
Towards Practical Cloud Offloading for Low-cost
Ground Vehicle Workloads

Yuan Xu1,2,3, Tianwei Zhang4, Jimin Han1,2,3, Sa Wang1,2,3, Yungang Bao1,2,3

1State Key Laboratory of Computer Architecture, Institute of Computing Technology
2University of Chinese Academy of Sciences

3Peng Cheng Laboratory
4Nanyang Technological University

Abstract—Low-cost Ground Vehicles (LGVs) have been widely
adopted to conduct various tasks in our daily life. However, the
limited on-board battery capacity and computation resources pre-
vent LGVs from taking more complex and intelligent workloads.
A promising approach is to offload the computation from local
LGVs to remote servers. However, current cloud-robotic research
and platforms are still at a very early stage. Compared to other
systems and devices, optimizing LGV workload offloading faces
more challenges, such as the uncertainty of environments and
the mobility feature of devices.

In this paper, we explore the opportunities of optimizing
cloud offloading of LGV workloads from the perspectives of
performance, energy efficiency and network robustness. We first
build an analytical model to reveal the computation role and
impact of each function in LGV workloads. Then we propose
several optimization strategies (fine-grained migration, cloud
acceleration, real-time monitoring and adjustment) to accelerate
workload computation, reduce on-board energy consumption,
and increase the network robustness. We implement an end-
to-end cloud-robotic framework with such strategies to achieve
dynamic and adaptive offloading. Evaluations on physical LGVs
show that our strategies can significantly reduce the total energy
consumption by 2.12× and mission completion time by 2.53×,
and maintain strong robust ness under poor network quality.

Index Terms—performance analysis, adaptive offloading, cloud
acceleration, network robustness

I. INTRODUCTION

Low-cost Ground Vehicles (LGVs) have gained ever-

increasing attention of the public. They exhibit a strong

potential to assist or even replace human beings in particular

scenarios to complete certain tedious or dangerous missions,

e.g., delivering packages [1], housework [2], searching and

rescuing [3]. Moreover, benefiting from the advance of artifi-

cial intelligence techniques, LGVs are expected to have deeper

influence on every aspect of our daily life in the near future.

However, the limited battery capacity and computation

capability on LGVs are proved to be key bottlenecks in

the development of LGVs, hindering them from being more

intelligent and multi-functional. Besides, these two factors

mutually restrict each other, making it hard for developers to

consider both high performance and low energy consumption.

For instance, a Turtlebot3 [4] is equipped with a 19.98Wh
lithium polymer battery. Most of the energy is consumed by

motors, sensors and the microcontroller, leaving the embedded

computer only 3.35Wh for 1 hour (Table I) to run workloads.

Thus the vehicle has to integrate low-power embedded com-

puters that execute the complex intelligent algorithms at a

relatively slower speed. This reduces the velocity to ensure

the execution of the tasks and significantly delays the entire

mission completion time.

To overcome these challenges, cloud offloading is proposed,

which leverages general-purpose cloud servers to run part or

full workloads for robotic devices. Development of robotic

workloads can also benefit from existing cloud services, e.g.,

big data analytics, collective learning, human computation

[5]–[7]. Specifically, (1) cloud-robotic platforms (e.g. AWS

RoboMaker [8], Rapyuta [9], Davinci [10]) were introduced

to help programmers deploy robotic computations across cloud

and robotic devices. (2) cloud-robotic services were designed

based on those platforms to accelerate specific algorithms

[11]–[17] or enable data sharing among a group of robots

[18]–[20] in the cloud.

However, those cloud-robotic platforms and services are

still not fully developed or optimized. They mainly attempt

to improve the cloud-robotic functionalities [11]–[20], or ease

the development of robotic workloads [8], [9]. Optimization

of performance, energy consumption and network robustness

is not systematically considered. This can underutilize the

advantages of cloud servers, and without optimization, cloud

offloading can sometimes have worse effects than local com-

puting under certain conditions (e.g., poor network quality).

In this paper, we present a new and systematic study

about the opportunities and challenges of optimizing the

cloud offloading of LGV workloads, from the perspectives of

performance, energy efficiency and network robustness. Opti-

mization of mobile cloud systems have been widely studied

[21]–[27]. However, it is unsuitable to apply those solutions

to cloud-robotic systems, due to the significant differences

between mobile and LGV workloads and devices. First, there

are more factors to control in an LGV in order to efficiently

complete the workload (CPU frequency, velocity, sensory

frequency, etc.). This increases the difficulty of identifying

offloading strategies for LGV workloads. Second, the majority

of power consumption in a mobile device is GSM module and

display [28], while the power is mainly consumed by the motor

in an LGV. This also indicates the inapplicability of mobile

cloud offloading methods to LGV workloads. Third, unlike
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portable mobile devices, which passively interact with the

environment through user’s behaviors, the LGV autonomously

controls the velocity and path based on the modeled surround-

ing environment. This indicates the computational process in

an LGV workload must not be interrupted under poor network

quality; otherwise the LGV will be suspended and the mission

will fail. As a result, an optimization strategy specifically for

LGV offloading is necessary.

The key to our solution is the introduction of an analytical

model, which can reveal the main factors that determine the

energy consumption and mission completion time of LGV

workloads. Based on this model, we identify three opportuni-

ties of offloading LGV workloads. (1) Fine-grained migration:

different from existing platforms [8], [9] which offload the

entire workload, our solution selects the optimal nodes1 for

migration. This policy can achieve more efficient computa-

tion. (2) Cloud acceleration: we propose some approaches to

optimize workload execution on the cloud servers. We utilize

architecture characteristics (e.g., parallelization) of the server

hardware to further accelerate the execution, and reduce the

energy consumption and completion time of the entire task.

(3) Real-time adjustment: current platforms only support static

offloading policy. Instead, we design a novel strategy that uses

the wireless signal direction (mobility feature) and network

bandwidth (environment feature) to dynamically predict the

network quality and adjust the offloading policy. This can

achieve strong robustness under poor network condition.

We build an end-to-end cloud-robotic platform with above

three optimization strategies and experiment with two standard

LGV workloads: Navigation and Exploration on a Turtle-

bot3, an edge gateway in our lab and cloud servers in a

remote datacenter. Evaluation results indicate that our of-

floading strategies can significantly reduce the total energy

consumption by 1.61× and 2.12×, and mission completion

time of the two workloads by 2.53× and 1.6×, respectively.

The reduction of mission completion time mainly benefits

from the parallelization optimization on the remote servers, as

the processing time of velocity dependent path is remarkably

reduced by 23.92×.

In summary, our contributions are as follows:

• An analytical model to reveal the computation role of

energy and performance optimization in LGV workloads,

and the chances and challenges of cloud offloading (Section

III).

• A fine-grained migration strategy to select the optimal

nodes for offloading, to achieve low energy consumption

or short completion time, based on developers’ demands

(Section IV).

• A cloud acceleration method to identify bottleneck func-

tions and accelerate them on cloud servers (Section V).

• A real-time monitoring and adjustment mechanism to pro-

vide robustness based on signal direction and bandwidth

under poor network condition (Section VI).

1A node denotes one robotic functional process. A robotic workload
consists of many concurrently-running nodes.
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Fig. 1. Architecture of a common LGV – Turtlebot3.

• An end-to-end system to achieve dynamic and adaptive

offloading and optimization (Section VII).

II. BACKGROUND

We present the background of Low-cost Ground Vehicles

(LGVs), including the characteristics of architecture (§ II-A),

and standard workloads (II-B).

A. Architecture

An LGV (e.g. iRobot [2], turtlebot2 [29], Turtlebot3 [4]) is a

mobile robot operating in a group without human interactions

or controls. It autonomously observes the environment, makes

decisions, and moves to certain destinations. An LGV is

usually light (<5kg) and operates within a small area due to

the limited battery capacity. This is different from autonomous

vehicles or humanoid robots. Figure 1 shows five major

components in a common LGV:

Batteries: Batteries provide the energy to support the oper-

ations of other four components. The capacity of batteries is

a key factor, determining the types of workloads and mission

duration an LGV can execute.

Sensors: Sensors are used to perceive the state associated

with the LGV and its surrounding environment. According

to the localization method, the LGV can fall into one of the

two categories: vision-based LGV with RGBD cameras (e.g.

turtlebot2) and laser-based LGV with laser distance sensor

(e.g. Turtlebot3).

Motors: Motors convert electrical energy into mechanical

energy to drive an LGV to move forward. When the LGV

moves with an acceleration of a, a traction force of m(a+gμ)
is needed for providing dynamics, where m, μ and g denote

the LGV’s mass, ground friction constant and gravity constant.

Microcontroller: The microcontroller is a bridge, connecting

the embedded computer with sensors and motors. It is respon-

sible for forwarding commands (e.g. polling data and moving

forward) to sensors and motors from the computer.

Embedded Computer: The embedded computer is the essen-

tial component of an LGV for automation and communication.

It is responsible for executing the workload, described below.

B. Standard Workload Characteristics

An LGV can be used in many scenarios, e.g., package deliv-

ery, house-cleaning, target-searching. All these workloads can

be abstracted as: navigating the vehicle to a given destination
based on the environmental information captured from various
sensors. So those workloads always follow a standard pipeline,

as shown in Figure 2.
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Fig. 2. The standard pipeline for common LGV workloads. The workflow with a map is depicted in black lines. The workflow without a map contains all
operations in black lines and some new operations depicted in green lines.

This computation pipeline is composed of three major

processing stages: PERCEPTION, PLANNING and CONTROL

[30]. Each node in Figure 2 represents a type of functional

computation. The solid arrows denote that the connected two

nodes communicate in the subscriber/publisher mode, and the

dashed arrows represent a client/server paradigm.

PERCEPTION: This stage perceives data from the sensors,

processes such data to extract estimated states of the environ-

ment and the LGV. This stage usually consists of two com-

putation nodes: Localization is responsible for determining

the LGV’s position; Costmap Generation is for modeling the

LGV’s surroundings with costmaps to maintain the navigation

information of the LGV.

PLANNING: This stage is responsible for determining the

long-range actions of the LGV based on high-level goals

specified by users. It also consists of two nodes: Path Planning
(PP) identifies the shortest path from start position to each

destination in a known map; Exploration node searches for all

user-defined accessible regions in absence of costmaps.

CONTROL: This stage processes the execution action and

forwards these motion commands to the actuators in the

control subsystem. The Path Tracking node produces velocity

commands to follow the planned path given the costmap. The

Velocity Multiplexer node selects the velocity from multiple

commands based on user-defined priorities.

Although these functional nodes can be implemented by

different libraries, according to whether the map is known, all

LGV workloads can be classified into two typical categories:

Navigation with a map. CostmapGen uses existing map

data to create a costmap of its surroundings ( 1 2 ) and

Localization estimates the LGV’s position from the sensor data

( 3 4 ). Based on the position and the costmap, Path Planning
generates an efficient collision-free path to the destination ( 5 ).

Path Tracking follows this path and outputs the best action

from simulating multiple trajectories with different velocities

to guarantee feasibility and robustness ( 6 ), such as obstacle

avoidance and oscillation. Considering robot’s kinematics and

dynamics, some other velocity commands (e.g. safe controller,

joystick) are all forwarded to Velocity Multiplexer with differ-

ent priorities, and the final velocity command is sent to the

actuators with the highest priority ( 7 ).

Exploration without a map. To navigate the LGV in an un-

known area, localization executes Simultaneous Localization

and Mapping (SLAM) algorithm to infer the LGV’s position

in absence of a map. Then, Exploration selects a position in

the frontier of known map as a destination and sends the goal

to Path Planning ( 8 9 ). By repeating this process of costmap

update and exploration, the map of the environment will be

expanded by publishing the boundary between the “known”

and “unknown” regions, until the entire area has been mapped.

III. GOAL ANALYSIS AND OPTIMIZATION

Cloud robotics [5], [6] provide a new opportunity to

optimize computation energy and mission completion time.

Instead of deploying all computations in resource-constrained

LGVs, some workloads can be offloaded to the remote servers.

Then the total energy is saved as the migrated nodes do not

need to consume the LGV’s energy. The mission time is also

shortened as the cloud servers can process the computation at

a faster speed. However, cloud offloading can also bring extra

costs: more energy is consumed by the data transmission, and

network latency is introduced to increase the mission time.

How to dynamically figure out the sweet point is critical.

A. Computation Modeling and Analysis

We assume that an LGV runs N +M computational nodes

(i.e. processes) to execute one workload. Specifically, N nodes

are executed in the embedded computer of the LGV and M
nodes are offloaded to the cloud servers.

Energy Consumption. The total energy consumption of exe-

cuting this workload Etotal is the sum of the energy consumed

by the LGV ER
total and the energy consumption during data

transmission Etrans (Equation 1a).

We first analyze the data transmission. Etrans is mainly

consumed by the wireless controller to transmit and receive

data. Similar to existing works [31]–[33], we ignore the

receiving energy consumption as the size of the received

TABLE I
MAXIMUM POWER CONSUMPTION OF EACH COMPONENT (WATT).

LGV Sensor Motor Micro-
controller

Embedded
Computer

Turtlebot2 2.5 (8%) 9 (30%) 4.6 (14%) 15 (48%)

Turtlebot3 1 (6.5%) 6.7 (44%) 1 (6.5%) 6.5 (43%)

Pioneer 3DX 0.82 (3%) 10.6 (34%) 4.6 (15%) 15 (48%)
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data is much smaller in LGV workloads (e.g. 48B velocity

commands). Thus, Etrans can be approximately expressed by

Equation 1b. Here, Ptrans denotes the transmission power of

wireless controller; Ttrans denotes the total transmission time,

which is determined by the size of transmission data Dtrans

and the uplink data rate for computation offloading Ruplink.
The onboard energy ER

total is consumed by the sensors,

motors, microcontrollers and embedded computers. Table I

shows the power consumption of each hardware component in

three commodity LGVs. We can observe that the majority of

power consumption is dedicated to motors and the embedded

computer. So we approximate ER
total as the sum of the

computation energy consumption Eec and the motor energy

consumption Em (Equation 1a).

Etotal = ER
total + Etrans ∼ Eec + Em + Etrans (1a)

Etrans ∼ PtransTtrans = PtransDtrans/Ruplink (1b)

Eec =

∫ T

0

N∑
n=1

Pn
c (t)dt =

∫ T

0

N∑
n=1

(kLn,tft
2)dt (1c)

Em =

∫ T

0

Pm(t)dt =

∫ T

0

(Pl +m(a+ gμ)v)dt (1d)

The energy consumption Eec can be modeled by Equation

1c [31]2. Here k is the effective switched capacitance, deter-

mined by the chip architecture; Ln,t denotes the computation

resources (i.e., number of cycles) this workload requires from

node n at time t; ft denotes the CPU frequency of the LGV

at time t. The energy consumption Em can be expressed by

Equation 1d [34]. Here Pl denotes the transforming loss. m,

v and a are the LGV’s mass, velocity and acceleration. The

ground friction constant is μ and the gravity constant is g.

Mission Completion Time. This consists of two parts:

standby time Ts and moving time Tm (Equation 2a).

T = Ts + Tm (2a)

Ts ∼ tp = tRp + tCp + tc (2b)

Tm ∼ 1/vmax = 1/[amax(
√

t2p + 2d/amax − tp)] (2c)

Standby time Ts measures the time an LGV suspends during

a task. It exists as the computation capacity cannot meet

the workload’s requirements. When the on-board computation

capacity is lower, the LGV needs a longer processing time tp,

and the LGV has to stay standby for a longer time. Thus, the

processing time tp can be denoted by the sum of three parts,

i.e. the processing time of nodes in the robot tRp , the processing

time of nodes in the cloud server tCp , and the network latency

tc (Equation 2b).
Moving time Tm measures the time an LGV moves along

the path. It is highly dependent on the maximum velocity

of an LGV: the faster the speed is, the less time it will

spend on moving (Equation 2c). The maximum velocity is

determined by the computation capacity. A higher computation

capacity help shorten the processing time tp and increase the

maximum velocity. The maximum velocity is also affected by

2Note that this equation is different from the traditional DVFS scaling rule:
P ∼ V 2f where V is the supply voltage and f is the clock frequency. In
our model, we assume the voltage is constant
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Fig. 3. Key factors and relationships with total energy consumption and
completion time. ↑ means this factor is positive correlated to energy or
completion time, while ↓ means the factor is negative correlated.

the maximum acceleration limit amax, and required stopping

distance d due to the obstacle avoidance constraint [35]. These

are determined by the LGV’s mechanical characteristics, and

are not considered in this paper.

Analysis. Figure 3 summarizes the key factors and their

relationships with the final optimization goals. We use arrows

to show whether they are positive or negative correlated to the

final goals. We also display that some factors are related to the

task decision accuracy (cyan), computation capacity (green),

or network condition (purple).

From this figure, we observe that optimization is non-trivial:

(1) The two goals are coupling with each other. Optimizing

one goal can also alter the other one. (2) There can be conflicts

when tuning the parameters: reduction of Em requires both

reduction of T and Pm(t), but the former is proportional

to vmax and the latter is in an inverse ratio to vmax. (3)

There are few factors we can alter for optimization. LGVs are

commonly equipped with low-end embedded processors with

low frequency, so tRp and ft are commonly non-adjustable. Re-

ducing Ln,t inside the algorithm [36] can decrease the decision

accuracy and become ineffective in complex environments.

B. Possible Optimization Approaches

Although optimization is challenging, we can still identify

several possible approaches in the cloud offloading system.

Fine-grained migration. Cloud offloading can achieve the

two goals simultaneously through decreasing Pn
c (t) and tRp .

However, it is not advisable to migrate all the computation

nodes to the cloud due to two reasons. First, certain lightweight

nodes have negligible impacts on the performance and energy

consumption of the LGV devices. So there is no need to take

the effort to upload those nodes to the cloud. Second, poor

network quality can cause high packet loss rate, and even

interrupt the LGV workloads entirely. So offloading all nodes

would bring too much uncertainties in the complex environ-

ment. Then a fine-grained migration policy is necessary. We

need to address this question: which computation nodes should
be migrated to the remote servers? (§ IV)

Cloud acceleration. While it is difficult to optimize the

computation on the LGV, there still exists opportunities to

accelerate the node execution in the cloud servers. This can

effectively reduce tCp for the mission completion time and

energy consumption. The question is: how to utilize the

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:20:50 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
CYCLE BREAKDOWN OF EACH WORK NODE (GIGACYCLES). THE CONFIGURATION IN OUR EXPERIMENTS CAN BE FOUND IN § VIII-A.

Category
Perception Planning Control Energy Critical

NodesLocalization CostmapGen Path
Planning Exploration Path

Tracking
Velocity

MultiplexerLaser SLAM

With a Map 0.028 (1%) 0.857 (37%) 0.055 (2%) 1.385 (60%) -
CostmapGen
Path Tracking

Without a Map 3.327 (62%) 0.685 (12%) 0.052 (1%) 0.011 (1%) 1.207 (23%) -
CostmapGen

Path Tracking, SLAM

hardware architectures and resources from the cloud side to
further improve the efficiency? (§ V)

Real-time adjustment. The network latency tc plays an

important role in determining the effectiveness of cloud of-

floading. Under certain network conditions and environments,

the benefit from computation acceleration in the cloud may

be not enough to offset the extra cost by network latency.

Even worse, the LGV may move to somewhere far away

from WAP and disconnect with the cloud. Then it is not

advisable to perform cloud offloading. Although we cannot

control the network conditions actively, we should dynamically

monitor the network quality and adjust the offloading strategies

adaptively. Then the question we need to consider is: how
to measure real-time network quality and achieve robustness
under poor network conditions? (§ VI)

IV. FINE-GRAINED MIGRATION

Our first optimization is a fine-grained migration policy.

Current platforms [8], [9] delegate the offloading decision to

programmers. From above analysis, the optimization of these

performance and energy is complicated, thus those non-expert

robotics programmers actually encounter more challenges. In

this section, we present an approach to automatically select

the optimal computation nodes for cloud offloading.

A. Bottleneck Identification

We introduce two concepts to help us better understand the

computation characteristics of LGV workloads, and identify

the performance and energy bottlenecks.

Energy-Critical Node (ECN): This denotes the node that

consumes a major portion of the total energy in the workload.

This is the energy bottleneck of an LGV workload.

According to Equation 1c, the energy consumption per unit

time at each node is proportional to the workload CPU cycles.

Table II shows the CPU cycle breakdown of each node in two

types of LGV workloads (measured at 1.6GHz, 4 low-power

cores). From this table we can observe that the majority of

execution cycles is dedicated to CostmapGen, Path Tracking
and Localization (SLAM). So we can conclude that those three

nodes are ECNs in the LGV workloads.

Velocity-Dependent Path (VDP): This denotes the longest

velocity-dependent execution flow path. The total processing

time of all nodes along the VDP determines the LGV’s maxi-

mum velocity (Equation 2c), and thus the mission completion

time. It is the performance bottleneck of an LGV workload.

As Figure 2 shows, once receiving the laser data, Costmap-
Gen detects and marks obstacles in the costmap. Then Path
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Fig. 4. Nodes classification of LGV apps.

Tracking generates a collision-free path, sends the adjusted ve-

locity to Velocity Multiplexer and further forwards to the mo-

tors. So the execution path along CostmapGen, Path Tracking
and Velocity Multiplexer is the VDP in the LGV workloads.

B. Node Selection and Offloading Strategy

Figure 4 summarizes the relationship between ECN and

VDP of the LGV workloads. Different sets of nodes will be

selected for different goals.

Reducing energy consumption: As discussed in § III-A, total

computation power Eec is mainly determined by Pn
c (t) and T .

So it is necessary to migrate all ECNs (T1+T3) to the cloud

for energy reduction. The rest lightweight nodes (T2+T4) can

be executed on the LGV.

Shortening completion time: Mission completion time de-

pends on the overall processing time of all nodes along the

VDP3. So it is necessary to migrate all ECNs inside VDP (T3)

to the cloud for performance acceleration. The rest nodes (T2)

can be kept on the local LGV, as their processing time will not

be improved even when they are hosted on the cloud server.

However, network latency has to be considered when opti-

mizing the completion time: if extra network latency due to

node migration is larger than the shortened completion time,

then it is not necessary to conduct offloading. Specifically,

we denote T v
l as the overall VDP node processing time

when all nodes are local, and Tc as the sum of VDP node

processing time and real-time network latency when T3 nodes

are offloaded to cloud. If the network quality is poor such that

Tc > T v
l , then we should just conduct the computation of all

VDP nodes locally.

Algorithm 1 describes our offloading strategy. We provide

two optional optimizing goal for programmers: (1) Reducing

energy consumption (EC): all the T1+ T3 nodes which have

heavy computation overhead will be offloaded to the cloud. (2)

Shortening mission completion time (MCT): we first submit

all ECNs to the cloud, and compare the local VDP time T v
l

with cloud VDP time Tc. If Tc > T v
l due to a high-cost

3We do not consider the impact of network bandwidth because the size of
the transferred data is very small such that the network bandwidth does not
fluctuate significantly according to our experiments. The high-frequency loss
of data transfers can affect the mission completion time when the LGV moves
far away from the wireless access point, which will be discussed in § VI.
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Fig. 5. Parallel path tracking algorithm with N threads acceleration. It crops
the sensor data and static map to update the costmap and produces velocity.

network latency, we will migrate all T3 nodes back to the

local LGV. The maximum velocity is set based on the overall

VDP processing time (Equation 2c).

Algorithm 1 Offloading Strategy

INPUT:
N t � A set of nodes to be scheduled at time t
T v
l � Local VDP time at maximum velocity v

Tc � Cloud VDP time (including network latency)
G � Optimization Goal (EC/MCT)

BEGIN:
submit all nodes ∈ ECN to the remote server
while N t != φ do

let ni be the nodes ∈ T3
if Tc > T v

l and G == MCT then
migrate ni to LGV

end if
end while
set new maximum velocity velocityOA(Tc) according to
Equation 2c

V. CLOUD ACCELERATION

Our second optimization is to accelerate the node execution

in the cloud. This can reduce the on-board energy con-

sumption, and end-to-end mission completion time. Although

existing cloud-robotic services provide execution acceleration

[11]–[17], they only focus on the algorithm level. In this sec-

tion, we propose some approaches to optimize different work

nodes utilizing the architectural features of remote servers

and discuss the optimal selection of different architectural

configurations in the optimization.
CostmapGen and Path Tracking. As discussed in § III-A,

The acceleration in computational-intensive nodes along VDP

is crucial to reduce mission completion time. To navigate

along a planned path in an obstacle-filled environment, the

LGV needs a costmap to represent the knowledge of geometric

world and a path tracker to compute the optimal velocity. A

costmap uses the static map, laser data and LGV’s footprint

to generate multiple layers to store and update the information

about the obstacles, including a static map layer, obstacle map

layer and inflation layer. Based on the costmap and the global

path generated from Path Planning, Path Tracking simulates

multiple possible trajectories based on the current velocity.

For each possible velocity, it performs forward simulation to

generate N trajectories. To find the best path, it scores each

trajectory using a cost function that incorporates many charac-

teristics, including proximity to the goal, to the global path, to

�����
����

�)��#�	
 )� �	
 )�#����
���

	��
����
	��
���3	

�3
��3	��
����L

�

�M��

3333333������3I
3333333������3J

3333333������3:

�

������3
�


��
���

������3
������������������� ���������

������
����������

Fig. 6. Parallel gmapping algorithm with N threads acceleration. Each thread
execute the scanMatch function to process M/N particles. The dotted circles
and gray solid circles denote the most recent pose and particles respectively,
while blue circles and black solid circles denote current pose and particles
respectively. The yellow stars represent the landmarks.

obstacle and oscillation. After discarding all illegal trajectories

(e.g. colliding with obstacles), the trajectory with the highest

score will be selected and the corresponding velocity is sent

to Velocity Multiplexer. Thus, we can conclude that the high

computation burden for Path Tracking is derived from two

factors: the sequentially performed duplicated scoring work

and the number of trajectories.

Based on this observation, we propose an efficient path

tracking algorithm exploiting the manycore characteristic of

the cloud servers. Figure 5 describes how our algorithm can

parallelize the execution of scoreTrajectory process. Specifi-

cally, we set up a thread pool with N threads. Once the main

thread of path tracking generates M trajectories, we partition

these trajectories into N parts and assign each one to a thread

in the pool for the scoring operation. After all threads complete

their works, we choose the trajectory with the highest score

as the best path.

SLAM. Although accelerating SLAM on remote servers

makes no benefits to either energy consumption or mission

time, the reduction of SLAM processing time can decrease the

rate of mission failure caused by wrong decision after receiv-

ing an obsolete data (i.e. pose) from the SLAM node. The main

idea of the SLAM algorithm is to maintain a set of particles

M to estimate the real pose before mapping. Each particle

represents a possible pose of a robot and is encoded by a

potential trajectory and the related occupancy grid map. Thus,

the number of particles M determines the decision accuracy of

the gmapping algorithm. Using the timestamp method, we can

verify that 98% of the computation time of SLAM is spent on

the scanMatch function, which involves many mathematical

operations in processing M particles repeatedly. Thus, we

conclude that the high computation burden on the SLAM

node is derived from two factors: the sequentially performed

duplicated matching work and the number of particles.

We designed an efficient parallel gmapping algorithm,

which exploits the manycore server features to accelerate the

SLAM processing time. Figure 6 briefly shows the mecha-

nism of our algorithm for parallelizing the execution of the

scanMatch process. Specifically, we set up a thread pool

with N threads and each thread is responsible for operations

of M/N particles. Therefore, once receiving the laser data,

each thread in the thread pool will subscribe to one copy of

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:20:50 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 7. An example of traditional UDP communication pattern under unstable
wireless network and the detailed implementation of sending process. The
discarded packets are depicted with purple squares.

the data and execute the scanMatch function to update the

latest state of the partial particles. After all particles in the

particle pool are processed, the main thread continues to call

updateTreeWeights and resample functions sequentially.

VI. REAL-TIME ADJUSTMENT

The third optimization we introduce is to dynamically

monitor the workload execution and environment, and alter

the offloading policy when possible. This is particularly im-

portant for achieving strong robustness, but rarely considered

in existing platforms. During the task the LGVs are moving

to different places, and it is possible to locate in a place with

rather bad network quality. So we need an adaptive solution

to ensure that the LGV workload can be executed smoothly

for the entire process.

Challenges. To achieve network robustness, we first need

to accurately evaluate and measure the real-time network

quality. We focus on the communication between nodes along

VDP because both the offloading decision and the maximum

velocity depend on the VDP makespan. To ensure real-time
communication and data freshness, these nodes commonly

use an efficient UDP communication pattern with a one-

length queue. Previous researches [37] used tail latency (99th-

, 99.99th-) or worst-case latency as metrics to evaluate the

network quality. Specifically, they collected end-to-end com-

munication timestamps and predicted the network quality from

history data. These metrics can work well in TCP pattern

which hides packet loss and disorder in the communication

timestamps, but fail to give a fair evaluation for UDP pattern.

Figure 7 illustrates a case that traditional tail latency or

worst-case latency cannot be applied to cloud-robotic net-

works. An LGV transmits five packets to the remote cloud

sequentially within a period of time. First, the LGV issues

the system call sendto to copy the data of packet 1 from the

user buffer to the kernel buffer. Then, it calls the wireless

driver function sendto to transmit the data to the cloud. After

that, the driver detects that the quality of the signal is weak

while sending packets 2 and 3. It blocks the kernel buffer

and holds on the data until it detects that the wireless signal

becomes strong. Due to the nonblocking configuration of the

socket, packets 4 and 5 fail to be copied into the full kernel

buffer and are discarded. Thus, from the cloud’s side, both

tail latency and worst-case latency will reveal a good network
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Fig. 8. System overview of cloud-robotic offloading.

condition when receiving packet 1 and the current policy will

be maintained. In this case, the LGV will stop at the time

of weak signal forever or spend much time to restart mission

without state migration.

A. Offload Network Quality Control

We propose an offload network quality control strategy

for accurate real-time network quality prediction, and node

switching. As shown in Algorithm 2, we use packet bandwidth

(i.e. receiving packet rate) and signal direction (i.e. LGV

moving direction relative to WAP) as metrics instead of

latency. The signal direction is built on the position of the

WAP marked in the LGV’s internal model of the environment.

Due to the stable sending rate, the packet bandwidth can

predict the future network quality by reflecting the packet

loss in a period of time (e.g. 1s). The signal direction can

help us make switching decision by monitoring the variation

of directions between the LGV and the WAP. In the above

example, if sending rate is 5Hz and the LGV moves away

from WAP, we will achieve a 1Hz bandwidth at weak signal

and a negative signal direction. Then, the LGV will invoke

offloaded computation nodes locally and migrate related states

back from the cloud.

VII. SYSTEM DESIGN

We design and implement an end-to-end cloud-robotic sys-

tem to realize our optimization strategies. Figure 8 shows the

architectural overview of our prototype. The system includes

two main entities: a local LGV, and the remote edge gateway

or cloud server. The local LGV runs Robot Operating System

(ROS) [38], which is the most popular open-source robotic

middleware for programming abstraction. A ROBOT system

module runs on top of ROS, consisting of three threads:

Controller, Profiler and Switcher. The remote server hosts

a Virtual Machine Manager (VMM), with multiple Virtual

Algorithm 2 Offload Network Quality Control

INPUT:
N t � A set of nodes executed in remote server at time t
rt � Packet bandwidth at time t
dt � Signal direction between LGV and WAP at time t

BEGIN: � We focus on these two cases caused by mobility.
if rt < threshold and dt < 0 then

invoke N t on LGV locally
else if rt > threshold and dt > 0 then

invoke N t on remote server
end if

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:20:50 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III
COMPUTING OFFLOADING PLATFORM SPECIFICATIONS.

Turtlebot 3 Edge Gateway Cloud Server
Model Raspberry Pi 3 B+ Intel i7-7700K Intel Xeon Gold 6149

Frequency 1.4 GHz 4.2 GHz 3.1 GHz

Cores 4 4 24

Memory 1 GB 16 GB 768 GB

Sensor LDS-01 - -

Feature Low Freq High Freq Manycore

Machines (VMs). Each VM runs a WORKER system module,

consisting of the same Profiler and Switcher threads as the

LGV. Each VM is connected to an LGV via TCP/UDP. The

functionalities of different threads are explained below:

Switcher. This is the main thread that maintains data commu-

nication between different worker nodes deployed in the local

LGV and the remote server. Specifically, it attaches temporal

information to each ROS message and then sends the message

to the receiver with a serialized data structures. We implement

the switcher with a C++ library called evpp [39] that provides

a multi-threaded nonblocking RPC model using asynchronous

I/O mechanisms. We also use protobuf [40] to serialize

ROS message for efficient data transmission.

Profiler. This module collects relevant data for making of-

floading decisions in Algorithms 1 and 2. (1) Processing

time: it records the timestamp of each node along VDP

and publishes them to the corresponding topic. (2) Network

latency: it measures the uplink time and downlink time by

monitoring the packet round trip time (RTT). When the remote

switcher receives messages from the local switcher, it attaches

the subscribed processing time of the cloud worker nodes and

returns to the local switcher. Thus, the VDP makespan can

be calculated as the sum of received cloud processing time,

subscribed local processing time and RTT. (3) Bandwidth:

it counts the number of local received messages during a

fixed period. (4) Signal direction: it estimates the variation

of distance between the local LGV and WAP as a bool value.

Controller. This specifies the configuration parameters of

functional worker nodes for computation offloading and ro-

bustness at runtime. Specifically, it exposes interfaces of

decision accuracy and maximum velocity adjustment through

ROS APIs, and uses profiling data to make corresponding

actions based on our strategies.

VIII. EVALUATION

A. Experiment Setup

We select a representative LGV, Turtlebot3, and two types

of remote platforms with different hardware configurations.

Table III details the specifications of hardware resources.

Specifically, the Turtlebot3 is a low-end LGV equipped with

a Raspberry Pi CPU@1.3GHz, 1 GB memory and a 360

Laser Distance Sensor (LDS). It is connected to either a high-

frequency edge gateway (Intel i7-7700K CPU@4.2GHz with

16GB of RAM) in our lab or a virtual machine (Intel Xeon

Gold 6149 CPU@3.1GHz with 758GB of RAM) from a public

cloud provider with a passive 5GHz band wireless network.
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Fig. 9. Processing time (s) of energy critical node (SLAM) under different
numbers of threads and particles.

���	

�

�

�

����

�

�

�


�	

�

�

�

���

�

�

�

��� 	�� ���� ����

�

�

	

��


 �� �������



��

��
��

��
�

���

��

��

�

�	

	�

	�

�

��

��

��

�

��

��

��

�

��� 	�� ���� ����

�

�

	

��


 �� �������



��

��
��

��
�

�	�

�


��

�	

���

�


��

��


�

��

��

�


��

��

��

��

��� 	�� ���� ����

�

�

	

��


 �� �������



��

��
��

��
�

T�U�@$��
	���� T�U���*	�+��	S�� T�U� 
�$���	�&	�
Fig. 10. Processing time (ms) of velocity dependent path (CG + PT + VM)
under different numbers of threads and particles.

For the computation nodes, we choose Adaptive Monte

Carlo localization (AMCL) [41] as the laser-based localization

algorithm for the known map scenario, and GMapping [42] as

the SLAM algorithm to build a 2D occupancy grid map of

LGV’s surroundings for the unknown map scenario. We adopt

the CostMap 2D package [43], a multi-layer tracking and

updating algorithm to mark and clear obstacles intelligently.

We use ROS global planner [44] paired with the A* [45]

and Dijkstra’s [46] algorithms for path planning. We use the

frontier-based algorithm [47] for autonomous exploration, an

effective approach for LGVs to extend their maps by moving to

new frontiers (i.e. regions on the boundary between observable

space and unexplored space) and updating unknown regions.

We use ROS local planner [48] integrated with the Trajectory

Rollout and DynamicWindow [49] algorithm to drive LGVs

in the plane. We choose Yujin Robot’s open-source control

system [50] for velocity multiplexer.

B. Cloud Acceleration Improvement

We use Intel Research Lab [51] as a representative dataset

of LGV workloads to examine the effects of our cloud acceler-

ation strategy. We measure the processing time with different

numbers of threads (parallelization), and particles (computa-

tion complexity). Figures 9 and 10 show the processing time

of ECN and VDP respectively. For each figure, we report the

processing time when the nodes are (a) local, (b) migrated to

the edge gateway, or (c) to the cloud server.

ECN: As the numbers of threads and particles scale up, we

observe that the processing time is reduced by up to 27.97×
and 40.84× when the nodes are offloaded to the gateway and

cloud server, respectively (Figure 9). As described in § V,

increasing the number of particles can improve the decision

accuracy of the mapping algorithm at a higher computation

cost. So, a larger number of threads can achieve a higher

processing time reduction when the number of particles is

large. Besides, we observe that the cloud server with the

manycore feature has a better acceleration improvement for

ECN offloading.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:20:50 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 11. Network latency and bandwidth of UDP transmission in a wireless
network. We monitor the real-time communication latency (blue rhombus),
bandwidth (red dot) of velocity messages and signal direction.

VDP: The processing time of VDP affects the maximum

velocity selection. As described in § V, the number of samples

determines the number of simulated trajectories. Thus, high

processing time in low-frequency embedded board of LGV

limits not only the maximum velocity, but also the decision

accuracy. We achieve a processing time reduction of up to

23.92× and 17.29× for optimization across the gateway and

cloud server (Figure 10). It is interesting to observe that

parallelization has no impact on the processing time when

the number of threads is larger than 4, as the computation

overhead in each thread is very small. Besides, we can observe

that the edge gateway with the high-frequency feature has a

better acceleration improvement for VDP offloading.

C. Network Robustness

We evaluate the effectiveness of our real-time adjustment

strategy under poor network quality in physical world. Figure

11 shows the network latency and bandwidth when the LGV

moves from point A to C and then returns to A. Note that

the designated point C is in an unstable area far away from

the WAP. From the figure, we can observe that bandwidth can

accurately reflect the packet loss rate due to the fixed sending

rate (5Hz) of the Path Tracking node deployed in the cloud

server. We set the threshold as 4 in Algorithm 2.

When the LGV moves to the unstable area (green dashed

box), the latency increases while the bandwidth decreases.

The critical point that divides the negative and positive signal

direction is the designated point (C) of the LGV’s entire path.

Note that before the LGV enters into the unstable area under

weak signal quality (Point B), the communication latency

cannot reflect the network quality correctly due to the “best-

effort delivery” of UDP as discussed in § VI. Based on

our strategy, we can predict the network quality through the

reduction of bandwidth and make local migration decisions

with negative signal direction. When the LGV returns, it makes

cloud migrating decisions based on the increased bandwidth

and positive signal direction. This decision also depends on

our offloading strategy in Algorithm 1.

D. End-to-End performance

To estimate the end-to-end performance improvement of

our offloading strategy, we investigate the maximum velocity

increase, total energy saving and mission time reduction under

�� �� �� �� �� �� (� 	� �� ��� ���
�)�

�)�

�)�

�)�

����

*
�+

,�
��

��
��

 �
-�

! ��������# �%�&��� ���������'!
�%�#� �%�#����'!

Fig. 12. The maximum velocity of the LGV in a navigation workload with
different platforms and strategies
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Fig. 13. The total energy consumption and mission completion time.

different hardware platforms. Specifically, we first instruct our

LGV to explore in our lab and make a 2D grid occupied map.

Then we perform the navigation evaluation with a designated

position on the known map.

Maximum velocity increase: Figure 12 presents the maxi-

mum velocity breakdown during a period of time based on our

offloading strategy in Algorithm 1. Specifically, we analyze

five offloading cases in our experiments: no offloading (blue

line), offloading to the gateway without optimization (red line),

offloading to the gateway with 8 threads parallelization (black

line), offloading to the cloud without optimization (green line)

and offloading to the cloud with 12 threads parallelization

(purple line).

It is clear to see that without any computation offloading

the LGV moves in a slow speed due to limited on-boarding

resources. With computation offloading and parallel optimiza-

tions, the maximum velocity of the LGV can be remarkably

increased by 4-5 times. Note that the maximum velocity

of each offloading strategy fluctuates more widely than no

offloading. This is caused by the unstable network latency,

including both the wireless latency between the LGV and

WAP, and the wired latency between our lab and the cloud.

Energy saving and mission time reduction: As Figure 13

shows, we model energy consumption as the sum of five hard-

ware components of the LGV: motor, sensor, microcontroller,

embedded computer and wireless controller. We measure the

total energy consumption through connecting a power meter

on the battery, and estimate the energy consumption of each

component using the power models from [34], [52]. The bars

with different colors in this figure denote the total energy

consumption of each component respectively. In addition, we

also mark the mission completion time of each workload with

different computation deployment strategies.

From the figure, we can observe our offloading strategy can

significantly reduce the total energy consumption by factors

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:20:50 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 14. The relationship between maximum velocity and real velocity.

of 1.61×, 2.12× and mission completion time by factors of

2.53×, 1.6× respectively. Although computation deployment

on remote servers can significantly reduce the energy con-

sumption of the embedded computer (green bar) and mission

completion time (triangle), there is almost no performance

improvement on motor energy (red bar). This is because motor

energy is proportional to the LGV’s velocity. Although we can

reduce the mission completion time by increasing its velocity,

the benefit is balanced by the increase of real-time motor

energy. Beisdes, the energy consumption in wireless controller

is small due to the small size of Dtrans in Equation 1b, whose

maximum size is 2.94KB (laser scan).

Moreover, the total energy reduction of the workload with-

out a map is higher than that of the workload with a map,

because the computational-intensive SLAM node runs out the

resources. As such, the embedded computer consumes a larger

portion of the overall energy. Besides, due to a larger number

of curves and uncertainties in the path of the workload without

a map, the LGV drives at a slower velocity for safety. Thus,

its mission completion time reduction is lower than that of the

workload with a map.

E. Adaptivity Analysis

While we maximize the energy benefit by dynamically

adjusting the maximum velocity, there is a gap between the

maximum velocity and the real velocity due to the mobility

of the LGV. Different from stationary servers, the LGV

interacts with the dynamic and unstructured environment when

executing workloads. Considering the obstacles in a map, the

planned path can be straight, arc, or U-shaped line. Figure 14

shows the relationship between the maximum velocity (solid

line) and the real velocity (dotted line) when the LGV moves

in a complex real world with many obstacles. The traveling

path includes three phases: avoiding obstacles (Time 0-45),

heading straight (Time 45-85) and turning right (Time 85-110).

Obviously, only when the LGV follows a straight path

(green square), the real velocity can reach the maximum

velocity. When the LGV faces obstacles or needs to make

a turn, the real velocity will decrease. The higher maximum
velocity is set, the bigger gap between the real and maximum
velocity will be expanded. Driving at relatively low speeds

(blue line) can bridge the gap caused by different phases.

Thus, we can adopt the optimal offloading policy which has a

minimum gap based on different phases of environment. For

instance, if there are more obstacles in the environment, we

can reduce the parallelization since the LGV cannot reach the

maximum velocity. This can also save the financial cost and

resource usage on the cloud servers or edge gateway.

IX. DISCUSSION AND FUTURE WORK

Theoretical Guarantee . In this paper, we empirically validate

our proposed solution with real-world devices and environ-

ments. How to theoretically and formally verify the effective-

ness of the optimization is a challenging and open problem,

as the strategy depends on not only the electronic features

of embedded computers, but also the domain knowledge of

modeling both kinematics and dynamics of robotics. This

process can introduce high complexity and stochasticity. To

the best of our knowledge, most relevant solutions only adopt

the empirical studies [36], [37], [53]–[55], and there are very

few works providing theoretical guarantee. This will be an

important and promising direction of our future work.

Other robotic devices . In this paper, we focus on the

offloading optimization of LGVs. Our strategies can be applied

to other autonomous devices as well, with certain changes. For

instance, autonomous vehicles and drones have stronger safety

requirements since they move in a more dynamic environment

with much high speeds than LGVs. These safety requirements

set a strict constraint on processing time to guarantee these

vehicles react to real-time conditions promptly. So in the

fine-grained migration, we need to keep those safety-critical

nodes (e.g., obstacle avoidance) in the vehicle other than being

offloaded to the cloud. Performance and energy optimization

in the cloud can be further optimized following our strategies.

We conduct analysis and experiment on laser-based LGVs,

which are sensitive to computation and energy due to the low-

end embedded computer and limited battery. Our strategies can

adapt to vision-based LGVs as well, since they share the stan-

dard pipeline and computation model with laser-based LGVs.

The only difference is that the localization failure effect needs

to be considered: the vision-based LGV estimates its pose by

tracking a set of points/features through successive camera

frames. A slower speed is needed to prevent the localization

failure due to the high rate of environment changes.

Alternative parallelization methods. We identify ECNs and

parallelize their computational processes through multiple

threads. Despite this method is algorithm specific, it is gener-

ally effective in most of LGV workloads, as the particle-based

localization and mapping are dominant in the robotic domain

[56]. Other parallelization methods for vision-based SLAM

have been widely studied in recent work [57], [58], we plan

to integrate these methods to our system to verify the end-to-

end performance benefit in the future.

X. RELATED WORK

Fine-grained Migration. Various cloud-based systems were

built to facilitate the development of robotic workloads [8]–

[10]. They are used to help programmers deploy computations

across cloud and robots. However, those non-expert robotics

programmers need to manually make the migration strategies

with their expertise, which is not automatic or efficient.
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Cloud Acceleration. On top of such cloud-robotic platforms,

cloud services were introduced to accelerate different robotic

functions, e.g., grasp planning [16]–[18], object recognition

[12], [13], SLAM [11], [59]–[62]. However, these works focus

reducing the execution time of specific algorithms. They did

not consider the benefits of systematic performance and energy

efficiency of the entire mission from cloud acceleration.

Real-time Adjustment. To achieve robustness under poor

network condition, previous works focus on access point

selection, which automatically chooses an available network

among multiple communication links based on the bandwidth

assessment [63]–[67]. However, this method cannot work

when there are no multiple optional communication links.

Robotic Workloads Analysis. Previous works designed

methods and benchmarks to analyze the energy and perfor-

mance of drones [36] and autonomous driving [37], [53], but

they did not investigate optimizations on the cloud-robotic

scenario. Rahman et al. [68] proposed a genetic algorithm

for energy and mission completion time optimization of oil

factory maintenance application. Their method is based on a 3-

layer decision: task offloading, path planning, and access point

selection. However, this method requires to model the factory

environment, and its application is limited to the scenario

where the environment is static and known. This work also

did not consider cloud acceleration or velocity adjustment for

better optimization. In contrast, our proposed method can be

applied to general UGV tasks and scenarios, even when the

environment is unknown and dynamic. Pandey et al. [69]

presented a novel resource provisioning algorithm for Au-

tonomous Underwater Vehicles (AUVs) applications to benefit

from the cloud resources. The objective of their algorithm is to

minimize either the execution time or budget for cloud usage.

This migration method did not consider energy consumption of

each component in the robots and velocity control, or the cloud

acceleration and real-time adjustment. Hence this solution is

less optimized than our proposed work.

XI. CONCLUSION

This paper explores the opportunities of performance and

energy optimization on LGV workloads with cloud offloading.

To understand the computation role in total energy consump-

tion and mission completion time, we build an analytical

model to disclose the relationship among its constituted factors

and identify the optimization bottlenecks in each workload.

We propose three optimization strategies to select the optimal

nodes for offloading, accelerate the execution in the cloud, and

dynamically monitor and adjust the policies at runtime. We

implement an end-to-end prototype on the Turtlebot3 vehicle.

Evaluations indicate that this system can achieve significant

performance and energy efficiency. We expect this work can

encourage researchers from different communities to pay more

attention to the cloud-robotic area.
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