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Detection in IoT Systems

Han Qiu , Member, IEEE, Tian Dong, Tianwei Zhang , Jialiang Lu , Gerard Memmi , Member, IEEE,

and Meikang Qiu , Senior Member, IEEE

Abstract—Deep learning (DL) has gained popularity in
network intrusion detection, due to its strong capability of recog-
nizing subtle differences between normal and malicious network
activities. Although a variety of methods have been designed to
leverage DL models for security protection, whether these systems
are vulnerable to adversarial examples (AEs) is unknown. In this
article, we design a novel adversarial attack against DL-based
network intrusion detection systems (NIDSs) in the Internet-of-
Things environment, with only black-box accesses to the DL
model in such NIDS. We introduce two techniques: 1) model
extraction is adopted to replicate the black-box model with a
small amount of training data and 2) a saliency map is then
used to disclose the impact of each packet attribute on the detec-
tion results, and the most critical features. This enables us to
efficiently generate AEs using conventional methods. With these
tehniques, we successfully compromise one state-of-the-art NIDS,
Kitsune: the adversary only needs to modify less than 0.005%
of bytes in the malicious packets to achieve an average 94.31%
attack success rate.

Index Terms—Adversarial examples (AEs), deep learning (DL),
Internet of Things (IoT), network intrusion detection.

I. INTRODUCTION

THE INCREASED number and severity of cyberattacks
against modern networks highlight the urgent need for

effective and efficient protection methodologies. Network
intrusion detection systems (NIDSs) [1] have become practi-
cal to detect malicious network activities and guard critical
but vulnerable services and systems. A NIDS is generally
deployed as a gatekeeper for Internet devices to monitor
network traffic and generate alerts when anomalous or sus-
picious events are identified. It plays an important role in
defeating cyberattacks against enterprises, individuals, and
governments [2], [3], for various computer systems (e.g.,
cloud computing [4], Internet of Things (IoT) [5], edge com-
puting [6], service computing [7], etc.). It is anticipated
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that billions of U.S. dollars will be invested to enhance the
intrusion detection and protect the network environment in
2021 [8].

Early NIDSs employed the misuse detection to identify
network attacks [9]. They compared the signature (e.g., a
sequence of bytes in the payload) of the network traffic with
a pre-established threat data set. Such detection methods are
then proved to be ineffective in today’s complex environ-
ment due to three reasons. First, network packets are normally
encrypted for confidentiality protection, which can prevent the
detectors from introspecting into the contents of the packets.
Second, these methods require the knowledge of the attack sig-
natures. They are incapable of recognizing emerging zero-day
threats [10], which become more common in modern systems.
Third, it is computationally inefficient to collect the signature
of the target traffic and compare it with a large-scale threat
data set, especially for the resource-constrained devices such
as IoT [11].

An alternative strategy is anomaly detection, which estab-
lishes models to characterize the normal behaviors of network
traffic and identifies any deviations from such models as the
evidence of network intrusion. This strategy can dominate the
misuse detection as it can detect unknown attacks that have
distinct behaviors from the normal ones. Particularly, recent
advance in deep learning (DL) facilitates the development of
anomaly detection techniques, as state-of-the-art DL models
can distinguish normal and abnormal network activities with
higher accuracy and less restriction [12], [13]. As such, this
direction of solutions is attracting more attention and showing
more potential in network security.

We want to explore one question: Do these DL-based NIDSs
have fundamental vulnerabilities, which enable an adversary to
efficiently invalidate the detection mechanism? This question
is raised from the observation that DL models are well known
to be vulnerable to adversarial examples (AEs) [14], where
imperceptible perturbation injected to the input sample can
cause the DL model to make wrong decisions. Although DL
models have satisfactory performance in terms of automation,
speed, and possibly accuracy, they can make simple mistakes
that humans will never do. Over the past years, adversarial
attacks have been successfully introduced in various domains
(e.g., computer vision [15], natural language processing [16],
speech recognition [17], and reinforcement learning [18]), and it
is extremely hard to comprehensively mitigate these threats [19].
So, we aim to study whether such adversarial attacks can
threaten the scenario of DL-based intrusion detection as well.
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Designing such attacks is not easy, due to the huge dif-
ferences between the NIDS and other conventional DL tasks.
First, a network packet to be classified has many attributes
(e.g., header information, size, sent and arrival timestamp,
etc.). These attributes may have different impacts on the detec-
tion and it is unknown which attributes should be selected to
perturb for the optimal attack results. Second, NIDSs usually
have very complex input preprocessing and feature extraction
procedures, which will mix up all the packet attributes to gen-
erate the input vectors for classification. So, it is challenging to
modify the network attributes to produce the desired vectors,
which can lead the model misclassification. There are a few
works attempting to solve this question. Hashemi et al. [10]
heuristically searched for the adversarial perturbations in the
network packets. Clements et al. [20] only considered the per-
turbations in the feature vector space. Han et al. [21] adopted
complex and time-consuming algorithms such as GAN for AE
generation. Those solutions are not practical or efficient for a
real-time attack, especially in the IoT context.

In this article, we design a more efficient and effective
adversarial attack against DL-based NIDS. By considering a
realistic threat model where the DL model employed by the
target NIDS is a black box to the adversary, we have the two
main contributions as follows.

1) We propose to use the model extraction technique [22]
to replicate the model for AE generation. This technique
only requires a small amount of data (10% of the original
training set), which achieves very high efficiency.

2) To copy with the diverse attributes and complex fea-
ture extraction procedure, we propose to utilize saliency
maps [23] to identify the critical features that impact the
detection results and then use conventional AE meth-
ods (e.g., fast gradient sign method (FGSM) [14]) to
generate the desired perturbations.

We implement our method to attack one state-of-the-art
NIDS, Kitsune [24]. We demonstrate two attack scenarios:
1) in an IoT botnet attack (Mirai [25]), an adversary can mod-
ify the malicious packets to bypass the detector and 2) in a
video streaming application, an adversary can alter the normal
traffic flows to make the detector classify them as malicious,
and generate unexpected false alarms. Our evaluations indicate
that the adversary can slightly modify the network packets
(e.g., padding, delaying arrival timestamp, dropping certain
packets) to significantly decrease the prediction accuracy of
the NIDS.

The remainder of this article is organized as follows. The
research background about NIDS is described in Section II.
The threat model and attack goal are provided in Section III.
We present our proposed attack method in Section IV, fol-
lowed by two case studies in Sections V and VI as attack
evaluation. We conclude in Section VII.

II. BACKGROUND ABOUT NIDS

A. Learning-Based NIDS

In recent years, artificial intelligence technology (e.g., deep
neural networks) has been utilized in the design of NIDS
to improve the detection accuracy and efficiency. These

Fig. 1. Development of DNN-based NIDS from (a) misuse detection
(e.g., [26]) to (b) anomaly detection (e.g., [24]).

learning-based NIDS can be mainly classified into two cate-
gories. The first one is misuse-based NIDS, which was adopted
in earlier works [26]. As illustrated in Fig. 1(a), the basic idea
of this solution is to predict whether a network packet is mali-
cious or benign based on its contents. A labeled data set is first
constructed with contents from normal packets as well as mali-
cious packets. Then, a DNN model is trained over this data set,
which can classify the new network packets from their pay-
loads. This solution significantly improves the performance
over traditional misuse detection methods, attributed to the
great capability of DNN models. However, it also has some
limitations. Inspecting the payloads of all the packets at run-
time is computationally intensive. Besides, this solution does
not work when the network packets are encrypted.

The second category is anomaly-based NIDS [24], which
can overcome the above issues. As shown in Fig. 1(b), this
solution extracts features from the traffic space, e.g., latency,
packet drop rate, etc. A DNN (e.g., autoencoder) is adopted
to model the behaviors of normal network traffic. At runtime,
the patterns of incoming traffic are analyzed and compared
with the normal model. A large deviation indicates a higher
possibility of anomaly, and alert will be generated.

The anomaly-based strategy dominates the misuse-based
one as the offline model training requires smaller amounts
of traffic data, and the online inference is more efficient. This
is particularly important in the resource-constrained contexts,
e.g., the IoT environment. Besides, the anomaly-based solu-
tion is able to detect zero-day threats, especially the attacks
relying on the traffic volumes, e.g., DoS, port scanning, brute
force, video injection, and Botnet [21]. So, in this article, we
will focus on the attacks against anomaly-based NIDS.

B. Kitsune: Intrusion Detection System for IoT Networks

As an example, we review the mechanism of a state-of-
the-art NIDS: Kitsune [24], which will be the target of our
designed adversarial attack in this article. Kitsune adopts unsu-
pervised learning to identify intrusions in the IoT networks.
The system is composed of five modules: 1) packet capturer;
2) packet parser; 3) feature extractor (FE); 4) feature mapper
(FM); and 5) anomaly detector (AD), as shown in Fig. 2.

Packet Capturer: This module intercepts and captures the
packets from the network. Kitsune adopts multiple external
libraries (e.g., NFQueue and tshark) to achieve this goal.

Packet Parser: This module extracts relevant information
from packets, e.g., source and the destination IP addresses,
MAC address and port, and packet size and packet timestamp.
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Fig. 2. System overview of Kitsune.

Feature Extractor: This module is used to calculate
the temporal statistics of the packets within a stream to
achieve high-speed-low-space feature extraction. It introduces
“damped incremental statistics” with the time complex-
ity of O(1). Specifically, for a stream of network packets
Pi = {P1

i , P2
i , . . . }, the corresponding packet sizes are Si =

{x1
i , x2

i , . . . }. Then, the statistic of Si is defined as a tuple
ISi = (w, LS, SS, SRij), where w is the packet count, LS is
the linear sum of the sizes, SS is the squared sum of the sizes,
and SRij is the sum of the residual products between Si and
another stream Sj. This statistic is updated in a “damped incre-
mental” way. Assume the last update occurs at the timestamp
Tlast, and there is a new incoming packet belonging to Pi at the
timestamp Tcur with the size of xcur. The update rule follows:

w←− γ w+ 1

LS←− γ LS+ xcur

SS←− γ SS+ x2
cur

SRij ←− SRij + rirj (1)

where γ = 2−λ(Tcur−Tlast) is the decay factor, ri = xcur − μi is
the residual of xcur, and rj is the most recent residual in stream
Sj. With this tuple, we can further calculate the incremental
statistics, as shown in the following:

Weight: w = w

Mean: μSi = LS/w

Std: σSi =
√(|SS/w− (LS/w)2|)

Magnitude:
∥∥Si, Sj

∥∥ =
√

μ2
Si
+ μ2

Sj

Radius: RSi,Sj =
√(

σ 2
Si

)2 +
(
σ 2

Sj

)2

Covariance: CovSi,Sj = SRij/(wi + wj)

Coefficient: PSi,Sj = CovSi,Sj/
(
σSiσSj

)
. (2)

The feature set of a network packet P∗ is extracted from
three streams: 1) all the packets with the same source MAC
address and source IP address as P∗ (SrcMAC+SrcIP); 2) all
the packets with the same source IP address and destination
IP address as P∗ (SrcIP+DstIP); and 3) all the packets
with the same source MAC address and destination MAC
address for ARP packets (SrcMAC+DstMAC), or source IP
address and destination IP address with the same port num-
ber for other types of packets (SrcIPPort+DstIPPort).
Table I shows the corresponding statistics collected from those
streams. For each λ, there are 20 statistics. We consider
λ = 5, 3, 1, 0.1, 0.01 as in [24] to produce a set of 100 features

TABLE I
STATISTICS EXTRACTED FROM A NEW ARRIVAL PACKET FOR A GIVEN λ

as the input to the FM module, which will map them into
clusters for AD.

Feature Mapper: This module clusters the n features into k
clusters. Kitsune utilizes the agglomerative hierarchical clus-
tering algorithm based on the correlation distance matrix
D = 1 − C. Here, C is a correlation matrix of n fea-
tures, computed by the Monte-Carlo method on the received
instances.

Anomaly Detector: This module contains two components.
The first one is an ensemble layer, where k three-layer autoen-
coders are integrated to learn the normal behaviors of each
cluster in the output of FM. The second component is an out-
put layer, using k normalized root mean square error (RMSE)
from the autoencoders of the ensemble Layer to produce a
global RMSE s. The detection decision is thus made based
on s. The traffic stream is flagged as malicious if s > βφ,
where φ is the highest global RMSE obtained during model
training, and β is a hyperparameter used to adjust the trade-
off between false-negative (FN) errors and false-positive (FP)
errors.

In summary, this Kitsune NIDS is one of the state-of-the-
art anomaly-based NIDSs. Moreover, the Kitsune system is
based on the autoencoder system, which does not require the
pretrained models. Therefore, Kitsune can be used in the IoT
system in a plug-and-play fashion due to its high efficiency.

III. ATTACK GOALS AND THREAT MODEL

A. Attack Goals

DNN models are vulnerable to AEs, where slight changes
in the input samples can totally alter the prediction results of
the target model. This threat has been intensively studied in
computer vision [27], [28], which crafts the malicious samples
by adding carefully designed and imperceptible perturbations
to the image pixels to mislead a image classification model.

In the context of network systems, we consider a learning-
based NIDS (e.g., Kitsune) which detects anomaly via traffic
analysis. This is realized by a DL model f (·), which classifies
a packet P as normal (label 0) or malicious (label 1) based on
the attributes x of this packet: y = f (x). An adversary tries to
compromise the DNN model adopted by this NIDS, making
it predict wrong results. He achieves this by slightly adjusting
the attributes of the packet as x̃ = x + δ. For instance, he
can also delay the packet transmission to change its arrival
timestamp. He can pad the packet to increase its size.

With these changes, the adversary can cause two different
consequences: 1) he can modify malicious packets to bypass
the detection mechanism, while the modified packets can still
bring the same damages to the protected system and 2) he can
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also modify normal packets such that the NIDS will predict
them as malicious and block them. This can lead to severe
denial-of-service attacks, as the victim system will get a lot of
false alarms, and all benign network packets will be denied.
For these two cases, the attack process can be formulated as
an optimization problem as shown in the following:

min‖δ‖, s.t. f (̃x) �= f (x). (3)

B. Threat Model

There are two attack scenarios [27] determined by how
much the adversary knows about the target DNN system.

1) White-Box Scenario: The adversary knows every detail
about the neural network model, including the archi-
tecture and all the parameters. The AE can then be
generated easily by calculating the optimization problem
based on the knowledge of the DNN model.

2) Black-Box Scenario: The adversary does not have any
knowledge about the victim DNN model. Instead, he
can first generate a local shadow model with the same
behaviors as the target one, by training a model with
the original training set or a constructed set by querying
the black-box model. Then, he can generate AEs from
this shadow model following the approach in the white-
box scenario. Such AEs can be used to attack the victim
system with high success rate, due to the transferability
feature of DNN models [29]. This black-box scenario is
more realistic, but more challenging. We will consider
this setting in this article.

Specifically, in our black-box setting, we assume that
the adversary only knows the mechanism deployed in this
NIDS system, which is commonly public. Such a mecha-
nism includes which kind of DL structure and the mechanism
of the FE module. However, he does not know the detailed
parameters and hyperparameters of the DL model. In addi-
tion, the parameters for input preprocessing (e.g., the FE and
FM modules in Kitsune) are kept secret from the adversary as
well.

We assume the integrity of the NIDS is protected so the
adversary cannot modify the DNN model or alter the detection
results. We also assume that the target model is well trained
with satisfactory accuracy and does not contain any DNN
backdoors [30]. Some NIDSs require the history data of the
network traffic flows to train the model (e.g., Kitsune), which
is assumed to be correct without poisoned samples. Following
the threat model in [24], the adversary can install a malicious
network device in the same network and has the capability
of passively monitoring the traffic flows, and actively perturb-
ing the traffic features (e.g., timestamp and packet size) to
compromise the NIDS.

IV. ATTACK METHOD

This section presents our proposed method to perform
adversarial attacks against a learning-based NIDS. The whole
attack process consists of two phases. We start with the method
overview (Section IV-A), followed by the description of each
phase in Sections IV-B and IV-C, respectively.

Fig. 3. Overview of the our adversarial attack against a Kitsune-based NIDS.

A. Overview

Fig. 3 illustrates the overview of our black-box adversarial
attack against a NIDS. Two phases are involved to com-
plete this attack. The first phase is to extract the DNN model
employed by the target NIDS. The adversary needs to recon-
struct both the FE and AD modules. The second phase is to
generate AEs from the extracted shadow model. Our approach
builds a saliency map from the packets, which guarantees the
adversary can find the optimal features with the least modifi-
cations to alter the detection results with high success rates,
while preserving the impacts of the original traffic flow to the
target system (the same attack damage, or innocence). Then,
the adversary can use gradient-based methods to generate AEs
over the identified features, and use them to compromise the
target victim.

B. Phase 1: Model Extraction

This phase is to reconstruct a shadow model with the same
behaviors as the target model. Since the entire NIDS is a black-
box to the adversary, he needs to: 1) first rebuild the FE module
used by the system and then 2) collect a number of traffic
packets to train a new model.

We assume the mechanism of the FE is public in our threat
model (e.g., Section II-B for Kitsune). So, the adversary can
follow the design to implement this module. Given a stream
of packets, this module can produce the same feature vectors
as the target system. Since the adversary has the capability of
installing his own device (e.g., a switcher or router) within the
same network, he can passively monitor the traffic flow to or
from the target system, and collect certain amounts of packets
without interrupting the victim. He then uses this replicated
module to generate the corresponding features for extracting
the AD module.

In Kitsune, AD is composed of an encoder and a decoder.
The encoder is used to encode an input vector x into an internal
representation with a smaller dimension, which will be fur-
ther decoded by the decoder into an output x′ with he same
size as x. The adversary knows the network structures of the
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encoder and decoder, but not the parameters. He can adopt
the same structures and train new models over the extracted
features from the replicated FE module. The training goal will
be minimizing the RMSE between the input feature x and the
output of the decoder x′. This shadow model will have the
same behaviors as the victim one in the NIDS: it can recover
the traffic data for normal network flows, but not for the mali-
cious ones. So a large RMSE from this model will indicate
the anomaly of the input packet. It is worth noting that the
adversary can just use a much smaller number of packets to
extract the model than the original training set, which main-
tains enough information about the original model to generate
AEs with high transferability. This can significantly reduce the
attack cost.

C. Phase 2: AE Generation From Saliency Map

Given the extracted autoencoder model, the next phase is to
generate AEs from it and attack the victim system. Achieving
this goal is challenging due to the following two reasons. First,
different from image classification systems, a NIDS adopts
complicated processing operations to extract the features from
the attributes of the packets (e.g., packet size and arrival time).
How to modify these attribute values to produce the desired
features that can fool the model is difficult. Second, an image
classification task usually has multiple classes, and it is easy
to generate the optimal perturbation that moves the normal
data point across the decision boundary. In contrast, a NIDS
system only has two labels (benign and malicious), and the
malicious points in the feature space are usually far away from
the decision boundary. This also increases the difficulty of
AE generation. Due to the distinct features between images
and network packets, traditional AE generation methods in
computer vision cannot be directly applied to this scenario.

To overcome the above challenges, we propose to leverage
the saliency map [23] to identify the critical elements in the
traffic feature, that determines the detection results. Then, we
use a gradient-based optimization method to generate AEs by
perturbing those critical elements.

We first investigate the impact of each feature from a
network packet on the anomaly score produced by AD. The
input of AD is a 100-D feature vector x = [xi]0≤i≤99. The
anomaly score is denoted as s = AD(x) with the softmax
probabilities of benign class (p0 = 1 − sigmoid(s − T))
and malicious class (p1 = sigmoid(s− T)), where T is the
threshold. The saliency map of AD on x is calculated as

[
relu

(
∂pc

∂xi

)]

0≤i≤99

where relu : x 	→ max(0, x) and c ∈ {0, 1} is the correspond-
ing class of the input. Then, the critical feature is defined as
the one whose softmax value of the opposite class is most
sensitive to the feature perturbations, i.e., the predicted labels
can be flipped with the minimal perturbation.

We randomly sample ten benign feature vectors (i.e.,
anomaly score is below the threshold T) as well as ten mali-
cious feature vectors (i.e., anomaly scoire is above T). Fig. 4(a)
and (b) shows the corresponding saliency maps for the benign

Algorithm 1 Iterative FGSM
Require:

PE module: fFE

AD modules: fAD

Perturbation step: ε

Maximum number of iterations: M
Target threshold T
Critical attribute q that correlates to the critical feature x
Original label l
for i = 0; i < M; i++ do

x = fFE(q) // generate the feature vector
RMSE = fAD(x) // generate the anomaly score
if l = 1 and RMSE < T then

return q
end if
if l = 0 and RMSE > T then

return q
end if
q←− q− εsign(

∂(−1)l+1RMSE
∂q )

end for

and malicious cases, respectively. We observe for malicious
vectors, the 49th and 56th features have the biggest influence
on the value of p0. Thus, it is possible to reduce the probabil-
ity of being classified as malicious packets by increasing the
values of these features. Note that the 49th feature represents
the statistic “covariance” between two streams. To increase this
feature value, we can vary the size of datagrams by appending
redundant bits at the end. The 56th feature is only dependent
on the timestamp of the packet. So, we can directly modify
its timestamp to mislead the classifier.

To identify the necessary amount of changes on the critical
features, we adopt an iterative version of the FGSM [14], as
shown in Algorithm 1. It iteratively changes the value of the
critical feature until the classification result is altered. Then,
the adversary can use this AE to attack the target NIDS. Due
to the high transferability, this AE can mislead the black-
box model with high success rates, as we will show in the
following two case studies.

V. CASE STUDY 1: EVADING INTRUSION DETECTION

As the first case, we consider a scenario, where the adver-
sary adds perturbations to malicious network packets to bypass
the intrusion detection. We select the Kitsune NIDS as the
target and use the Mirai botnet [25] as the network attack.

A. Experimental Setup and Configuration

The Mirai data set [25] contains 764 137 packets from
a local network. Among them, 122 660 packets are normal,
while the rest are infected by the “Mirai” malware. Such
malware will first use ARP scanning to locate the potential
vulnerable devices. Then, these devices will be injected with
a malware that can turn network devices into controlled bots
and leverage them to launch DDoS attacks against the target
IoT devices (e.g., cameras and home routers). These malicious
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Fig. 4. Example of the saliency maps for (a) ten benign samples and (b) ten malicious samples in the Kitsune system. In each figure, each row is a sample
with the anomaly score (RMSE) shown on the left, and each column is a feature. The colors denote the values of the maps.

Fig. 5. Anomaly scores from our implemented Kitsune NIDS.

packets can be further classified into two types: 1) packets for
ARP scanning of victims and 2) packets for DDoS attacks.

We reimplement a Kitsune NIDS using Pytorch 1.4.0. We
follow the same training process in [24] to generate the system.
Specifically, the clustering function in the FM module is
trained from the first 5000 benign packets in the Mirai data
set, while the autoencoder in the AD module is trained from
the next 50 000 packets with the SGD optimizer and a learn-
ing rate of 0.1. The maximal input size of the autoencoder is
set as m = 10. The entire system is then evaluated with the
rest packets in the Mirai data set. Fig. 5 shows the valida-
tion results, where the x-axis denotes the index of each packet
and y-axis is the anomaly score (RMSE). We can observe that
malicious packets (ARP scanning, DDoS) have much larger
RMSE values than the normal ones before the attack starts.

We modify the AD module to predict the packets based
on their RMSE values. For one packet with a RMSE of s,
the softmax probability for benign and malicious classes are
p0 = 1 − sigmoid(S − T) and p1 = sigmoid(S − T),
where T is the threshold for classification. Then, the label of
this packet will be assigned based on the larger probability.

The threshold T is critical to determine the performance
of the NIDS. We select different threshold values T ∈
[0, 0.01, 0.03, 0.05, 0.1, 0.25, 1, 5, 7, 10, 15, 20] and measure
the detection performance, as shown in Fig. 6. The x-axis is

Fig. 6. Detection performance of Mirai under different thresholds.

the threshold value, and y-axis shows the FP rate (FPR: the
percentage of normal packets classified as malicious ones), FN
rate (FNR: the percentage of malicious packets classified as
normal ones), and accuracy (the percentage of packets cor-
rectly classified). We can observe that the system can achieve
good performance when T is in the range of [0.1, 10]: the
FPR is close to 0; the FNR is around 10% due to the misla-
beling: after the Mirari attack starts, there are still around 10%
normal network flows mixed with the attack flows, which are
classified as malicious as well. When T is smaller than 0.1,
FPR increases significantly as a lot of benign packets will be
classified as malicious. When T is larger than 10, Kitsune will
miss more malicious packets with an increased FNR, since the
RMSE values of most malicious packets are in the order of 10
(Fig. 5). As such, we select T = 1 to achieve very satisfactory
performance.

B. Evaluation Results

The first attack phase is to extract the black-box NIDS, as
described in Section IV-B. We find that the adversary can use
a much smaller amount of data than the original training set to
reproduce the shadow models, whose quality is good enough
for further adversarial attacks. In our experiment, we choose
a ratio pl = 10% of the training data to train the FM model
(i.e., 500 benign packets) and the AD model (i.e., 5000 benign
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TABLE II
RESULT OF ADVERSARIAL ATTACKS

TABLE III
COMPUTATION COST OF GENERATING AES

packets), randomly sampled from the Mirai set. The adversary
sets the threshold of the extracted model as T = φ(1/pl) where
φ is the maximum loss value during training.

The second phase is to generate AEs from the extracted
model. As described in Section V-A, the Mirai attack gener-
ates two kinds of malicious packets: 1) ARP request packets
to search for victim hosts and 2) DNS query packets for
DoS attacks. We modify these packets to evade the detection,
respectively.

For the DoS attack packets, we modify their lengths to gen-
erate AEs. For a packet with the size of s, we use the method
in Section IV-C to calculate the corresponding perturbation

s. We set M = 1000 and ε = 1. We iteratively compute the
perturbation with FGSM until the RMSE value of the modified
packet is lower than the threshold T .

It is more difficult to perturb the ARP packets since their
sizes are not changeable. Instead, we modify their arrival
timestamps for adversarial attacks. Changes in the timestamps
can disrupt the order of the network packets, and the com-
putation of AEs can slow down the packet sending speed in
a real-time attack. So, we apply a uniform timestamp change
(
t) to relevant ARP request packets. Specifically, we first
compute the timestamp perturbations for the first 100 ARP
request packets using Algorithm 1, i.e., (
ti)1≤i≤100. Then,
we calculate a timestamp interval 
t = (1/100)

∑
i 
ti, as

the upper bound of the perturbation under the L∞ norm.
Assume the timestamp of the first ARP packet is t0,scan.
Then, for the ith relevant packet, we change the timestamp to
t0,scan + (i− 1)×
t. We abandon the modified ARP packets
whose timestamps are larger than the maximum timestamps
in the original data set. After such processing and reordering,
there are 219 820 packets left, among which 6650 are relevant
to the network scan packets. We generate the perturbation via
FGSM, with M = 1000 and ε = 0.1.

Table II demonstrates the attack success rate (ASR) of the
two attacks, which is defined as the ratio of the modified
malicious packets that are misclassified as normal (i.e., the
RMSE is lower than the threshold T). We observe that the
adversary can achieve a success rate higher than 95%. This
attack effect is obtained under the black-box scenario, as our
extracted model can perfectly mimic the behaviors of the target
model, and the generated AE has very high transferability.

Table III shows the computation time of generating the
adversarial packets for two attacks. From the Mirari data set,
for the DoS case, the average time interval between two suc-
cessive DoS packets is 11.24 s. In contrast, the delay caused by

Fig. 7. Detection performance of VideoInjection under different thresholds.

the AE generation (0.171 s) has little influence on the oper-
ations of the target NIDS. For the ARP scanning case, the
average computation time of generating AEs is 0.52 s, which
is also negligible.

VI. CASE STUDY 2: INCREASING FALSE ALARMS

In this case, we show that the adversary can modify normal
packets to make the NIDS treat them as security threats. This
can incur a lot of unexpected FPs, and the protected service
will deny all the normal packets.

A. Experimental Setup and Configuration

We adopt the VideoInjection data set [24] which consists
of 2 472 401 network packets for the camera surveillance sce-
nario. The adversary attempts to inject recorded video clips
into the stream by an ARP spoofing attack. We consider the
Kitsune system with the same setup in Section V. The first
100 000 packets are used to train the FE model, and the follow-
ing 1 000 000 packets are used to train the AD model. Fig. 7
shows the detection accuracy with different thresholds. We
select T = 0.04 to achieve the best performance.

B. Evaluation Results

The goal of this attack is to perturb the normal packets,
such that the output of the autoencoder in the AD module
will be significantly deviated from normal distributions, and
the NIDS will treat them as malicious packets. The adversary
can repeat the attack procedure as described in Section IV on
normal samples to craft the corresponding adversarial pertur-
bations. First, he randomly samples ten vectors generated by
the FE module from the normal traffic stream, and computes
the saliency map over them. Based on this saliency map, he
is able to identify the critical features (i.e., the 50th, 53rd,
and 56th) that have the largest impact on the final anomaly
score. These features are closely correlated to the timestamp
attribute of the packets. Then, the adversary can change the
transmission interval between these packets as the AEs. He
can achieve this by randomly dropping UDP packets with a
probability of p. Then, the average time interval between two
successive packets will be changed from 
t to (1/1− p)
t.

Fig. 8 shows the effects of packet dropping on the detection.
We consider different dropping rates: p ∈ {0.1, 0.3, 0.5, 0.7}.
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Fig. 8. Anomaly scores for packet dropping rate p = 0.1, 0.3, 0.5, and 0.7.
(a) p = 0.1. (b) p = 0.3. (c) p = 0.5. (d) p = 0.7.

The x-axis is the packet indices within the entire video stream,
and the y-axis denotes the corresponding RMSE score. The
packet dropping occurs during the period of index 1.5 mil-
lion and 1.8 million. The light blue horizontal line represents
the threshold T = 0.04, which can achieve the best FPR and
FNR under normal circumstances. We observe that during the
packet dropping period, the RMSE scores are increased due
to our attack. When p ≥ 0.3, a lot of normal packets have
RMSE values higher than the threshold, and will be flagged
as malicious. There will be more such false alarms when p is
higher: for p ≥ 0.5, almost all the packets will be classified
as “malicious.” When the detection threshold is lower (e.g.,
T = 0.01), it will be easier to trigger such an attack with a
lower packet dropping rate (e.g., p = 0.1).

VII. CONCLUSION

In this article, we designed a new method to generate
adversarial network packets and invalidate modern DL-based
NIDSs. Our method leverages the model extraction technique,
enabling an efficient attack even when DL models are black-
boxes to the adversaries. We also utilized the saliency map to
identify the critical features and packet attributes as the target
for AE generation. Evaluations showed that our solution can
successfully attack the state-of-the-art NIDS, Kitsune, by sig-
nificantly increasing its FPs and FNs in the scenario of Mirai
Botnet and video streaming. In the future, we will focus on the
investigation of mitigation solutions to enhance the robustness
of DL models in intrusion detection.
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