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Attacking and Protecting Data Privacy in
Edge–Cloud Collaborative Inference Systems
Zecheng He , Student Member, IEEE, Tianwei Zhang , and Ruby B. Lee , Life Fellow, IEEE

Abstract—Benefiting from the advance of deep learning (DL)
technology, Internet-of-Things (IoT) devices and systems are
becoming more intelligent and multifunctional. They are expected
to run various DL inference tasks with high efficiency and
performance. This requirement is challenged by the mismatch
between the limited computing capability of edge devices and
large-scale deep neural networks. Edge–cloud collaborative
systems are then introduced to mitigate this conflict, enabling
resource-constrained IoT devices to host arbitrary DL applica-
tions. However, the introduction of third-party clouds can bring
potential privacy issues to edge computing. In this article, we con-
duct a systematic study about the opportunities of attacking and
protecting the privacy of edge–cloud collaborative systems. Our
contributions are twofold: 1) we first devise a set of new attacks
for an untrusted cloud to recover arbitrary inputs fed into the
system, even if the attacker has no access to the edge device’s
data or computations, or permissions to query this system and
2) we empirically demonstrate that solutions that add noise fail to
defeat our proposed attacks, and then propose two more effective
defense methods. This provides insights and guidelines to develop
more privacy-preserving collaborative systems and algorithms.

Index Terms—Artificial intelligence, collaborative inference,
edge–cloud computing, security and privacy.

I. INTRODUCTION

RECENT years have witnessed the rapid development
of deep learning (DL) and Internet-of-Things (IoT)

technologies. IoT devices become appealing targets for DL
applications. They use various sensors (e.g., cameras, micro-
phones, and gyroscopes) to collect data and information from
environmental contexts, run the DL applications to interpret
sensory data, and make control decisions. The integration of
AI and IoT leads to the era of Artificial Intelligence of Things
(AIoT), which has significantly changed our daily life: small-
scaled AIoT systems are introduced to build smart homes and
increase the comfort and quality of life; medium-scale AIoT
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systems are deployed in warehouses and factories for higher
efficiency and automation; and large-scale AIoT systems can
contribute to the establishment of smart cities.

Deploying DL inference applications on commodity edge
devices has several challenges. On one hand, an IoT device can
collect streaming information at a very high rate (e.g., vehicle
detection [2], remote monitoring [3], scene analysis [4], and
application trace analysis [5]). This requires the device to
run the DL models and analyze the data at a high speed.
On the other hand, state-of-the-art DL models are becoming
more complicated with larger sizes, making it infeasible for
resource-constrained IoT devices to satisfy the performance
requirements: the limited computation resources of the device
can cause significant latency; the limited storage capacity makes
it hard to store a large deep neural network (DNN) model; and
the limited battery capacity causes a critical energy consumption
constraint.

To overcome this challenge, one possible approach is to
offload the entire DL model and inference computation to the
cloud. The edge device sends the input data to the cloud and
receives the output. While this can resolve the aforementioned
limitations of edge devices, it incurs significant communication
costs when sending a large volume of raw data. Besides, there
can be privacy breaches of the inference data [6], especially
if the input data are highly sensitive such as patients’ records,
and integrity breaches of the model [7], if the cloud is not
trusted.

An optimized strategy is to adopt collaborative inference
between the edge devices and the cloud [8]–[12]. The DL
model can be divided into two parts. The first few layers of
the network are stored in the local edge device, while the
rest are offloaded to a remote cloud. Given an input, the edge
device calculates the output of the first layers, sends it to
the cloud, and retrieves the final results. This approach can
reduce communication costs, as the intermediate output can
be designed to be much smaller than the raw input. Such low
data transfer bandwidth also achieves lower latency and smaller
energy consumption. Collaborative inference makes it feasible
and efficient to deploy large-scale intelligent workloads on
today’s edge platforms.

This article presents an investigation of inference data
privacy in edge–cloud collaborative systems, from the perspec-
tives of attacks and defenses. Prior works all aimed to improve
the performance and efficiency of such systems, while ignor-
ing potential security issues. To the best of our knowledge, we
are the first to demonstrate the feasibility of input data privacy
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Fig. 1. (a) DNN model deployed in (b) collaborative edge–cloud system.

attacks against cloud-edge collaborative inference systems.
The data privacy considered in this article is the confidentiality
of the raw inputs.

Two key questions are considered in this study. The first one
is: if the cloud is malicious or compromised, can the attacker
recover raw input data, otherwise available only to the edge
device? Past work claimed the edge–cloud collaborative infer-
ence can provide better privacy protection, as the cloud only
receives the intermediate values instead of the raw data [10].
We show that an untrusted cloud can still easily and accurately
recover the sensitive data from the intermediate values without
accessing the edge-side model.

We design a set of novel attack techniques to achieve this
goal under different settings. First, for a white-box attacker,
we propose using regularized maximum likelihood estimation
(rMLE) to recover the samples from the model parameters
and intermediate values. Second, for a black-box attacker,
we propose the inverse-network attack to identify the reverse
mapping from the intermediate outputs to inputs without the
knowledge of model information. Third, we consider the most
limited adversarial capability where the cloud has no knowl-
edge of the target model and is not allowed to query the model.
Conducting privacy attacks under this setting is extremely dif-
ficult, and this threat model is rarely considered in past work.
For these query-free attacks, we introduce a new method of
shadow model reconstruction to achieve this attack.

The second question we address in this article is: how can
the edge devices mitigate privacy leakage from the untrusted
cloud? Past work adopted differential privacy to protect the
inference data [13]. We show that this approach is imprac-
tical against our proposed attacks as it brings unacceptable
performance degradation to the DL models. Instead, we pro-
pose two novel strategies that can better thwart privacy attacks
while still maintaining good model performance. The first
one is the dropout defense: by deactivating random neurons
during the inference, the adversary is not able to precisely
generate the original images from the intermediate values. Our
second defense is privacy-aware DNN partitioning: we com-
prehensively evaluate different factors that can affect the attack
results and propose some guidelines to partition the DL mod-
els for better privacy. We hope our findings can guide machine
learning researchers and practitioners to design more secure
collaborative inference systems.

The key contributions of this article are as follows.
1) A systematic study of attacks and defenses for infer-

ence data privacy in edge–cloud collaborative machine
learning systems.

2) Three attack approaches to recover inference data under
different settings.

3) Two new defense approaches to prevent inference data
leakage to the untrusted cloud.

The remainder of this article is organized as follows.
Section II presents the edge–cloud system model, threat model,
and experimental configurations. Section III describes attacks
under white-box, black-box, and query-free settings, includ-
ing attack approaches, implementations, and evaluation results.
Section IV discusses possible mitigation solutions. We give
related work in Section V and conclude in Section VI.

II. PRELIMINARIES

A DNN is a parameterized function fθ : X �→ Y that maps
an input tensor x ∈ X to an output tensor y ∈ Y [Fig. 1(a)].
It consists of an input layer, an output layer, and a sequence
of hidden layers between the input and output layers. Each
layer is a collection of units called neurons, which are con-
nected to other neurons in the previous layer and the next layer.
Each connection between the neurons can transmit a signal to
another neuron in the next layer. In this way, a neural network
transforms the inputs through hidden layers to the outputs,
by applying operations (e.g., a linear function or elementwise
nonlinear activation function) in each layer.

A. System Model

In an edge–cloud collaborative inference system [Fig. 1(b)],
a DNN is partitioned into two parts: fθ = fθ1 ◦ fθ2. Each part
contains several layers. The edge device hosts the first part fθ1.
It collects inference data from the environment, generates the
intermediate value v = fθ1(x), and sends it to the cloud. The
cloud hosts the second part of the model fθ2. When receiving
the intermediate value v from the edge device, it calculates the
final output y = fθ2(v) and returns it to the edge device.

Determining a way to partition the DNN model is nontrivial.
Different factors must be considered to identify the optimal
strategy.

1) Latency: An optimal partition should give the fastest
inference speed. The latency is determined by the infer-
ence time on the edge device, the cloud, as well as
the network transmission time. The cloud can process
the inference at a much faster speed. So it is prefer-
able to move more DNN layers to the cloud. However,
this can cause larger volumes of transmitted data and
longer network latency. So the performance of edge
devices, cloud servers, and network transmission must
be balanced.

2) Power: An optimal partition should be energy efficient.
This is particularly important for edge devices that have
limited power capabilities. The energy consumed by
the edge device consists of the inference computation
(determined by the number of layers) and network com-
munication (determined by the size of transmitted data).
Similar to latency optimization, the energy consumption
of these two parts needs to be balanced.

3) Memory Size: When conducting inference, the device
needs to load the entire DNN fθ1 into the memory.
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TABLE I
TABLE OF NOTATIONS

Fig. 2. Breakdown of inference latency (left) and energy consumption (right)
in edge–cloud systems. Data are from [9].

Some edge devices are equipped with limited memory
resources, and incapable of hosting too many network
layers. This gives another constraint when selecting the
optimal split point.

With these considerations, DNN partitioning is usually for-
mulated as an optimization problem [8]–[12]. Fig. 2 shows
the comparisons of latency and energy consumption between
edge–cloud, cloud-only, and edge-only solutions (data are
collected from [9]). We capture the results from Fig. 6 in
Neurosurgeon [9]. In Neurosurgeon [9], a detailed study of
latency and power consumption in a typical edge–cloud collab-
orative system was evaluated. An AlexNet model is deployed
between a mobile device and a cloud connected by WiFi. We
observe that with an optimal split point, an edge–cloud system
can achieve lower latency and energy than a cloud-only or
an edge-only system: by offloading some DNN layers to the
cloud, the processing time and energy consumed on the device
is less than the edge-only system. Meanwhile, as the size of the
intermediate data is smaller than the original input, the latency
and energy costs of network transmission in the edge–cloud
system are also less than the cloud-only system.

In practice, most layers (including all fully connected layers)
are commonly offloaded to the cloud, while the edge device
only computes a small number of convolutional layers for fea-
ture extraction, due to power and resource constraints [9]. This
gives a chance for an untrusted cloud provider to steal sensitive
inference input, which we will discuss below.

B. Threat Model

We consider a collaborative inference system between the
edge device E and cloud C. The target model is split into two
parts: fθ = fθ2 ◦ fθ1. E performs the first few layers fθ1, while
C performs the rest of the layers fθ2. We consider E is trusted:

TABLE II
EXPERIMENT CONFIGURATIONS

when input is fed into fθ1, E correctly processes it and never
leaks it to other parties. However, C is untrusted, attempting to
steal the input. We consider the confidentiality of an individual
raw input when we use the term “data privacy” throughout
this article. Other forms of data privacy, e.g., membership or
linkability, are not in our threat model.

We assume C strictly follows the collaborative inference
protocol: receiving v = fθ1(x) from E and generating y =
fθ2(v). C cannot compromise the inference process con-
ducted by E, and has no knowledge of the input x, nor any
intermediate values inside E, except v. We consider adversaries
with different capabilities:

1) White Box: C has the knowledge of the model at
the edge side fθ1, including its network structure and
parameters.

2) Black Box: C does not have knowledge of fθ1, but is able
to query the model fθ1. The adversary does not need to
know the exact training data, but he can collect the same
type of samples as the training data. This assumption is
reasonable in practice, e.g., the adversary can collect
arbitrary face samples for a face recognition model or
medical records for a diagnostic system.

3) Query Free: C does not have knowledge of fθ1, or
the permission to query the model fθ1. This type of
attacks has the minimum attacker capability. Similar to
the black-box attack, we assume the attacker can collect
samples similar in type to the training data.

C. Notations and Experimental Configurations

We summarize our notations in Table I. We show detailed
configurations of experiments in Table II.

Our attacks and defenses are generic and applicable to vari-
ous data sets. In this article, we demonstrate the attack results
on the MNIST data set and the defense results on MNIST and
CIFAR10. More details on the attacks can be found in [1].
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The first victim model we target is LeNet5. It consists of
two convolutional layer blocks (each block has a convolu-
tional layer, an activation layer, and a pooling layer), three
fully connected layers, and one softmax layer. The model can
be split at either the first convolutional layer or the second
convolutional layer after activation. These configurations are
realistic in edge–cloud scenarios, as the heavy computational
layers (including all fully connected layers) are offloaded to
the cloud.

We follow the standard MNIST and CIFAR10 split for train-
ing and testing samples [14]. We set the learning rate to 10−3

and choose ADAM as our optimizer. The target model, all
attack techniques, and defense solutions are implemented with
Pytorch 1.0.1. We run our experiments on a server with one
Nvidia 1080Ti GPU and two Intel Xeon E5-2667 CPUs.

To quantify the effectiveness of attacks and defenses, we
adopt two metrics, peak signal-to-noise ratio (PSNR) [15] and
structural similarity index (SSIM) [16]. Larger values of these
two metrics indicate the recovered input is of higher quality,
and more similar to the original one.

III. ATTACK METHODOLOGIES

A. White-Box Attack

We start from the white-box setting, where the adversarial
cloud knows the parameters of the initial layers fθ1 on the
edge device. Formally, the problem we consider is: how can
the adversary recover an input x0, from the corresponding
intermediate value fθ1(x0), and the model parameters θ1? We
propose rMLE to solve this problem.

rMLE: We treat the attack as an optimization problem: given
fθ1(x0), our goal is to find a generated sample x, which sat-
isfies two requirements: 1) the intermediate output of this
sample fθ1(x) is similar to fθ1(x0) and 2) x is a natural sample,
following the same distribution as other inference samples.

For requirement (1), we use the Euclidean distance (ED)
to measure the similarity between fθ1(x) and fθ1(x0) [(1a)].
Note that fθ1(x) can be interpreted as the mapping from the
input space (unobservable to the adversary) to the feature space
(observable to the adversary). Then, this ED represents the
posteriori information from the adversary’s intermediate-level
observation. Our goal is to find the optimal sample x that
minimizes this distance.

For requirement (2), we adopt the total variation [17] to
represent the prior information of an input sample. The total
variation of a 2-D image x is defined in (1b), where xi,j

represents the pixel at position (i, j). β is a parameter that con-
trols the smoothness of the image. Larger β results in more
piecewise-smoothed images. We set β = 1.0 throughout our
experiments. Minimization of this metric can guarantee the
generated image x is piecewise smooth, i.e., avoiding drastic
variations inside regions but allowing large changes along the
region boundaries

ED(x, x0) = ‖fθ1(x) − fθ1(x0)‖2
2 (1a)

TV(x) =
∑

i,j

(∣∣xi+1,j − xi,j
∣∣2 + ∣∣xi,j+1 − xi,j

∣∣2
)β/2

(1b)

x∗ = argminx ED(x, x0) + λTV(x). (1c)

Fig. 3. Recovered inputs in white-box attacks.

The total objective function of the model inversion problem
is a combination of feature space similarity and input smooth-
ness, as shown in (1c). In this equation, λ is a hyperparameter
to balance the effects of the two terms. If the feature space,
fθ1(x) is far from the input space, i.e., a lot of network lay-
ers are computed on the trusted participant E, a large λ is
required because less posterior information about the input
can be recovered from the feature space and the adversary
needs to rely on the prior information. In contrast, if only a
small number of layers are deployed on E, then the adversary
only needs to select a small λ. We set λ = 0 when getting the
inverse from layers before the first fully connected layer, and
λ = 0.1 when getting the inverse from layers after the first
fully connected layer. We perform gradient descent (GD) to
solve (1c) and recover the image.

Evaluation: Fig. 3 shows the white-box attack results. The
first row shows the original inference samples and the remain-
ing rows are the recovered images when the split point is at
different layers. We observe that the adversary can accurately
recover the images with high fidelity when the split point is
either at the first (conv1) or last (ReLU2) convolutional layer.
At the first split layer, PSNR is 39.69 dB and SSIM is 1.00.
At the last split layer, PSNR is 15.10 dB and SSIM is 0.60.1

This indicates that when the split point is at a deeper layer,
the quality and similarity of recovered images become worse.

B. Black-Box Attacks

Next, we consider the black-box setting, where the adver-
sary does not have knowledge of the structure or parameters
of fθ1. We assume that the adversary can query the black-box
model: he can send an arbitrary input x to E and observe the
corresponding output fθ1(x).

Data privacy attacks under the black-box setting are more
challenging because, without the knowledge of model param-
eters, the adversary cannot directly perform a GD on fθ1 to
solve the optimization problem in (1c). One solution is to first
recover the model structure and parameters by querying the
model, and then recover the inference samples. The possibility
of model reconstruction has been demonstrated in [18]–[20].

We propose a more efficient approach, the inverse network,
to directly identify the inversed mapping from output to input,
without the model information. Our solution is easier to
implement and can recover inputs with higher fidelity.

Inverse Network: Conceptually, the inverse network is the
approximated inverse function of fθ1, trained with v = fθ1(x)
as input, and x as output. The attack consists of three phases:

1In our experiments, we observe that PSNR>10 dB or SSIM>0.3 are con-
sidered as good quality because the inversed images are visually recognizable
by the adversary.
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Fig. 4. Recovered inputs in black-box attacks.

1) generating a training set for the inverse network; 2) training
the inverse network; and 3) recovering the input sample by
querying the inverse network.

First, the adversary generates a bag of samples X = (x1, x2,

. . . , xm) of the same type as the training data to query the target
system, and observes the corresponding intermediate outputs
V = (fθ1(x1), fθ1(x2), . . . , fθ1(xm)). Next, he can directly train
an inverse network f −1

θ1 using V as the training input and X as
the training output. We initialize the inverse network with the
Xavier initialization [21], to avoid the neuron activations in
the saturated or dead regions in the beginning. We leverage l2
norm in the pixel space as the loss function (2), and stochastic
GD (SGD) to train the inverse network

f −1
θ1 = argming

1

m

m∑

i=1

‖g((fθ1(xi)) − xi)‖2 (2)

where g is the inverse network to be optimized. Note that
the architecture of the inverse network need not be related to
the target model fθ1. In our experiment, we use an entirely
different network architecture.

Once the inverse network f −1
θ1 is obtained, the adversary can

recover any inference sample from the intermediate layer out-
put: x = f −1

θ1 (v). This approach is more efficient than rMLE:
1) for each target sample, the adversary only needs to pass
through the inverse network once, while in rMLE, an iterative
process is required to solve the optimization problem and
2) calculating the inversed input is parameter-free, while rMLE
requires tuning the parameters λ and β in (1).

Evaluation: Fig. 4 shows the recovered images of MNIST.
We can observe that the adversary can recover the input under
the black-box setting with very high quality (PSNR is 40.72
and 20.81 dB for the two split points) and similarity (SSIM
is 0.99 and 0.80 for the two points).

C. Query-Free Attacks

The inverse-network approach requires the adversary to be
able to query the target model, and generate the data set for
training f −1

θ . In this section, we consider the query-free setting,
where the adversary cannot query the model at the edge side
and does not know the model information. The basic idea is
that the adversary first reconstructs a shadow model, which
imitates the target model’s behavior, and then uses rMLE over
this shadow model to recover the input samples.

Shadow Model Reconstruction: The problem at the first step
is: how can the adversary reconstruct a shadow model of the
former model layers fθ1 with only the knowledge of the latter
layers fθ2 and the same type of training data as S? He cannot
query the model with specified samples to get the intermediate
values.

The key insight of our approach is that if the shadow model
is reconstructed as f ′

θ1, it should be able to classify the input
with high accuracy when combined with the later layers fθ2

yi ∼ fθ2(fθ1(xi)) ∼ fθ2
(
f ′
θ1(xi)

)
, for (xi, yi) ∈ S. (3)

Then, the task of model reconstruction can be translated into
minimizing the classification error of the composition of the
two models: fθ2(f ′

θ1(xi)) versus yi. Equation 4 shows the loss
function for training the model, where m is the number of sam-
ples in S, CrossEntropy is the cross-entropy loss. Equivalently,
this means the training process of f ′

θ1 is supervised at the
output layer of fθ2. Once the model f ′

θ1 is reconstructed, the
adversary can perform data recovery attacks using the rMLE
technique in Section III-A

f ′
θ1 = argming

1

m

m∑

i=1

CrossEntropy(fθ2(g(xi)), yi) (4)

CrossEntropy
(
ŷ, y

) = −
C∑

c=1

yclog
(
ŷc) (5)

where C is the number of classes of the task.
There are two phases in our approach: 1) offline shadow

model reconstruction and 2) online model inversion. The
shadow model reconstruction only needs to be performed once.
Then, all the input samples can be recovered using the same
shadow model, by only one inference for each input. In the
shadow model reconstruction phase, the adversary can adopt
the same type of samples as the training data. He may not
know the original network structure fθ1, but he can use an
alternative one for the shadow model. We assume that both the
target model and the shadow model are convolutional neural
networks, but with different numbers of layers and filters, as
well as filter sizes.

After the training set and network structure are determined,
the adversary can adopt SGD to optimize the loss function
of the composition of the two models. We choose the cross-
entropy loss because it performs well on image classification
tasks. Other loss functions can be leveraged, if the adversary
aims to find inverses of the DNN for different tasks. Once
the shadow model is obtained, the adversary can use rMLE to
recover the inputs.

Evaluation: We illustrate the recovered images under the
query-free setting in Fig. 5. The adversary can still recover the
input images from conv1 and ReLU2 layers. The PSNRs for
these two split points are 17.86 and 8.03 dB, while the SSIMs
are 0.64 and 0.38, respectively. The quality of the images is
relatively lower than the ones in the white-box or black-box
setting, indicating the query-free attacks are harder to achieve.
This is straightforward, as the adversary now has smaller capa-
bilities. Also, more layers on the edge device can also increase
the difficulty of image recovery.

IV. DEFENSE METHODOLOGIES

Given the severity of inference privacy attacks in edge–
cloud collaborative systems, we aim to explore defense meth-
ods in this section. We first empirically evaluate one common
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Fig. 5. Recovered input in query-free attacks.

Fig. 6. Examples of adding the Gaussian noise to defend against a white-box
attack on (a) MNIST (ReLU2) and (b) CIFAR10 (ReLU22). σ is the standard
deviation of the Gaussian noise.

method proposed in past work (though it did not specifically
target the edge–cloud privacy attacks), viz., noise obfuscation.
We show its ineffectiveness in defeating our inference data
privacy attacks. Then, we introduce two new strategies that
can better prevent privacy leakage with a small impact on the
system’s performance and functionalities.

A. Obfuscation With Random Noise

Differential privacy has been proposed to protect model
inference [22], [23] through adding random noise to the input.
In the edge–cloud scenario, we can either add noise to the
original input: v = fθ1(x + ε), or add noise directly to the
intermediate value before sending it to the untrusted cloud
C : v = fθ1(x) + ε. There is a tradeoff between usability
and privacy: as a higher level of noise is added, the model
accuracy will drop. Whether this tradeoff can be balanced is
critical for the effectiveness of this approach. Below, we mea-
sure the attack effects as well as the model accuracy using
noise obfuscation.

We consider the Gaussian and Laplacian noise in our
experiments. Figs. 6(a) and (b) (Gaussian) and 7(a) and (b)
(Laplacian) visually show the recovered images on the MNIST
and CIFAR10 data sets, when we add different levels of noise
to the input (first two rows in each figure) or the intermediate
layer output (last two rows). We observe that adding enough

Fig. 7. Examples of adding the Laplacian noise to defend against a white-box
attack on (a) MNIST (ReLU2) and (b) CIFAR10 (ReLU22). b is the standard
deviation of the Laplacian noise.

Fig. 8. Examples of dropout to defend against a white-box attack on
(a) MNIST (ReLU2) and (b) CIFAR10 (ReLU22). r is the dropout ratio.

noise can indeed provide better privacy and decrease the qual-
ity of recovered images. Besides, noise at the original input is
more effective than noise at the intermediate layer.

We provide a quantitative analysis of model accuracy
(usability, y-axis) and inversed image quality (privacy, x-axis)
in Figs. 9 and 10 on MNIST and CIFAR10 data sets, respec-
tively. The Gaussian and Laplacian noise are represented as
blue and orange lines, respectively. Adding noise to the input
and the intermediate layer are represented as solid and dotted
lines, respectively. The top-left region of the graph is the best.
When fixing the recovered image quality (SSIM or PSNR),
the model accuracy drops more if the noise is added to the
input (blue and orange solid lines) than to the intermediate
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layer (blue and orange dotted lines). This is consistent with
the visual observations in Figs. 6(c) and 7(c). Different charac-
teristics of noise distributions, e.g., the Gaussian or Laplacian,
do not show a significant difference in model accuracy.

On the MNIST data set (Fig. 9), to maintain a good model
accuracy (i.e., >95%), the noise level must be restricted to
σ < 0.8 and b < 0.5. At this level, the attacker is still
able to recover images with high quality (SSIM > 0.4 and
PSNR > 8.5 dB). Similar results are shown on the CIFAR10
data set in Fig. 10. While recent work [6], [13] proposed spe-
cial algorithms for designing noise to protect inference data
privacy, they still may not work for our new attacks or need
extra special training of the noise generator. Hence, we pro-
pose new defense methods below that are not based on adding
noise and are more practical in that they protect the inference
data privacy with much smaller performance degradation.

B. Dropout Defense

Since noise obfuscation may not be secure, we propose
another randomization-based solution, dropout, to defeat the
proposed attacks. Dropout deactivates random neurons in one
layer by setting their output to 0. Formally, it calculates

fi
dropout(x) = f (x) ⊗ M (6)

where M is a mask, where each element of M is randomly
assigned a value of 0 with probability r and a value of 1
with probability 1 − r. ⊗ denotes the elementwise multiplica-
tion. Intuitively, dropout leverages the redundancy feature of
neural networks [24], such that removing partial information
in the inference does not degrade the model performance but
obfuscates the input data.

Similar to noise obfuscation, dropout can also be applied
to the input or the intermediate layer output. We show exam-
ples of the images recovered from layer ReLU2 (MNIST) in
Fig. 8(c). The top two rows represent the effect of dropout
on input, while the bottom two rows represent that on
intermediate output. We observe that increasing the dropout
rate r decreases the quality of inversed images. No useful
information can be obtained by the attacker when r reaches
0.6. We show reversed images from ReLU22 (CIFAR10) in
Fig. 8(b). Similarly, no useful information can be obtained
when r reaches 0.6.

We further measure the usability–privacy tradeoff of dropout
and compare it with the noise obfuscation approach (Fig. 9
on MNIST and Fig. 10 on CIFAR10). Higher accuracy repre-
sents better usability, while smaller SSIM and PSNR represent
better privacy. Lines that are closer to the top-left region
have a better tradeoff. We observe that dropout (green lines)
significantly outperforms all the noise obfuscation solutions
(blue and orange lines). This is because dropout leverages
DNN model redundancy to hide partial information and main-
tain model accuracy while adding random noise introduces
obfuscation on all neurons which degrade model accuracy.
Besides, dropout on the intermediate layer (green dotted
line) is slightly better than dropout on the input (green
solid line): it can fully protect the inference data privacy
(SSIM < 0.25) with accuracy > 95%. On the CIFAR10 data

Fig. 9. Model accuracy versus the SSIM (top) and PSNR (bottom) of inversed
images on the MNIST data set.

Fig. 10. Model accuracy versus the SSIM (top) and PSNR (bottom) of
inversed images on the CIFAR10 data set.

set, dropout on the intermediate layer significantly overper-
forms the other approaches, fully protecting inference data
privacy (SSIM < 0.25) with <0.8% drop in accuracy.

To fully evaluate the effectiveness of this dropout mecha-
nism, we consider splitting the model at different layers on the
MNIST data set. We conduct dropout on the intermediate layer
(i.e., the split layer) since it is better than that on the input.
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Fig. 11. Dropout as a defense against attacks at different layers on the
MNIST data set. Rows from top to bottom: ReLU1, pool1, conv2, ReLU2,
and pool2.

Fig. 12. Dropout as a defense against attacks at different layers on the
CIFAR10 data set. Rows from top to bottom: ReLU12, pool1, conv22,
ReLU22, and pool2.

Fig. 11 shows the recovered images from shallow to deep lay-
ers: ReLU1, pool1, conv2, ReLU2, and pool2. We observe
that as the split layer becomes deeper, a smaller dropout rate
is sufficient to prevent privacy leakage. For example, to fully
obfuscate the input, r can be set as 0.9 when the model is split
at the ReLU1 layer (the first row), and 0.2 when the model
is split at the pool2 layer (the last row). This can be better
illustrated in the usability–privacy curves in Fig. 13: dropout
on deeper layers is more effective (closer to top-left regions)
than that on shallow layers. For both SSIM and PSNR, we
have from worse to better: pool1(blue), then conv2 (green),
then ReLU2 (orange), and then pool2 (gray). There is only one
exception: the ReLU1 layer, which does better than expected.
It is the best for SSIM and better than conv2 for PSNR. One
possible reason is that the recovered image maintains a visu-
ally recognizable structure but degrades illumination in the
ReLU1 layer, which contributes more significantly to PSNR
and SSIM than human recognition. Similar results on the
CIFAR10 data set are shown in Fig. 12.

C. Privacy-Aware DNN Partitioning

Section III shows that different split points yield differ-
ent attack effects. This observation leads to another possible
defense strategy: privacy-aware model partitioning. We raise
an important question: how to split the neural network in the
collaborative system, to make the inference data more secure?
We use the query-free attack as an example to explore this
question. We select the split point at each layer and perform

Fig. 13. Model accuracy versus the SSIM (left) and PSNR (right) of inversed
image.

Fig. 14. Recovered images in query-free attacks.

Fig. 15. PSNR and SSIM in query-free attacks.

inference privacy attacks. Figs. 14 and 15 show the recovered
images and PSNR/SSIM metrics, respectively.

Generally, we observe that the quality of recovered images
decreases when the split layer becomes deeper. This is straight-
forward as the relationship between input and output becomes
more complicated and harder to revert when there are more
layers. Besides, we also observe that the image quality drops
significantly, both qualitatively (Fig. 14) and quantitatively
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(Fig. 15), on the fully connected layer (fc1), indicating that
model inversion with fully connected layers is much harder
than that with convolutional layers. The reason is that a con-
volutional layer only operates on local elements (the locality
depends on the kernel size), while a fully connected layer
entirely mixes up the patterns from the previous layer. Besides,
the number of output neurons in a fully connected layer is
typically much smaller than input neurons. So it is relatively
harder to find the reversed relationship from the output of the
fully connected layer to the input.

Privacy-Aware Partitioning Strategy: When selecting the
split point in a collaborative inference system, privacy should
also be considered, in addition to latency and power con-
straints. We recommend placing at least one fully connected
layer on the edge device to hide the information of sensitive
input samples.

V. RELATED WORK

A. Machine Learning Privacy Attacks

Training Data Privacy Attacks: There are different types
of privacy attacks against the training data. The first type is
property inference attacks, which try to infer some properties
of the training data from the model parameters. Attacks were
demonstrated in traditional machine learning classifiers [25]
and fully connected neural networks [26].

A special case of property inference attacks is membership
inference attacks, which infer whether one individual sample
is included in the training set. This attack was first presented
in [27]. The following work explored the feasibility of
attacks with different adversary’s capabilities [28], model fea-
tures [29], [30], in generative adversarial networks [31], [32],
and collaborative training systems [33].

The second type of attacks against the training data’s privacy
are model inversion attacks [34]: given a machine learning
model, and part of the training samples’ features, the adversary
can recover the rest of the features of the samples. Advanced
model inversion attacks were designed to recover images from
DNNs in single-party systems [35], and collaborative learning
systems [36].

The third type is model encoding attacks [37]: the adversary
with direct access to the training data can encode the sensitive
data into the model for a receiver entity to retrieve.

Model Privacy Attacks: The adversary attempts to steal
the model parameters [18], hyperparameters [20], or struc-
tures [19], [38], via prediction APIs, memory side channels,
etc.

Inference Data Privacy Attacks: Closer to our study is the
work [39], which trains an inverse network on the output prob-
ability distribution to get the inversed inference data. However,
they only consider the model inversion attack from the softmax
layer in the black-box scenario. We show that the attacker can
successfully inverse the model from different layers, even in a
stricter query-free scenario. We also provide defense strategies
that are not discussed in their paper. Wei et al. [40] adopted
a power side channel to recover inference data. However, this
attack required the adversary to compromise the victim device
for side-channel information collection, and it could only

recover simple images (single pixel). Our work can recover
any arbitrary complex data without access to, or knowledge
of, the victim’s device and computation.

B. Machine Learning Privacy Solutions

Enhancing the Algorithms: Distributed training was intro-
duced to protect the training data [41], [42], as different
participants can use their own data for model training. The
SGX security enclaves in Intel processors were used to protect
the training tasks against privileged adversaries [43], [44]. Cao
and Yang [45] proposed a methodology to remove the effects
of sensitive training samples on the models. Abadi et al. [46]
applied differential privacy to add noise in the SGD process
to eliminate the parameters’ dependency on the training data.

Enhancing the Training Data Set: Bost et al. [47] proposed
to encrypt the data before feeding them into the training algo-
rithm. They designed machine learning operators that can
operate on the encrypted data. Zhang et al. [48] showed that
adding noise to the training data set is effective in protect-
ing training data privacy. Generating artificial data [49]–[51]
has been proposed for training DNN models while removing
sensitive information from the original data.

Obfruscating the Inference Input: Differential privacy has
been proposed to protect model inference [22], [23] through
adding random noise to the input. We show that just adding
noise cannot defend against our attacks, and hence we also
propose two defenses that may be more practical for our
attacks in this article. Recent work [6] proposed to add spe-
cially designed noise and provided a theoretical analysis on
the input data privacy leakage. However, it did not consider
the model inversion attacks that we propose and requires extra
training of the noise generator.

Homomorphic Encryption: This allows the inference appli-
cation on the untrusted participant to directly perform DNN
computations on encrypted input [52], [53], so the sensitive
information will not be leaked. A drawback of homomorphic
encryption is that it suffers from huge inefficiency and is not
applicable to all DNN operations.

VI. CONCLUSION

In this article, we explored the inference data privacy
threats in edge–cloud collaborative systems. We discovered
that an untrusted cloud can easily recover the inference sam-
ples from intermediate values. We proposed a set of new attack
techniques to compromise the inference data privacy under
different attack settings. We demonstrated that the adversary
can successfully and reliably recover the inputs with very few
prerequisites.

We also proposed several methods to protect the infer-
ence data privacy for edge computing. Previous works, all
focused on the performance, efficiency, and functionalities of
AIoT while ignoring privacy. We hope that this study can
raise awareness about the importance of inference data privacy
protection in edge–cloud systems and encourage the balanc-
ing of privacy protection with usability when designing or
implementing such systems.
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