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Abstract—The rapid development of deep learning (DL)
enables resource-constrained systems and devices [e.g., Internet of
Things (IoT)] to perform sophisticated artificial intelligence (AI)
applications. However, AI models, such as deep neural networks
(DNNs), are known to be vulnerable to adversarial examples
(AEs). Past works on defending against AEs require heavy com-
putations in the model training or inference processes, making
them impractical to be applied in IoT systems. In this arti-
cle, we propose a novel method, SUPER-IOT, to enhance the
security and efficiency of AI applications in distributed IoT
systems. Specifically, SUPER-IOT utilizes a pixel drop opera-
tion to eliminate adversarial perturbations from the input and
reduce network transmission throughput. Then, it adopts a sparse
signal recovery method to reconstruct the dropped pixels and
wavelet-based denoising method to reduce the artificial noise.
SUPER-IOT is a lightweight method with negligible computa-
tion cost to IoT devices and little impact on the DNN model
performance. Extensive evaluations show that it can outperform
three existing AE defensive solutions against most of the AE
attacks with better transmission efficiency.

Index Terms—Adversarial examples (AEs), deep learning (DL),
Internet of Things (IoT), security.

I. INTRODUCTION

THE PAST decade has witnessed the revolutionary devel-
opment of deep learning (DL) technology with deep

neural networks (DNNs). A variety of DL algorithms and
models were designed to perform different artificial intelli-
gence (AI) tasks. For instance, convolutional neural networks
(CNNs) [1] show great capability in handling computer vision
tasks; recurrent neural networks (RNNs) [2] power the advance
of natural language processing; and deep reinforcement learn-
ing (DRL) [3] achieves very high performance in robotics and
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autonomous driving. Those state-of-the-art models have been
extensively commercialized in many products, and they are
continuously enhanced by experts from academia as well as
industry. Nowadays, new techniques have kept emerging at
surprising speed to enrich the DL community.

Meanwhile, DL also drives the growth of the Internet of
Things (IoT). Equipped with different sensors (e.g., cameras,
microphones, and gyroscopes), IoT devices become appeal-
ing targets for DL applications. They keep sensing data and
information from various environmental contexts in a stream-
ing fashion. Then, DL models are deployed in centralized
servers to process and understand the data. The integration of
AI and IoT leads to the era of AI of Things (AIoT), which have
significantly changed our daily life (Fig. 1): small-scaled AIoT
systems are introduced to build smart homes and increase the
comfort and quality of life; medium-scale AIoT systems are
deployed in warehouses and factories for higher efficiency and
automation; and large-scale AIoT systems can contribute to the
establishment of smart cities.

Two challenges need to be addressed for the deployment
of DL models in the AIoT systems. The first one is effi-
ciency. An IoT system can consist of a large number of edge
devices with high-quality sensors streaming information at a
very high rate (e.g., remote sensing [4]). This can result in a
large amount of data transferring between the sensor devices
and the model server [5]. There could be a performance bot-
tleneck if the network bandwidth of the AIoT system is not
high, or an energy bottleneck if the transmission energy budget
is low. Thus, it is necessary to have an efficient approach to
processing the data at the sensor device before sending them
to the model server, in order to reduce the throughput and
transmission energy dissipation.

The second challenge we need to consider is security. DL
models are well known to be vulnerable to adversarial exam-
ples (AEs) [6]. An AE is created by adding imperceptible
perturbations to a clean data sample, which can mislead the
model to give a wrong decision. Past works have demon-
strated that an adversary can generate such AEs of images [7],
voices [8], and laser signals [9] to spoof the IoT sensors and
cause catastrophic consequences. It is of paramount impor-
tance for the sensor devices to detect or prevent such malicious
samples for secure model inference.

To the best of our knowledge, currently, there are no exist-
ing solutions that can solve both of the two challenges. The
most promising direction is to add a preprocessing step on the
input samples before feeding them into the model [10]–[12].
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Fig. 1. Different scales of AIoT systems.

Such a step introduces nondifferentiable transformations on
the inputs to obfuscate the gradients of the models, so the dif-
ficulty of AE generation is increased and the impact of the
calculated perturbations is mitigated. However, such defense
approaches are still vulnerable as the adversary can adaptively
and statistically calculate the gradient based on the preprocess-
ing algorithms [13]. Besides, some preprocessing operations
can introduce heavy computation (e.g., sophisticated quantiza-
tion in image compression [12]), which are not applicable to
computing resource-constrained IoT devices.

In this article, we propose SUPER-IOT: a secure and effi-
cient approach to DL inference for dependable IoT systems,
to overcome the two challenges.

1) The essential component of our methodology is a pixel
drop operation on the IoT ends, which randomly selects
and drops a certain amount of pixels of the input images.
Such operation can reduce the data throughput between
the IoT device and server to achieve higher network effi-
ciency. At the same time, it also gets a high chance
to invalidate the effects of AEs since it could drop the
added perturbations.

2) It is worth noted that the pixel drop operation can affect
the model accuracy, especially for the clean samples,
as it removes certain information which can be critical
for model prediction. To maintain high performance, we
adopt a novel pixel reconstruction algorithm, sparse sig-
nals recovery, on the model server to recover the dropped
pixels.

3) To further enhance the performance of the model on
adversarial as well as clean samples, we integrate a
wavelet-based denoising operation on the model server
to remove the adversarial perturbations and artificial
noises.

We conducted extensive evaluations to demonstrate the
effectiveness of SUPER-IOT. For security, we measured the
defense effects of our solution against six state-of-the-art
adversarial attacks. We also compared SUPER-IOT with
three existing defense methods (Shield [12], pixel deflec-
tion (PD) [10], and feature distillation (FD) [11]): SUPER-IOT
can maintain higher model accuracy and lower attack success
rate than most defenses. For network efficiency, we mea-
sured the size of bitstreams with our preprocessing approach.
SUPER-IOT can effectively reduce as high as 25% transmis-
sion throughput, while past works can hardly optimize network
efficiency.

The major contributions of this article include: 1) a pixel
drop operation to reduce the network throughput and mit-
igate AEs; 2) a pixel reconstruction algorithm to recover
the original input and maintain high model accuracy; and

3) a wavelet-based denoising operation to further remove the
adversarial perturbations and artificial noises.

This article is organized as follows. Section II discusses the
research background and related works. Section III presents
the problem definition and threat model. Section IV describes
the design details of SUPER-IOT. Section V presents the
evaluation results. We conclude in Section VI.

II. BACKGROUND AND RELATED WORKS

In this section, we briefly present the background and rele-
vant works about AIoT systems, adversarial attacks on DNN
models, and preprocessing-based defensive strategies.

A. Artificial Intelligence of Things

Benefiting from the advance of the DL technology, IoT
systems are becoming more intelligent and multifunctional.
A typical IoT network can consist of an enormous amount of
IoT devices. They are connected via different communication
technologies (e.g., Ethernet and Wi-Fi). They collect sensory
data over time and transmits them to one or more centralized
hosts. These hosts can be remote cloud servers, local gateways,
or powerful edge devices. They run the DNN inference appli-
cations, interpret the received sensory data, and make control
decisions. Such IoT configuration has been widely adopted
in many scenarios, such as face authentication [14], vehicle
detection [15], and remote monitoring [4].

The sensory data generated from the IoT devices exhibit
some unique features. First, there can be a large quantity
of connected IoT devices generating real-time data contin-
uously. This leads to a huge volume of streaming data in
the network. Second, various IoT devices can collect differ-
ent types of sensory data and information, resulting in data
heterogeneity. Those data need to be transmitted to the DNN
inference engine and processed promptly to extract immediate
insights and make fast decisions. These requirements need to
be achieved from different perspectives.

1) At the host level, we can utilize powerful cloud servers
with high computing capability and execution paral-
lelism, or specialized hardware circuits [16] to accelerate
the DNN inference.

2) At the DNN algorithm level, novel algorithms were
proposed (e.g., OS-ELM [17] and Faster R-CNN [18])
to handle the data streaming for object detection and
video analytics.

3) At the network level, one possible method is to prepro-
cess and compress the sensory data to reduce network
throughput and communication costs. This is also what
we aim to optimize.

B. Adversarial Attacks on DNN models

An adversary can add human-unnoticeable perturbations on
the original input to fool a DNN classifier. Formally, as in (1),
the target DNN model is a mapping function F. Given a clean
input sample x, the corresponding AE is denoted as x̃ = x+δ,
where δ is the adversarial perturbation. δ is constrained by
certain metric (e.g., Lp norm) to make it imperceptible. Then,
AE generation can be formulated as the optimization problem
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in (1a) (targeted attack where l′ �= F(x) is the desired label set
by the attacker, e.g., a cat image is misclassified specifically
as a dog) or (1b) (untargeted attack, e.g., a cat image is mis-
classified as an arbitrary class other than a cat). In this article,
we only evaluate the defense against the targeted attack and
the untargeted attack can be mitigated in the same way

min ‖δ‖, s.t. F(̃x) = l′ (1a)

min ‖δ‖, s.t. F(̃x) �= F(x). (1b)

Various approaches were proposed to solve the optimization
problem and generate AEs. The fast gradient sign method
(FGSM) [6] calculates the sign of the gradient of the classifi-
cation loss with respect to the input sample, which gives the
direction to modify input pixel values under Linf constraints
to generate AEs. Later on, variations of FGSM were intro-
duced to iteratively calculate the perturbations with a small
step or with momentum, e.g., I-FGSM [7]. Some approaches
use a more advanced optimization algorithm to find the min-
imal adversarial perturbation under the L2 constraint, such
as LBFGS [19], DeepFool [20], and Carlini and Wagner
(CW) [21].

Attack Scenarios: Generally, there are three attack scenar-
ios [22], determined by the adversary’s knowledge level of the
target DNN model.

1) White-Box Scenario: The adversary knows every detail
about the model including all the parameters. He can
directly adopt the above approaches to generate AEs.

2) Black-Box Scenario: The adversary does not have any
knowledge about the target model. He has to use an
alternative model of the same task to generate AEs and
attack the target one.

3) Gray-Box Scenario: The adversary knows all details of
the model (e.g., training algorithms, network topology,
and hyperparameters) except the parameters. He can
train another similar model with the same configura-
tions for AE generation. The transferability property of
AEs [23] can guarantee high success rates for black-box
and gray-box scenarios.

C. Preprocessing-Based Defenses Against AEs

Various defensive strategies have been designed to defeat
adversarial attacks. One direction is to train a more robust
model from either scratch or an existing model. Those
approaches aim to rectify AEs’ malicious features by includ-
ing AEs into the training set [24], processing all the training
data [25], or revising the DNN topology [26]. However, train-
ing a DNN model is very time and resource consuming,
especially when the model is complicated. Besides, those
methods are not applicable when the DNN models are packed
as closed-source applications and cannot be modified. Most
of all, those methods are not secure: the adversary can still
generate adaptive AEs for the new models [27].

A more promising direction is to preprocess the input
data to eliminate adversarial influence without touching the
DNN model. Typical transformation methods include denois-
ing, compression, drop pixels, etc. These solutions are suitable
in AIoT systems, as it is feasible and efficient to preprocess

the sensory data on IoT devices. So here, we focus on this
preprocessing-based direction. Below, we describe some exist-
ing works and their limitations. We introduce our novel prepro-
cessing technique in Section IV, and empirically demonstrate
its advantages over those works in Section V.

Shield [12]: In this approach, JPEG compression is
improved by randomizing the quantization factors to differ-
ent blocks of image contents. Then, the compression process
consists of the discrete cosine transform (DCT) and lossy
quantization. This nondifferentiable and irreversible transfor-
mation can obfuscate the gradients of the DNN model with
respect to inputs from the adversary. However, this method
can also decrease the classification accuracy of clean samples.

Feature Distillation [11]: This approach uses a revised
JPEG compression-based mechanism to defeat AEs. The quan-
tization step in the DCT process is modified to optimize
the reduction of the adversarial perturbations to improve the
robustness of the DNN model. However, FD is inefficient as
this revised quantization step can reduce the compression ratio.

Pixel Deflection [10]: The idea of this approach is to com-
bine the denoising algorithm with the operation of dropping
pixels. First, around 0.1% pixels of the input image is dropped
and replaced with a random pixel value within a small range.
Then, the denoising technique is applied to reduce the adver-
sarial perturbations. PD could provide robustness against the
AEs. But the compression ratio (i.e., dropped pixels) has to
be very small in order to maintain the model’s prediction
accuracy.

III. PROBLEM DEFINITION AND THREAT MODEL

In this article, we aim to design a novel methodology
for secure and efficient DNN inference for AIoT systems.
Specifically, we consider a distributed IoT system conducting
computer vision tasks (e.g., image classification and object
detection). The sensor devices in the system keep collecting
the visual input at high sampling rates and sending them to a
centralized server for DNN inference. We focus on computer
vision applications for two reasons. First, vision sensors (e.g.,
cameras) are one of the most widely used IoT devices in our
daily life. Computer vision tasks are also commonly adopted
in many scenarios, e.g., video surveillance [15], face authenti-
cation [14], autonomous driving [28], etc. Second, compared
with other sensory data and tasks, vision sensors can produce a
larger volume of real-time streaming data with higher through-
put. So it is in a more urgent need for an efficient inference
solution in an IoT system.

We assume that the DNN model deployed in the IoT system
cannot be modified. In reality, the IoT administrator can pur-
chase the DNN model from a model vendor. He may not be
allowed to customize the model due to intellectual property
protection. He may not be able to alter the model either if it
is packed as a closed-source application. Then past approaches
to training or retraining models for better robustness cannot be
applied in our case. Designing new DNN hardware accelera-
tors for better performance is out of the scope of this article, as
it requires drastic changes to the underlying infrastructure with
high cost. The administrator can only implement preprocessing
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Fig. 2. Methodology overview.

functions on the IoT devices or the server. Those functions
must meet the following requirements.

1) Efficiency: They must be able to reduce the throughput
of the transmitted data from the IoT devices to the DNN
server to relieve the burden and stress of the network
bandwidth.

2) Lightweight: The preprocessing function on the IoT
devices should not be too heavy to impact the devices’
performance or operations, considering the limited
onboard computing capabilities and resources.

3) Functionality Preserving: They should not affect the
prediction accuracy of the DNN model on clean data
samples.

4) Security: They should be able to effectively remove
the adversarial perturbations and preserve the correct
prediction results from the model.

Threat Model: We assume the entire IoT system (e.g., sen-
sor devices, central servers, and communication channel) is
trusted. So we do not consider the security threats from IoT
botnet (e.g., Mirai [29] and Hajime [30]) and man-in-the-
middle attacks. We also assume the target DNN model is
correct without DNN backdoors [31]. The adversary is out-
side of the IoT system, attempting to spoof the sensors and
DNN model by adding malicious perturbations on the physi-
cal objects or spots on the lens of the cameras [32]. He has
white-box access to the DNN model and the preprocessing
functions. We aim to show that even the adversary knows all
detail of the target model and the defense mechanism, he can
still not generate AEs to bypass the defense to compromise
the model.

IV. PROPOSED METHODOLOGY

In this section, we present our efficient and secure approach
for DNN inference in IoT systems. We give the methodology
overview in Section IV-A, following by the descriptions of
each operation in Sections IV-B–IV-D.

A. Design Overview

Fig. 2 shows an overview of our proposed methodology. It
consists of three steps across the IoT device and model server.
The first step is conducted on the IoT device, which ran-
domly drops some pixels from the input image. This operation
can remove the potential adversarial perturbations with a high

chance if the drop rate is high. Meanwhile, it can also increase
the transmission efficiency between the IoT device and the
model server as the image size is reduced after dropping cer-
tain pixels. This operation is lightweight and incurs very little
computing costs on the IoT device. After this operation, the
image will be sent out to the model server.

On the server, the received image cannot be directly fed into
the DNN model, as a lot of information has been removed.
Then, the second step is to reconstruct the dropped pixels. This
operation can approximately recover the dropped pixels other
than the perturbations. It will increase the model’s prediction
accuracy on this image.

The last step is image denoising. This operation can remove
the malicious perturbations that are not dropped out at the IoT
side, and also the artificial noises introduced during the recon-
struction process. After that, the image can be sent to the DNN
model for classification. Below, we detail the mechanism and
algorithm of each step.

B. Step 1: Pixel Dropping

In this step, the IoT device randomly selects a fixed ratio r of
pixels and remove them out of the image. This can reduce the
transmission throughput, and also remove adversarial perturba-
tions. Specifically, we first divide the raw image into multiple
blocks of N×N pixels. We denote one block as f0(x, y), where
(x, y) represents the coordinate of pixels. Then, we randomly
select n = r ×N ×N pixel inside each block and set their val-
ues as zero. As shown in (2), n pixels {(x1, y1), . . . , (xn, yn)}
are set to zero, while the rest remains the same as f0(x, y). The
resulting block is denoted as f1(x, y). Finally, we concatenate
the new blocks into one output image and send it to the model
server

f1(x, y) =
{

0, if (x, y) ∈ {(x1, y1), . . . , (xn, yn)}
f0(x, y), otherwise.

(2)

Note that the value of r can determine the efficiency, secu-
rity, and also the model performance: a large r can reduce more
throughput and decrease the success rate of adversarial pertur-
bations. However, it can also decrease the model performance
on clean samples. So we must carefully select r to balance
such a tradeoff. Fig. 3 (first row) shows the output images
with different drop ratios. We will empirically identify the
optimal value in Section V.

C. Step 2: Pixel Reconstruction

When receiving the compressed image, the model server
adopts the pixel reconstruction algorithm inspired by sparse
signals recovery [33]. The algorithm is processed block by
block using 2D-DCT transform

F(u, v) = 2

N

N
∑

i=1

N
∑

j=0

αi,j(u, v)f (i, j)

αi,j(u, v) = �(i)�(j) cos
[πu

2N
(2i − 1)

]

cos
[πv

2N
(2j − 1)

]

�(x) =
{

1√
2
, if x = 0

1, otherwise.
(3)
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Fig. 3. Visual content evaluation of pixel drop with different ratio (r from 0.1 to 0.7) and the reconstruction results measured by PSNR.

Fig. 4. Dynamic process of image reconstruction. (a) (MSE and PSNR)
versus iterations. (b) [�,μ] versus iterations.

The reconstruction algorithm is detailed in Algorithm 1:
given a block f1, for each dropped pixel at position (k, l)
((k, l) ∈ {(x, y)|f1(x, y) = 0}), we estimate a gradient to mod-
ify its pixel value. We first perturb the pixel value in two
directions with a distortion level � (lines 4 and 5). Then, we
calculate their 2D-DCT transform and L1 norm, respectively
(lines 6–9). The gradient is calculated (line 10) and used to
update the pixel in block f1 with a step size of μ (line 11).
During this iterative process, we keep monitoring the changes
of reconstructed images using the metric mean-square error
(MSE), which is defined as the difference of output images
in two consecutive iterations (line 13). When MSE is hardly
changed, we dynamically reduce � and μ to achieve better
reconstruction results (lines 14–18). This iterative process will
end until MSE is smaller than a threshold ε (line 21).

Fig. 4 shows the trends of MSE, peak signal-to-noise ratio
(PSNR), and [�,μ] during the image reconstruction process.
Initially, MSE keeps decreasing while PSNR keeps increas-
ing. When MSE becomes too small, the reconstruction tends
to converge and stops the modification of pixel values. To
refine the reconstruction, when MSE is smaller than 1% of the
maximal MSE previously, � and μ are updated dynamically
(on the 13th and 17th iterations). At the 20th iteration, MSE
already becomes very small and the reconstructed image has
a good quality with PSNR bigger than 30. Then, the iterative
process stops.

The hyperparameters used in this pixel reconstruction algo-
rithm can significantly affect the difficulty of the reconstruc-
tion process and the quality of the output. So we need to
discover the optimal values.

First, for the initial values of distortion level � and step
size μ, we tried different values within the range [0.01, 0.1]

Algorithm 1: Pixel Reconstruction
Input: a image block f1(x, y)
Output: the reconstructed image block f2(x, y)
Parameters: � distortion level; μ step size; ε stop

criterion.

/* Initialization */
1 d = 0, f 0(x, y) = f1(x, y), MSEmax = 0;
2 do
3 for (k, l) in {(x, y)|f1(x, y) = 0} do

/* Perturb pixel value of missing
pixel; δ Dirac function */

4 f (k,l)
+ (x, y) = f1(x, y) + �δ(x − k, y − l);

5 f (k,l)
− (x, y) = f1(x, y) − �δ(x − k, y − l);
/* 2D-DCT transform */

6 F(k,l)
+ (u, v) = 2

N

∑N
i=1

∑N
j=1 αi,j(u, v)f (k,l)

+ (i, j);

7 F(k,l)
− (u, v) = 2

N

∑N
i=1

∑N
j=1 αi,j(u, v)f (k,l)

− (i, j);
/* L1 norm */

8 ‖F(k,l)
+ ‖1 = ∑N

u=1
∑N

v=1 ‖F(k,l)
+ (u, v)‖1;

9 ‖F(k,l)
− ‖1 = ∑N

u=1
∑N

v=1 ‖F(k,l)
− (u, v)‖1;

/* Estimate gradient */

10 grad(k, l) = ‖F(k,l)
+ ‖1−‖F(k,l)

− ‖1
2�

;
/* Update pixel value */

11 f d+1(k, l) = f d(k, l) − μ × grad(k, l);
12 end

/* Dynamically update �, μ */
13 MSE = ‖f d+1(x, y) − f d(x, y)‖2;
14 if MSE < 0.01 × MSEmax then
15 � = �/10;
16 μ = μ/10;
17 MSEmax = 0;
18 end
19 MSEmax = max(MSE, MSEmax);
20 d = d + 1;
21 while MSE > ε;
22 f2(x, y) = f d(x, y);
23 return f2(x, y)

and measured the quality of reconstructed images using the
metric PSNR, which is defined as the visual content deviation
from the clean image. Fig. 5 shows the average PSNR for each
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Fig. 5. PSNR of reconstructed images under different values of � and μ.

configuration. We can choose � = 0.03 and μ = 0.02 that
lead to the best image quality.

Second, the stop criterion ε determines the number of iter-
ations during image reconstruction. As shown in Fig. 4, the
MSE and PSNR will become saturated after a certain number
of rounds. Then, it is not necessary to continue the iteration,
as the quality of the reconstructed image will not change. So
an appropriate threshold ε can guarantee the best quality of
output with the minimal number of iterations. We empirically
identify the optimal ε = 10−5 from Fig. 4.

Third, the pixel drop ratio r can also impact the image
reconstruction. Fig. 3 (second row) shows the reconstructed
images and their PSNRs with different drop ratios. We observe
that larger r leads to smaller PSNR (i.e., worse quality).
Besides, the value of r can also determine the effects of
AEs and network throughput. More evaluation results will be
presented in Section V to show the tradeoff between those
aspects, and discover the ideal drop ratio.

D. Step 3: Image Denoising

After the pixel reconstruction, the model server uses the
image denoising algorithm to further improve the image qual-
ity. On the one hand, the pixel dropping and reconstruction
can introduce artificial noises. Then this denoising operation
can filter such new introduced noises [10]. On the other hand,
this denoising operation is nondifferentiable. It can obfuscate
the DNN model gradients to further increase the difficulty of
AE generations via gradient-based approaches.

In this article, we adopted the wavelet-based denoising
method named BayesShrink [34] from [10]. Other denois-
ing methods can be applied in a similar way. The denoising
method is performed in the frequency domain through the
wavelet transform. The image noise is always assumed as the
small perturbations on values in the high-frequency domain.
Therefore, these small values can be removed by setting
coefficients below a given threshold to zero (hard thresh-
old) or shrinking different coefficients toward zero by a soft
threshold. First, we use the VisuShrink approach to set a hard
threshold. For an image X with N pixels, this threshold is

given by σ
√

2logN, where σ is normally smaller than the true
noise standard deviation. Then, we adopted the BayesShrink
algorithm [10] as an additional step to set a soft thresh-
old to further filter the wavelet coefficients. The threshold
Th ∗ (σx, β) is estimated on each wavelet sub-band and the
optimal threshold is calculated by minimizing the expected
MSE. We model the threshold for each wavelet coefficient as
a generalized Gaussian distribution (GGD). It can be approxi-
mated as (σ 2/σx), where σx and β are parameters of the GGD
for each wavelet sub-band

Th ∗ (σx, β) = argmin
Th

E
(

̂X − X
)2 ≈ σ 2

σx
. (4)

Normally, an approximation of Th, as shown on the right-
hand side of (4), is used to adapt to the amount of noise in the
given image. The parameters for the denoising in this article
are tuned to get the best performance.

V. EVALUATIONS

In this section, we comprehensively evaluate the efficiency
and security of our proposed methodology. We measure its
resilience against six popular adversarial attacks and compare
it with three existing preprocessing-based defense methods.
We also measure and compare the network throughput benefits
introduced by different approaches.

A. Experimental Configuration

We consider an image classification task on the CIFAR-
10 data set. There are 50 000 images for training and 10 000
images for testing. Each image has a size of 32 × 32 × 3 and
belongs to one of ten classes. All pixel values are normalized
within the range of [0, 1].

We choose ResNet-29 [35] as the target model. It consists
of 29 layers for three bottleneck residual blocks with chan-
nel sizes of 64, 128, and 256, respectively. We use the Keras
package with Tensorflow 1.14 [36] backend to implement the
model. Weights in all convolutional layers are initialized by
a truncated normal distribution proposed in [37]. The training
process is done via the Adam optimization algorithm [38] with
its hyperparameters β1 = 0.9 and β2 = 0.999. The model is
trained to reach the top-1 accuracy of 92.27% over the testing
set after about 150 epochs. Experiments are conducted on a
server with a CPU of Intel Core i9-9900K@3.60 GHz and a
GPU of NVIDIA GeForce GTX 2080 Ti.

Hyperparameters: For the pixel drop and reconstruction
algorithms, we set N = 8 to have blocks with 8 × 8 pixels,
which is a typical configuration of DCT transform applied
in image compression. We set � = 0.03, μ = 0.02, and
ε = 10−5, as discussed in Section IV-C.

B. Security Evaluation

First, we check whether our methodology can defeat exist-
ing adversarial attacks. We consider six well-known attack
techniques: 1) FGSM [19]; 2) I-FGSM [7]; 3) DeepFool [20];
4) LBFGS [6]; 5) CW [21]; and 6) PGD [39]. We adopt the
CleverHans library (v3.0.1) [40] to generate AEs with those
approaches. We set the |L2| between AEs and original images
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TABLE I
TOP-1 ACCURACY IN THE PRESENCE OF VARIOUS ADVERSARIAL ATTACKS ON SUPER-IOT WITH DIFFERENT PIXEL DROP RATIOS

to be within 0.5, to make the perturbation imperceptible. For
FGSM and I-FGSM, the scale of distortion is ε = 0.005
under the Linf constraints. For PGD, the scale of distortion
is ε = 0.01 and the number of attack iterations is 10. For the
rest of the attacks, the optimization process is iterated until the
adversary generates AEs of all samples. For all evaluations,
we consider the targeted attack, where a random label differ-
ent from the correct one is selected as the adversary’s target.
The AEs are generated under a white-box scenario. Table I
shows the prediction accuracy of the clean samples as well
as AEs when they are not preprocessed (Baseline column), or
preprocessed by our methodology with different drop ratio r.
All average accuracy is measured for 100 images. We observe
that without any defense, all attacks can significantly com-
promise the performance of the target model, even making
the accuracy drop to 0. With our preprocessing operation, the
prediction accuracy is significantly increased. The accuracy of
classifying AEs from FGSM, I-FGSM, and PGD will increase
first and then decrease which is different from the DeepFool,
LBFGS, and CW. This is due to the initial value r = 0.01 has
been already effective to mitigate the DeepFool, LBFGS, and
CW attacks. Even lower r will see the same accuracy trend of
DeepFool, LBFGS, and CW compared with FGSM, I-FGSM,
and PGD. Then, continuing increase r after 0.25 will lead to
the decrease of model accuracy since and is a tradeoff between
classifying clean samples and mitigating AEs.

Next, we compare SUPER-IOT with existing state-of-the-
art solutions: Shield [12], PD [10], and FD [11]. Those
preprocessing-based solutions do not require the modification
of DNN models and can be applied to our IoT scenario. Due to
the stochastic features in these solutions, we repeat the exper-
iments ten times and report the average prediction accuracy of
each preprocessing method for each attack technique, shown
in Table II. (We set r = 0.1 in our method.) We observe that
our solution can beat the other methods on the performance of
AEs from DeepFool, LBFGS, and CW. For AEs from FGSM,
I-FGSM, and PGD, the accuracy is higher than PD but slightly
lower than Shield and FD. However, Shield and FD have bad
performance on the clean samples, making them less practical.

C. Efficiency Analysis

We measure the efficiency of SUPER-IOT in terms of
reduced transmission throughput. By dropping certain pixels,
SUPER-IOT can effectively reduce the total bitstream for trans-
mission. This can save the energy cost of the IoT devices, and
relieve the stress of network bandwidth in IoT systems.

TABLE II
TOP-1 ACCURACY IN THE PRESENCE OF VARIOUS ADVERSARIAL

ATTACKS ON THE BASELINE MODEL, SHIELD, FD, PD, AND SUPER-IOT

Fig. 6. Evaluation of SUPER-IOT on the DNN model classification accuracy
(on both clean sample and AEs generated by two different approaches) and
compression ratio with different pixel drop ratio.

Fig. 6 shows the compression ratio evaluated of SUPER-
IOT with different pixel drop ratio ranging from 0.01 to 0.5
(the bars). The evaluation here is made based on the bitstream
size before feeding into the compression algorithms. We can
see a larger r leads to a larger compression ratio for better
efficiency. This is straightforward: when r of the pixels are
dropped out, the size of transmitted data will also be reduced
by r. However, as we discussed in Section V-B, a larger r
can also affect the prediction accuracy of clean samples and
AEs (curves in Fig. 6). So users need to carefully balance
the tradeoff between efficiency, security, and functionality, and
consider their requirements when configuring the drop ratio.

In contrast, past works on AE defenses cannot achieve
throughput reduction. For PD, the optimal pixel drop ratio
is between 0.1% and 1% in order to have a good model
performance for both adversarial and clean images. This ratio
has very little improvement in transmission efficiency. For
Shield and FD, there are no data reduction effects at the
bitstream level in their preprocessing operations. Thus, consid-
ering the transmission efficiency, SUPER-IOT has an obvious
advantage over PD, Shield, and FD.
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For the computation overhead, both PD and our SUPER-IOT
only require pixel drop operation on the IoT devices which will
add very limited additional computing overhead. For compar-
ison, Shield and FD have operations of modifying the JPEG
compression process with sophisticated randomization or ded-
icated quantization tables, which are much heavier than the
pixel drop operation for IoT devices.

We adopt state-of-the-art configuration, where IoT collects
sensory data, and sends them to the server for inference. The
only computation cost introduced is the image reconstruction
at the server end, which is lightweight. However, we can save
the network throughput and transmission power from the IoT
end. Since IoT devices are more resource constrained than the
server, such optimization is meaningful.

VI. FUTURE WORK AND CONCLUSION

For future work, we plan to explore better data drop and
reconstruction methods for higher classification accuracy on
both clean samples and AEs. With a larger drop ratio and
better reconstruction methods, the network throughput can be
further reduced. We will also explore more advanced defense
solutions for AIoT systems against more advanced attacks like
adaptive adversarial attacks.

In this article, we proposed a novel approach, SUPER-IOT,
to efficiently secure the inference of DNN models in AIoT
systems. We employ three techniques (pixel dropping, pixel
reconstruction, and image denoising) to defeat AEs and main-
tain good performance for clean samples. Meanwhile, those
operations can also achieve high efficiency for network trans-
mission in the IoT systems by reducing the bitstream of
transmitted sensory data. Our approach is lightweight with lit-
tle impact on the IoT devices’ performance or operations. It
is generic and can be applied to various computer vision tasks
without modifying the DNN models.
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algorithm for missing samples recovery in sparse signals,” IET Signal
Process., vol. 8, no. 3, pp. 246–256, May 2014.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 07:44:02 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TII.2020.2994743


3188 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 5, MARCH 1, 2021

[34] S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for
image denoising and compression,” IEEE Trans. Image Process., vol. 9,
no. 9, pp. 1532–1546, Sep. 2000.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 630–645.

[36] N. Ketkar, “Introduction to keras,” in Deep Learning with Python.
Berkeley, CA, USA: Springer, 2017, pp. 97–111.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rec-
tifiers: Surpassing human-level performance on Imagenet classifica-
tion,” in Proc. IEEE Int. Conf. Comput. Vis., Santiago, Chile, 2015,
pp. 1026–1034.

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014. [Online]. Available: arXiv:1412.6980.

[39] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” 2017. [Online].
Available: arXiv:1706.06083.

[40] N. Papernot et al., “Technical report on the cleverhans v2.1.0 adversarial
examples library,” 2018. [Online]. Available: arXiv:1610.00768.

Han Qiu (Member, IEEE) received the B.E.
degree from Beijing University of Posts and
Telecommunications, Beijing, China, in 2011, the
M.S. degree from Institute Eurecom, Biot, France, in
2013, and the Ph.D. degree in computer science from
the Department of Networks and Computer Science,
Telecom–ParisTech, Paris, France, in 2017.

He is currently a Postdoctoral Researcher with
the Department of Network and Computer Science,
Telecom-ParisTech. His research interests include
heterogeneous computing, cybersecurity, applied

cryptography, and multimedia security.

Qinkai Zheng received the bachelor’s degree in
information engineering from SPEIT, Shanghai Jiao
Tong University, Shanghai, China, in 2018. He is
currently pursuing the master’s degree in a dou-
ble degree program between Shanghai Jiao Tong
University and Telecom Paris, Paris, France.

His research subject is machine learning security.
His research interests include machine learning and
computer vision.

Tianwei Zhang received the bachelor’s degree from
Peking University, Beijing, China, in 2011, and the
Ph.D. degree from Princeton University, Princeton,
NJ, USA, in 2017.

He is an Assistant Professor with the School
of Computer Science and Engineering, Nanyang
Technological University, Singapore. His research
focuses on computer system security. He is par-
ticularly interested in security threats and defenses
in machine learning systems, autonomous systems,
computer architecture, and distributed systems.

Meikang Qiu (Senior Member, IEEE) received the
B.E. and M.E. degrees from Shanghai Jiao Tong
University, Shanghai, China, in 1992 and 1998,
respectively, and the Ph.D. degree in computer sci-
ence from the University of Texas at Dallas, Dallas,
TX, USA, in 2007.

He is the Department Head and a tenured Full
Professor with Texas A&M University–Commerce,
Commerce, TX, USA. He has published 20+
books, and 550+ peer-reviewed journal and confer-
ence papers, including 80+ IEEE/ACM transactions

papers. His research interests include cyber security, big data analysis, cloud
computing, smarting computing, intelligent data, and embedded systems.

Dr. Qiu is the Chair of the IEEE Smart Computing Technical Committee.
He is an Associate Editor of 10+ international journals, including the IEEE
TRANSACTIONS ON COMPUTERS and the IEEE TRANSACTIONS ON CLOUD

COMPUTING. He is an ACM Distinguished Member.

Gerard Memmi (Member, IEEE) received the Ph.D.
(These d’Etat) degree in computer science from
Universite Pierre et Marie Curie, Paris, France, in
1983.

He has been a Professor and the Head of
the Networks and Computer Science Department,
Telecom-ParisTech, Paris, since 2009.

He has been a member of the executive board
of the IRT SystemX since 2012. Before joining
Telecom-ParisTech, he held various executive posi-
tions in American startups. He succeeded in deliver-

ing the industry’s best-in-class equivalency checker used to verify electronic
design; and focused on improving its architecture and performances. While
founding and developing the Applied Research Laboratory for Groupe Bull
in the U.S., he was honored as a Principal Investigator for a DARPA grant on
Collaborative Software. He has over 90 publications, including patents, coau-
thored a book, gave key notes presentations in international conferences. He
is holding a thèse d’Etat in computer science from Universite Pierre et Marie
Curie, Paris. He is constantly involved in the development of key scientific
and industrial partnership. Today, his research interests are data protection and
privacy, energy profiling of software programs, and verification of distributed
systems.

Jialiang Lu received the M.S. and M.E. degrees
(Hons.) from the Department of Telecommunication,
INSA Lyon, Villeurbanne, France, in 2004, and the
Ph.D. degree from INSA Lyon in 2008.

He is an Associate Professor and the Assistant
Dean with ParisTech Shanghai Jiao Tong, Shanghai,
China, and a Researcher with the Department of
Computer Science and Engineering, Shanghai Jiao
Tong University, Shanghai. His research interests
include wireless networks, vehicle networks, and
security aspects of machine learning. He has pub-

lished over 50 publications in international journal and conferences in the
above areas.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 07:44:02 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


