS is still the main choice for the commercial products
of many companies (e.g., Dji Matrice 200 drone [8], PR2 humanoid [9] and ABB manipulator [10]). Recently ROS2 [46] was
released, which provides more security measures. It implements a DDS/RTPS communication system to replace the simple
TCP/UDP-based pub/sub communication in ROS. Hence, ROS2 offers a rich variety of Quality of Service (QoS) policies that
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allow users to tune communications between nodes and possibly mitigate the above three types of DoS attacks. As future
work, we will extend our evaluation to ROS2 or a hybrid design of ROS/ROS2.

7.3. Attack effectiveness with other technologies

As discussed in Section 5.3, the heavy computation cost in the micro-architecture contention attack depends on the size
of flooding message. For big-sized messages, one possible defense method is to use the kernel-bypassing technique such as
DPDK [47] and netmap [48]. However, this method can only reduce part of the contention because more than half of the cost
is derived from memcpy and memset functions, triggered by the serialization and deserialization in the subscriber process.
These two functions are not relevant to the kernel-bypassing technique.

8. Related works

DoS attacks in the cloud. DoS attacks in the cloud scenario has been extensively studied. Some works [49–51] proposed
network-based attacks, which can deplete the network bandwidth or network device resources. I/O-based attacks were eval-
uated in [52–54] to degrade the performance of virtual machines. Some attacks [55] compromised the hypervisor scheduler
to steal the CPU usage of victim VMs. [56] designed the resource-freeing attack, where the adversary can steal one type of
resource from the co-located victim VM by increasing this VM’s usage of other types of resources. The performance degra-
dation due to memory resource contention was explored in [57–59], enabling an adversary to perform cross-VM DoS attacks
on the memory sub-system [14,15].

DoS attacks in robotic systems. A quantity of works also focus on the DoS attacks in various robotic devices and systems.
For instance, the impacts of DoS attacks on drones were evaluated in [60,61]. How to protect the autonomous vehicles from
DoS attacks was discussed in [62,63]. Similarly, some works also explored to enhance the resilience of multi-robot systems
against DoS attacks [64–66]. A few studies designed solutions to build secure communication protocols in ROS to mitigate
DoS threats [67,68].

However, there are very few works considering the DoS threats in the cloud-robotic context. Our work bridges this gap by
systematically analyzing the characteristics of cloud-robotic systems and workloads, and proposing novel DoS attack tech-
niques. Considering the cloud-based MRS is a popular trend to meet the increased demands of high automation, intelligence
and reliability, our study can shed light on the security protection of cloud and robot systems.

9. Conclusion

In this paper, we present the first study towards the DoS threat of cloud-based multi-robot systems. We propose three
novel attack techniques to target different layers of the MRS. They leverage the shared resources among different function
nodes to incur malicious contention and resource depletion. We perform comprehensive evaluations and case studies to
show the attacks can cause severe safety and performance issues. We encourage researchers and practitioners from the
robotics community to seriously consider this threat when designing new multi-robot systems. As future work, we will
explore possible defense solutions to enhance the resilience of cloud-robotic systems against DoS attacks.
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