
Practical and Scalable Security Verification of Secure
Architectures

Tianwei Zhang
Nanyang Technological University

Singapore
tianwei.zhang@ntu.edu.sg

Jakub Szefer
Yale University

USA
jakub.szefer@yale.edu

Ruby B. Lee
Princeton University

USA
rblee@princeton.edu

ABSTRACT
We present a new and practical framework for security verification
of secure architectures. Specifically, we break the verification task
into external verification and internal verification. External verifi-
cation considers the external protocols, i.e. interactions between
users, compute servers, network entities, etc. Meanwhile, internal
verification considers the interactions between hardware and soft-
ware components within each server. This verification framework
is general-purpose and can be applied to a stand-alone server, or a
large-scale distributed system. We evaluate our verification method
on the CloudMonatt and HyperWall architectures as examples.
ACM Reference Format:
Tianwei Zhang, Jakub Szefer, and Ruby B. Lee. 2021. Practical and Scalable
Security Verification of Secure Architectures. InWorkshop on Hardware and
Architectural Support for Security and Privacy (HASP ’21), October 18, 2021,
Virtual, CT, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3505253.3505256

1 INTRODUCTION
Over the last decade, a number of secure architectures have been
designed to provide security functionalities (e.g., XOM [19], AEGIS
[30], SP [17], Bastion [7], HyperWall [33], DataSafe [8], Sanctum [10],
or HDFI [28]). Ideas presented by some of these architectures have
been implemented in commercial designs, such as ARM Trust-
Zone [34], Intel’s SGX [21], AMD’s SEV [2].

Once any such security architecture is designed, it is necessary to
check that there are no security vulnerabilities with the design that
could allow an attacker to subvert the protections. Unlike software-
based solutions which may be easily patched in the field, hardware
architecture protections need to be correct from the beginning, as
it is expensive and often not possible to update or replace them
once hardware is manufactured. To address this issue, designers run
extensive tests and simulations to make sure that the mechanisms
work correctly. Moreover, the designers perform informal security
evaluation which attempts to qualitatively reason about potential
attacks and show how the architectural mechanisms prevent them.
There is a lack, however, of a systematic methodology for verifica-
tion of security architectures that can be applied to any architecture
or system in a scalable manner.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HASP ’21, October 18, 2021, Virtual, CT, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9614-1/21/10. . . $15.00
https://doi.org/10.1145/3505253.3505256

A big challenge in verifying secure architectures is that secure
architectures today are usually very complex. A secure architecture
is likely to consist of different types of computing servers, and the
end users. All of these are connected by networks. Meanwhile each
computing server consists of different layers of software and hard-
ware components. The secure operations of the architecture include
the mutual communication between servers and users across the
networks, as well as interactions between hardware and software
modules inside a server. So verification of complex architectures
thus needs to be achieved by focusing on two key aspects: external
protocols and internal interactions.

Our contribution in this paper is the definition of a general-
purpose security verification framework. It has different advan-
tages. First, it is scalable to verify complex secure architectures. The
presented approach breaks down a secure architecture into smaller
components for verification. Specifically, verification of a secure
architecture can be achieved effective by focusing on external veri-
fication, of the external protocols, and internal verification, of the
internal interactions. External protocols are used for communica-
tion between servers and users, while internal interactions are for
interactions among components within each server. We build state
machines to verify the external protocols and internal interactions,
thus effectively achieving verification scalability.

Second, our methodology is general-purpose and can be applied
to different architectures. This method is not restricted to specific
tools: designers can choose the tools they prefer to do the verifica-
tion following our methodology. This achieves great practicality
and granularity. We provide two case studies: verifying Cloud-
Monatt [36] using a cryptographic protocol verifier ProVerif [4],
and verifying HyperWall [32, 33] using a generic model checker
Murphi [14]. These case studies show that our solution has been
partly used to help design and enhance the secure architectures.

In summary, our contributions are:
• A new, general-purpose security verification framework for
secure architectures and systems.

• A methodology to break the verification task of secure architec-
tures and systems into external and internal verification, which
can also be done hierarchically.

• A method to model different entities and components of such
architectures as finite state machines.

• Evaluation of the methodology on different architectures using
different tools.
We introduce our verification methodology and framework in

Section 2. Using this methodology, we verify two secure architec-
tures as case studies in Sections 3 and 4. We show the verification
performance in Section 5. We summarize related work in Section 6
and conclude in Section 7.

https://doi.org/10.1145/3505253.3505256
https://doi.org/10.1145/3505253.3505256
https://doi.org/10.1145/3505253.3505256

HASP ’21, October 18, 2021, Virtual, CT, USA Tianwei Zhang, Jakub Szefer and Ruby B. Lee

System
Startup

Protection
Initialization

Code/Data
Runtime

Conf guration
Update

Code/Data
Migration

Code/Data
Termination

System
Power down

Protection
Attestation

Figure 1: Different execution phases of a secure architecture.

2 VERIFICATION APPROACH
The security verification of secure architectures goes beyond functional
verification.During design time, the threat model is specified, which
lists the potential attackers and their capabilities. The security
verification methodology needs to model enough aspects of an
architecture to capture all possible behaviors of these attackers with
their capabilities, and to model their impacts on the architecture.

A secure architecture usually consists of different components
(e.g., distributed nodes, software and hardware modules). The inter-
actions between these components and with the external entities
(e.g., remote users, networks) are very complex [7, 36]. To achieve
the scalability of verification, it is necessary that the verification
is done on each part of the architecture, rather than on the whole
architecture at once. Still, the verification of the sub-parts must
compose into the verification of the whole architecture.

In Section 2.1 we propose a method of breaking the security
verification of a system into smaller tasks, i.e., external verification
and internal verification. In Section 2.2 we describe the detailed
steps to conduct each verification task.

2.1 External and Internal Verification
A system is composed of many components. Each component is
realized by one or more mechanisms. We specify external protocols
as the interaction of the system with distributed or remote com-
ponents, e.g. remote users, network, etc. There are also internal
interactions which are interactions between components within a
physical server or local system, e.g. processor, hypervisor, OS, etc.

The important aspect of the security-critical external protocols
and internal interactions is that these involve untrusted principals
or components, and hence involve potential attacks that we need
to check for. This has led us to the proposition that the compo-
nents’ interactions are the most important parts to verify when
considering the security of the system [7, 36–39]. By focusing on
the component interactions we have found a natural breakdown of
the architecture into smaller parts. Verifying smaller parts helps us
avoid the state explosion problem.

The security verification of the external protocols and internal
interactions provides coverage of more of the system because the
focus is on how components interface with each other, and the
details of the mechanisms are abstracted away. A component, even
a whole server, can be treated as a blackbox during external verifi-
cation – and in turn security verified during internal verification
steps.
Identifying protocols and interactions. To find the different
security-sensitive interactions, we identify different execution phases
of a secure architecture or system, as shown in Figure 1. The middle
six phases will be repeated many times during system runtime,

while the other two phases correspond to system startup and shut-
down. Each of the phases will have an external protocol if there is
communication with the end user during that phase, and one or
more internal interactions. The internal interactions occur when
there is an event that will cause security-related state to be altered
inside the trusted components of the architecture. The different
execution stages of a hardware secure processor architecture shown
in Figure 1 can be used to help identify protocols and interactions
for security verification.
Secure composition. Given secure mechanisms or protocols, A
and B, which have been verified, it is very difficult to prove that
the composition of the two is also secure. We do not tackle the
problem of formal proofs of composability in this work. We focus
on providing a sound methodology for the practical and scalable
security verification of individual external protocols and internal
interactions.

However, Protocol Composition Logic (PCL) has been proposed
[13]. The composition theorems in PCL allow proofs of complex pro-
tocols to be built up from proofs of their constituent sub-protocols.
It may be possible to build on such existing work as PCL to check
the composition of the protocols and interactions which we verify.

2.2 Security Verification Framework
To verify a system’s protocols and operations, we first build models
for the system, and identify the trusted and untrusted subjects in
the system. We specify the verification goals and invariants based
on the system’s functionality. Then we implement the models and
test through the system models. If an invariant fails in some cases,
a vulnerability has been found and the design needs to be updated.

2.2.1 Modeling System. Specifying essential components. A
designer has to enumerate the components or principals involved.
For the external protocol, we treat a physical server as one com-
ponent. The network component, customers, cloud provider, and
(if needed) trusted third party are also explicitly included for the
benefit of the external protocols which involve the remote customer
connecting via a communication path to the server. For the internal
interactions, we consider the hardware components (e.g., micro-
processor, memory chips, co-processors) and software components
(e.g., applications, hypervisor, OSes). Among the protocol or inter-
action participants, there are untrusted components or principals,
which could be sources of potential attacks. The untrusted compo-
nents or principals are the potential attackers and their capabilities
need to be checked.
Symbolic modeling. We adopted the symbolic modeling method
[5], where the cryptographic primitives are represented by function
symbols and perfect cryptography is assumed. Each component’s
operation can be represented as states of a state machine, and com-
munication among the components can be represented as messages
sent between the components. So we model each component as a
subject. Each subject has a set of states with inputs and outputs
based on the system operation. The transitions between different
states are also defined by the architecture designs and protocols.

Among all the subjects, there is an initiator subject that starts the
system protocol/interaction and a finisher subject that ends the pro-
tocol/interaction; they could both be the same subject. This initiator

Practical and Scalable Security Verification of Secure Architectures HASP ’21, October 18, 2021, Virtual, CT, USA

subject has a “start” state while the finisher subject has a “commit”
state. The verification procedure starts at the initiator’s “start” state.
At each state in each subject, it takes actions corresponding to the
transition rules. It will exhaustively explore all possible rules and
states to find all the possible paths from the initiator’s “start” state
to the finisher’s “commit” state. Then we judge if the verification
goals are satisfied in all of these paths. The system is verified to
be secure if there are paths from initiator’s “start” state to finisher’s
“commit” state, and all the verification goals are satisfied in any of
these paths.

2.2.2 Preconditions and Security Invariants. The protocols and in-
teractions are subject to constraints, the so-called preconditions.
Preconditions are closely related to the trusted computing base
(TCB) and often reflect which principals need to be in the TCB.
If a precondition is removed, the protocol or interaction may no
longer be verifiable. Ideally, during verification of a system, the
minimal number of preconditions is determined, which can reduce
the size of the Trusted Computing Base (TCB). One key benefit
of our methodology is that it allows preconditions to be removed,
(even though initially thought to be required), as verification passes
with these preconditions removed.

Each protocol or interaction needs to satisfy certain security
invariants – these invariants are only verified if for all possible exe-
cution traces, the invariant is not found to be violated. Thorough
analysis of the protocols allow us to define the invariants correctly.
Often the invariant is the goal of the design so correctness is clear.
The security invariants focus typically on confidentiality and in-
tegrity of sensitive information. In the case of secure architectures,
this sensitive information typically is: code or data executed or
stored on the system, and measurements of the state of the system.
Confidentiality Validation. Each principal has access to various
values, including ones tagged as confidential to indicate the need
for confidentiality protection of that value. The untrusted principal
could try to combine all the information it has obtained in all of
its states to try to break confidentiality of some of the messages
(e.g. it has seen cipher text in some state, and the decryption key in
another).

For each value tagged as confidential, the invariants check if any
untrusted principal has access to it. If not, confidentiality of this
value is maintained. Otherwise the invariants check if the value is
tagged as encrypted (i.e. it has a decryption key associated with it)
and the untrusted principal has access to the key. If so the untrusted
principal can obtain the plaintext, thus violating confidentiality.
Otherwise the confidentiality is preserved. The above heuristics are
consistent with our assumption of strong cryptography and that
the attacker is not able to break the asymmetric or symmetric key
cryptography, unless they have access to the proper key.
Integrity Validation. The way we are able to check for integrity
attacks is through comparing the values available to an individual
trusted principal to all the values in the model. The trusted princi-
pals have only visibility into their input values and the known-good
private values they posses. Meanwhile, the model has visibility
into all the inputs and outputs from all the principals, and which
other principals may have modified these values. During a run of
the model, the invariants check if there is enough information in the
(explicit and implicit) inputs to a trusted principal for that principal

to reject any inputs that have been compromised (e.g. fabricated or
replayed values). The key ideas behind the integrity checks are: (1)
checking for “known-good” values, which can be referenced by a
trusted party to validate some of the inputs, these good values need
to be stored securely or come from a trusted source; (2) checking
for self-consistency of values, which allows a trusted party to check
the inputs and make sure they are mutually consistent.

2.2.3 Implementation and Results. Our security verificationmethod-
ology can be realized using very different tools. Since these are
existing tools, the incremental overhead to achieve our security
verification methodology is very small. Also, designers can choose
the tools they are more familiar with, or that best suit their purpose.
In this paper we use two verification tools ProVerif [4] and Mur-
phi [14] to exemplify that this is a flexible methodology. Proverif has
built-in security invariant checking support which Murphi does not.
But Proverif is targeted at network protocol verification, and we
have to use (repurpose) it in a clever way for checking interactions
between software and hardware modules within a system. Murphi
has more complete model checking facilities which enable the de-
signer to do functional modelling and verification with the same
tool as security verification. Murphi can be enhanced with security
checking mechanisms as we have done, to propagate security tags
for checking for integrity and confidentiality breaches. Designers
can choose other model checker tools as well, e.g., Event-B [1], PAT
[31], Scyther [12], Tamarin [24].

The verification results are either 1) the protocol or interaction
passes, or 2) there is some invariant that does not hold and veri-
fication fails. If verification fails, the design needs to be updated,
and one has to run the verification process again. When verifica-
tion passes, some preconditions can be removed to test if they are
necessary. Once the protocol or interaction passes with the least
number of preconditions, the verification process is completed.

In the following two sections we validate our methodology
on two types of secure architectures: a standalone server proces-
sor (HyperWall [32, 33]). and a distributed cloud system (Cloud-
Monatt [36]).

3 VERIFYING A STANDALONE SERVER
In this section, we show how to use the above methodology to
verify a secure standalone server processor. We use HyperWall
[32, 33] as an example.

HyperWall is a secure processor architecture which aims to pro-
tect virtual machines from an untrusted hypervisor, a predecessor
to AMD’s SEV extensions. The processor hardware in HyperWall
is extended with new mechanisms for managing the memory trans-
lation and memory update so that the hypervisor is not able to
compromise confidentiality and integrity of a virtual machine. The
hardware allows the hypervisor to manage the memory, but once
the memory is assigned to a virtual machine, the hypervisor has
no access to it. It is scrubbed by hardware before the hypervisor
can gain access again. These protections are realized in Hyper-
Wall through extra registers and memory regions which are only
accessible to the hardware, namely the TEC (Trust Evidence and
Configuration) memory region. The TEC tables protect the memory
of the guest VMs from accesses by the hypervisor and/or by DMA,
depending on the customer’s specification. Each memory region

HASP ’21, October 18, 2021, Virtual, CT, USA Tianwei Zhang, Jakub Szefer and Ruby B. Lee

Hardware

Core

New
instructions

Crypto
engine

State
machine

Protection check logic

New
registers

Protection
control

logic

MMU
Protection

check
logic

IOMMU

Memory

Hypervisor
Memory map

handling
Attestation
handling

Save/store
registers

New inst.
support

Host VM Guest VM Guest VM

VM start

Protection config.

Trust evidence

Figure 2: Architecture of HyperWall

has an associated entry in the TEC tables specifying the access
rights.

HyperWall can be used as the cloud server in a cloud computing
scenario where there is a remote user communicating to his or her
(HyperWall) server located in the cloud possibly managed by an
untrusted cloud provider. HyperWall architecture is summarized in
Figure 2. Below we present verification of one external protocol and
one internal interaction of HyperWall. We have further performed
verification of five more HyperWall interactions, summarized in
Section 5.

3.1 External Protocol: VM Startup Validation
The security verification goal is to check if the integrity of VM
image and configurations are protected during VM startup (system
startup phase in Figure 1).
Modeling. Figure 3 shows the external protocol with the involved
components. The customer component “starts” VMs by specifying
a nonce, N, the virtual machine image I, and the desired set of
confidentiality and integrity protections for the virtual machine, P.
This “start VM" message is sent over the network to the hypervisor,
which creates a data structure representing a VM. The network and
hypervisor are both untrusted and have the same attack capabilities;
thus we collapse them into one component for the purpose of mod-
eling. After the VM is prepared, the processor is invoked to start
the VM, through a VM Launch instruction. The microprocessor
hardware launches the VM. It signs – with its secret key SKP – val-
ues that will define the VM: N, VID (the VM identifier assigned by
the processor), hash(I), hash(P), and TE (the initial trust evidence
where initially the number of memory access violation is zero).
The five values and their signature, Sig, and a certificate from the
hardware manufacturer with the verification key needed to check
the signature, CertVKP , are sent back to the customer. CertVKP is
signed by the trusted vendor.

To aid the verification, we have added two extra states to make
explicit information available to the customer and processor. In
particular, the customer knows the certificate for the manufacturer
CertMfg and the initial expected value of TE. The processor knows
the key, SKP that it uses to make the signatures. It also has a
certificate for the corresponding public key, VKP, for recipients to
verify its signatures. This information is made explicit as inputs
from the two trusted party states, TP1 and TP2.
Security invariants. We identify one invariant:
1 The customer is able to reach the commit state with N, VID,

hash(I), hash(P), TE, Sig and CertVKP not being compromised
by the untrusted hypervisor or the untrusted network.

Customer

S_CUST_SEND

Network/Hypervisor

S_NWHV_RELAY

N
I
P

Processor

S_PROC_VMLAUNCH

S_NWHV_RELAYS_CUST_CHECK

S_CUST_COMMIT

N
I
P

N
VID

hash(I)
hash(P)

TE
Sig

Cert%&'

N
I
P

TP2

Cert%&'
SK*

N
I
P

N
VID

hash(I)
hash(P)

TE
Sig

Cert%&'

TP1
CertMfg

TE

Sig = sign+&' (N || VID || hash(I) || hash(P) || TE)

Figure 3:Model of VM Startup Validation external protocol. SKP is
the private key belonging to the processor, for which the customer
has CertMfg certificate from manufacturer and the CertVKP certifi-
cate of the SKP sent by the processor, which is signed by the manu-
facturer.

Preconditions. We make several preconditions about the proces-
sor and cloud user and check if the above security invariants can
be satisfied with these.
(C1) The processor is trusted.
(C2) The processor has valid CertVKP and SKP.
(C3) The customer has valid CertMfg and TE.

Implementation. Wemodel the Customer, Network, and Processor
in Murphi as a set of state machines. For this protocol, we are con-
cerned with the network or hypervisor component fabricating or
replaying values as it passes them to the processor, or when it re-
turns values back to the customer. These two are collapsed into the
single untrusted principal with states corresponding to two points
where this principal needs to relay the data and it could be attacked.

We extend the murphi model checker tool to propagate multiple
values, for each value whose integrity must be verified: the cor-
rect value, a fabricated value and a replayed value. At the commit
state, we check if the cryptography used allowed us to verify that
the correct value was returned, despite transmission through the
untrusted network and hypervisor.
Results. The security verification passes for all possible runs and
the customer can reach the commit state. The integrity of N, VID,
hash(I), hash(P), TE, Sig and CertVKP is protected against fabri-
cation of values and replay of values.

Specifically,N and TE satisfy the case that there are known good
values to compare against for these invariants. For CertVKP there
is the CertMfg that can be used to compare against it and verify
it. VID satisfies the case that there is a signature that includes this
value and a chain of certificates to verify the verification key of the
signature. hash(I) and hash(P) are hash primitives and included
in the signature so they cannot be forged. The integrity of Sig is
checked against fabrication: neither the network nor the hypervi-
sor have access to the private signing key SKP and the customer
has access to a chain of certificates that allows for him or her to
verify the signature. It is also checked against replay of values: the
customer can check the nonce, N, that he or she generated for this
run of the protocol.

Practical and Scalable Security Verification of Secure Architectures HASP ’21, October 18, 2021, Virtual, CT, USA

Network/Hypervisor

S_NWHV_RELAY

Processor

S_PROC_CHECK_AVAILABLE_TEC_ENTRY

S_NWHV_COMMIT

N
I
P

N
hash(I)
hash(P)

S_PROC_PROTECT_PAGE_TABLES

S_PROC_PROTECT_CIP_MEMORY_PAGES

S_PROC_PROTECT_VM_MEMROY_PAGES

S_PROC_GENERATE_HASH

N
VID

hash(I)
hash(P)

TE
Sig

Cert%&'

Figure 4: Model of VM Launch Mechanisms. CertVKP is the certifi-
cate of the signing key used by the processor in creating the signa-
ture Sig.

3.2 Internal Interaction: VM Launch
We now show how to do the security verification of setting up
protections for the VM’s memory pages (protection initialization
phase in Figure 1).
Modeling. Figure 4 shows the flow chart of the VM Launch mecha-
nism. The mechanism is triggered when the hypervisor tries to start
a new VM, as part of the VM startup attestation external protocol.
The hypervisor sets up the VM and then executes the vm_launch
instruction. The processor captures this instruction and atomically
launches the VM with the following five operations, highlighted in
Figure 4:

(1) The processor consults the TEC tables to find a free entry
where the information about the VM will be stored. (2) Once a
free VM entry is found, the page tables are protected. (3) Then
the Confidentiality and Integrity Protection (CIP) tables for the
VM’s pages are protected. (4) The VM’s pages are protected. Each
memory page is protected by denying access to the hypervisor and
to DMA. (5) Finally, the hashes of the VM image and VM protections
are generated. The page table page count is saved in the TEC table
entry for the VM, and the VM is actually launched.
Security invariants. We identify one invariant:
1 The processor needs to ensure the VM started has exactly the

configuration and protection requested, and that correct hash
measurements of the VM are taken.

Preconditions. We require several preconditions about the pro-
cessor, these are a subset of the preconditions needed by the prior
external protocol.
(C1) The processor is trusted.
(C2) The processor has valid CertVKP and SKP.

Implementation. As above, we model the untrusted network
and untrusted hypervisor as a single entity, with the capability to
fabricate values and replay values. The processor is trusted based
on our preconditions. We use Murphi to model the processor as
a state machine. The Processor needs to ensure the integrity of
the start up values received when a request to launch a VM is
received: N, VID, hash(I), hash(P), TE, Sig and CertVKP . We tag
these values as requiring integrity protection and check if these
values are fabricated or replayed when the protocol reaches the
commit state.

Results. This protocol focuses on integrity of the start up val-
ues received: N, VID, hash(I), hash(P), TE, Sig and CertVKP . The
model keeps track of whether the reads or writes to protection
tables were accessed only by the trusted hardware. Our verifica-
tion results indicate that the processor will correctly conduct the
above five steps, and generate the correct hash measurements at
the commit state.

3.3 Security Discussion
Coverage. In addition to the two protocols shown above, five
other protocols or interactions were verified, as listed in Table 1.
The protocols and interactions verified cover the execution phases
from Figure 1, except for VM migration. The methodology facili-
tates a “design for security” approach where architects can validate
individual protocols and interactions at the design phase.
Impact. The verification effort uncovered two flaws in the original
design [33], and later fixed in [32]. The first was a replay attack in
the VM Suspend and Resume protocol. The original design [33] in-
cluded a nonce to prevent replay attacks. However, when modeling
the internal interaction due to VM Suspend & Resume, the verifica-
tion of the model failed, pointing out that the “nonce” value was
not updated during the suspend and resume operation as originally
assumed, thus not providing replay protection. A related problem
was discovered about the trust evidence data, previously also only
stored in registers. Stale trust evidence data could have been sent
back to the customer, by a compromised hypervisor.

4 VERIFYING A DISTRIBUTED SYSTEM
CloudMonatt [36] is a flexible distributed cloud architecture to
monitor and attest the security health of customers’ VMs in the
cloud. Figure 5 shows the architecture overview of CloudMonatt. It
involves four entities: the customer, the Cloud Controller, the Attes-
tation Server and the cloud server. The Cloud Controller acts as the
cloud manager, responsible for taking VM requests and servicing
them for each customer. The Attestation Server acts as the attesta-
tion requester and appraiser, to collect the security measurements
from the VM, interpret the measurements and make attestation
decisions. The Cloud Server has a Monitor Module which contains
different types of monitors to provide comprehensive and rich se-
curity measurements. It has a Trust Module responsible for server
authentication, secure measurement storage and crypto operations.

We now show how our security verification methodology can
be used to verify the main attestation protocol of CloudMonatt.
We also show how this methodology can help to narrow down the
number of trusted components needed in the trusted computing
base for this distributed system.

4.1 External Protocol: Cloud Attestation
Cloud attestation is the procedure of making unforgeable claims
about the security conditions of customers’ VMs based on the evidence
supplied by the host server. We verify that the requested report is not
tampered with in CloudMonatt architecture, and hence the integrity
of the end-to-end attestation is achieved (protection attestation
phase in Figure 1).

HASP ’21, October 18, 2021, Virtual, CT, USA Tianwei Zhang, Jakub Szefer and Ruby B. Lee

Customer

Policy
Validation

Module

Cloud Controller

Response
Module

Deployment
Module

Property Interpretation Module

privacy
Certificate
Authority

Attestation Server

Attestation

Request

Attestation

Results

Measurement

CollectionProperty Certification Module

Hardware

Hypervisor

Host VM Guest

VMAttestation Client

Monitor

Module

Trust

Module

Guest

VM

CPU RAM

Disk NIC

Cloud Server

Figure 5: Architecture of CloudMonatt.

Modeling. We model each entity involved in this distributed sys-
tem as an interacting state machine, as shown in Figure 6. The
whole process starts from the customer, who sends to the Cloud
Controller the attestation request including the VM identifier, VID,
and the security properties, P. Then the Cloud Controller forwards
the request to the Attestation Server, with the host servers identi-
fier, I. The Attestation Server sendsMR, the request of necessary
measurement, to the host server. The cloud server collects the re-
quired measurements M, hashes and signs the measurements, and
sends them back to the Attestation Server. The Attestation Server
checks the received message and, if correct, generates the attes-
tation report R based on M and P. Then the Attestation Server
signs the report and transmits it to the Cloud Controller. The Cloud
Controller checks the message and, if correct, hashes and signs
the report, and sends it to the customer. The customer ends the
attestation session if the he finds the report is correct.
Security invariants. We identify one invariant:
1 The attestation report R the customer receives is indeed the

one for VID with P, specified by the customer.

Preconditions. Initially, we specify several preconditions and
check if the above invariant can be satisfied under these precondi-
tions. Later, we verify each of these preconditions.
(C1) The cloud server is trusted.
(C2) The Attestation Server is trusted.
(C3) The Cloud Controller is trusted.

Implementation. We model the external protocol in ProVerif.
Specifically, we declare each subject as a process. Each process
keeps some variables. If the subject is trusted, we denote these
variables as private, not accessible by the attacker. Otherwise
the variables are assumed public. We declare a network connected
between each pair of subjects, to represent the untrusted commu-
nication channels. These channels are under full control of the
network-level adversaries, who can eavesdrop or modify any mes-
sages. We use the cryptographic primitives from ProVerif to model
the public key infrastructure for digital certificate, authentication
and key exchange. Then we model the attestation process for an
unbounded number of sessions, and check if the adversary can
compromise the integrity of the report in any session.

We use ProVerif’s reachability proof functionality to verify the
integrity of a message. Specifically, we define a function R(VID,
P) to denote the correct report of VM VID for property P. At the
customer’s state “S_CUST_COMMIT”, the customer receives the
report R, and we check if the statement R = R(VID, P) is always
true. We use the statement “query event(R,R(VID, P))" to check

the negative scenario: an integrity breach has occurred. If this query
statement is false, the attacker has no means to change the message
R without being observed by the customer and the integrity of R
holds.
Results. First, ProVerif shows the security invariant 1 is satisfied
under the preconditions (C1) – (C3). The network-level adversaries
cannot compromise the integrity of the messages without being
observed, as all the messages are cryptographically protected. Sec-
ond, ProVerif shows that preconditions (C1) – (C3) are necessary
to keep the invariants correct, and missing any precondition can
lead to violations of the invariant. An untrusted cloud server can
counterfeit wrong measurements, making the customer receives
wrong attestation report generated from the measurements. An
untrusted Attestation Server can generate wrong attestation report
for the customer. An untrusted Cloud Controller can modify the
attestation reports before sending to the customer.

4.2 Internal Interaction: Evidence Collection
Placing the entire server into the TCB would require stronger secu-
rity protection, which is expensive and difficult to achieve. So, we
conduct internal verification to identify the necessary components
inside the servers that need to be trusted. We verify the evidence
collection process in the cloud server (protection attestation phase
in Figure 1).
Modeling. We model the key components inside a cloud server
as state machines (Figure 7). We also include the untrusted net-
work as the initiator and finisher subject in the internal protocol
to interact with the server. The whole process starts when the
network passed the encrypted measurement request to the server.
The Attestation Client processes the request and passes it to
the Monitor Module. The Monitor Module collects the correct
measurements, and then stores the measurements together with
other related information in the Trust Module. The Trust Module
calculates the hash and signature using its private attestation key.
Then the signature is encrypted by the Attestation Client and
sent out. The network goes to the commit state when it receives
the encrypted measurement.
Security invariants. We identify one invariant:
1 The cloud server needs to ensure that the correct measurement

M are taken for VM VID with requestMR.

Preconditions. We identify a set of possible preconditions.
(C1) The Monitor Module is trusted.
(C2) The Trust Module is trusted.
(C3) The channel between the Monitor Module and the Trust

Module is trusted.

Implementation. We model a software or hardware component
as a process. Each component keeps some variables and operates as
a state machine. If one component is in the TCB, then its variables
will be declared as private. Otherwise its variables are public
to attackers. If two modules are linked by an untrusted channel,
then we declare a public network between these two components.
Otherwise we combine the two component into one process so that
they can exchange messages securely.

Practical and Scalable Security Verification of Secure Architectures HASP ’21, October 18, 2021, Virtual, CT, USA

Customer

S_CUST_REQ

Network

S_NW_RELAY

Cloud Controller

S_CTRL_GETSERVER

Network

S_NW_RELAY

Attestation Server

S_ATT_REQ

Network

S_NW_RELAY

Cloud Server

S_SER_GETMEA

S_SER_SIGNS_NW_RELAYS_ATT_CHECK

S_ATT_SIGNS_NW_RELAY

S_NW_RELAY

S_CTRL_CHECK

S_CTRL_SIGNS_CUST_CHECK

S_CUST_COMMIT

VID, MR, N3, M VID, I, P, N2, N3

VID, I, P, R, N2

VID, I, P, N1, N2

VID, P, R, N1

VID, P, NC1

enc!"(VID || P || N1) enc!#(VID || I || P || N2)enc!"(VID || P || N1) enc!#(VID || I || P || N2) enc!$(VID || MR || N3) enc!$(VID || MR || N3)

enc!$ (Sig3)enc!$ (Sig3)

enc!# (Sig2)enc!# (Sig2)

enc!% (Sig1)enc!" (Sig1) Sig3 = sign&'!((VID || MR || M || N3 || hash(VID || MR || M || N3))
Sig2 = sign'!) (VID || I || P || R || N2 || hash(VID || I || P || R || N2))

Sig1 = sign'!* (VID || P || R || N1 || hash(VID || P || R || N1))

Figure 6: The external protocol in CloudMonatt. SKC, SKA and ASKS are the private signing keys of the Cloud Controller, the Attestation
Server and the cloud server, respectively. KX, KY and KZ are symmetric keys between the customer and the Cloud Controller, between the
Cloud Controller and the Attestation Server, and between the Attestation Server and the cloud server, respectively.

Network

S_NW_RELAY

Client/OS/Hypervisor

S_OSHV_RELAY

VID, MR, N3

Monitor Module

S_MON_INVOKE

Trust Module

S_TRU_STORS_MON_GETMEA

S_OSHV_RELAY

S_NW_COMMIT

Sig3
Sig3

VID, MR, N3

VID, MR, N3

VID, MR, M, N3

S_TRU_SIGN

VID, MR, M, N3

S_CLI_INVOKE

S_CLI_ENC

Cloud Server

enc!"(VID || MR || N3)

enc!" (Sig3)

Sig3 = sign#$!% (VID || MR || M || N3 || hash(VID || MR || M || N3))

Figure 7: Internal interactions in the cloud server. KZ is the sym-
metric key known to the Attestation Server and the cloud server.
ASKS is the private signing key of the cloud server.

We also use ProVerif’s reachability proof functionality to ver-
ify the integrity of measurement M. When the network reaches
state “S_NW_COMMIT”, we denote the measurement inside the
encrypted message asM. We also defines a functionM(VID, MR),
which gives the correct measurement of VM VID for the measure-
ment requestMR. Thenwe check if the statementM =M(VID,MR)
is always true at the commit state. We use the statement “query
event(M,M(VID, MR))" to discover potential integrity breach. If
this statement is false, the attacker has no means to change M
without being observed by the customer and the integrity of M
holds.
Results. We verify that it is sufficient and necessary to keep the
security invariant with these preconditions, when the network,
OS and hypervisor is untrusted. Missing any prediction can lead
to invariant violation: an untrusted Monitor Module can collect
wrong measurements M and store them into the Trust Module;
an untrusted Trust Module can generate a fake signature over
any measurements using the signing key ASKS; an untrusted chan-
nel between the Monitor Module and Trust Module gives the
adversary a chance to modify the measurements without being
detected.

4.3 Security Discussion
Coverage. We show the main CloudMonatt attestation protocol
is secure, i.e., correct and unforgeable. We show the evidence col-
lection process in the cloud server is secure. We also verified the
property interpretation process in the Attestation Server and the
health checking process in the Cloud Controller in the same way

Model Int. or Ext. Lines of Code Runtime (s)
VM Startup Ext. 1159 0.8s
VM Launch Int. 462 0.6s

VM Secure Channel Ext. 1332 0.3s
VM Trust Evidence Ext. 1081 0.2s

VM Suspend & Resume Ext. 1054 0.5s
VM Mem. Update Int. 687 0.7s
VM Terminate Int. 417 0.8s
Table 1: HyperWall verification evaluation results.

as we showed for the Cloud Server. This completes the end-to-end
security verification of the protection attestation phase in Cloud-
Monatt.
Impact. One of the most interesting results of security verification
is to show how we can enhance the security of the architecture
during design. In CloudMonatt, it showed that only the Monitor
Module and Trust Module of a cloud server should be included in
the TCB. Normally, third party customers (at guest VM privilege)
has no capability to subvert the security functions provided by
these two modules (at the hypervisor privilege). To defeat attacks
(e.g., privilege escalation) caused by the vulnerabilities of the origi-
nal system, secure enclaves can be used to protect the execution
environment of the Monitor Module and Trust Module, leveraging
mechanisms provided by Bastion [7].

5 VERIFICATION EVALUATION
In addition to the protocols presented in this paper, we have also
verify five more for HyperWall and two more for CloudMonatt. For
HyperWall, we use CMurphi 5.4.4 and the models were run with
options -tv -ndl -m1000. The -tv writes a violating trace (if an
invariant fails), and the -ndl disables the checking for deadlock
states. For CloudMonatt we use ProVerif 1.88 with default options.

The collected results for HyperWall in Table 1 and for Cloud-
Monatt in Table 2. The verification process is iterative, where the
ProVerif or Murphi files may be updated many times, thus com-
ments are crucial to understand the development of the verification
strategy. We can also observe that the verification runtime is also
very small: due to the breakdown of internal and external verifica-
tion, we can verify complex architectures within a very short time.
The most effort-consuming step is the design and writing of the
verification models, but the actual verification is quick.

HASP ’21, October 18, 2021, Virtual, CT, USA Tianwei Zhang, Jakub Szefer and Ruby B. Lee

Model Int. or Ext. Lines of Code Runtime (s)
External Ext. 262 0.2s

Evidence Collection Int. 123 0.1s
Property Interpretation Int. 205 0.2s

Health Checking Int. 187 0.1s
Table 2: CloudMonatt verification evaluation results.

6 RELATEDWORK
Secure application verification. Past work, e.g., [26, 29], has
focused on verifying software with respect to an ISA. In contrast,
we are going one layer below, focusing on the state machines and
protocols of the hardware.
Secure architecture verification. Of the different secure archi-
tectures, XOM [20] and SecVisor [25] have received the benefit of
security verification using model-checking. In industry, e.g., the
IBM 4758 cryptographic co-processor’s design included security
verification [27]. These works, however, have not focused on exter-
nal and internal protocols and interactions as we do.
Security verification tools. A number of speciality tools exist for
security verification and verification of security protocols. These
tools include HERMES [6], Casrul [9], AVISPA [3], Scyther [11],
ProVerif [4], etc. Various model checkers have also been used in
security verification. Typical model checkers include Maude [15],
Alloy [16], Murphi [14], CSP [22], FDR [23], etc. Our work does
not invent a new tool, rather it shows how architects can leverage
existing tools. We show that both the protocol verification tools
(ProVerif) and model checkers (Murphi) can be used by our frame-
work to implement the security verification task. We enhanced
Murphi with automatic checking for integrity and confidentiality,
but did not need to make any changes to Proverif.
Security verification methodologies. As an alternative to mod-
elling, projects such as Caisson [18] or SecVerilog [35] work directly
with the hardware source code, and leverage information flow track-
ing to analyze potential information leaks in an architecture. Our
work does not require hardware source code, and can be compli-
mentary to the approaches that work with HDL code.

7 CONCLUSION
We present a security verification methodology, which is applicable
to different security architectures and systems. We break the veri-
fication task into external verification and internal verification to
achieve scalability of verification. For each type of verification, we
propose the methodology for modeling the system and the attack-
ers, deriving security invariants, and creating the implementation.
We use two case studies to evaluate our methodology: security
verification of a standalone processor architecture, HyperWall, and
verification of a distributed cloud system, CloudMonatt. Our case
studies show that we can verify the design of complex secure archi-
tectures efficiently, discover and fix bugs, and enhance the security
of the design. We hope that our methodology can be easily adopted
by computer architects to verify the security of their designs, and
to do more research in the important area of security verification
methodologies.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable comments.
This work was supported in part by NTU Startup Grant, and NSF
grants 1813797 and 1651945.

REFERENCES
[1] [n.d.]. Event-B and the Rodin Platform. http://www.event-b.org/.
[2] AMD. [n.d.]. AMD Memory Encryption. http://amd-dev.wpengine.netdna-cdn.

com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-
Public.pdf, accessed May 2016.

[3] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes
Drielsma, P. C. Heám, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron.
2005. The AVISPA tool for the automated validation of internet security protocols
and applications. In Proceedings of the 17th International Conference on Computer
Aided Verification (CAV’05). 281–285.

[4] Bruno Blanchet. 2005. ProVerif automatic cryptographic protocol verifier user
manual. CNRS, Departement dInformatique, Ecole Normale Superieure, Paris (2005).

[5] Bruno Blanchet. 2012. Security Protocol Verification: Symbolic and Computa-
tional Models. In International Conference on Principles of Security and Trust.

[6] Liana Bozga, Yassine Lakhnech, and Michaël Périn. 2003. HERMES: An Au-
tomatic Tool for Verification of Secrecy in Security Protocols. In Computer
Aided Verification, Warren A. Hunt Jr. and Fabio Somenzi (Eds.). Lecture Notes
in Computer Science, Vol. 2725. Springer Berlin Heidelberg, 219–222. https:
//doi.org/10.1007/978-3-540-45069-6_23

[7] David Champagne and Ruby B. Lee. 2010. Scalable architectural support for
trusted software. In Proceedings of the 16th International Symposium on High
Performance Computer Architecture (HPCA). 1–12. https://doi.org/10.1109/HPCA.
2010.5416657

[8] Yu-Yuan Chen, Pramod A Jamkhedkar, and Ruby B Lee. 2012. A software-
hardware architecture for self-protecting data. In Proceedings of the 2012 ACM
conference on Computer and communications security. 14–27.

[9] Véronique Cortier and Bogdan Warinschi. 2005. Computationally Sound, Auto-
mated Proofs for Security Protocols. In Programming Languages and Systems,
Mooly Sagiv (Ed.). Lecture Notes in Computer Science, Vol. 3444. Springer Berlin
Heidelberg, 157–171. https://doi.org/10.1007/978-3-540-31987-0_12

[10] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th {USENIX} Security
Symposium ({USENIX} Security 16). 857–874.

[11] Cas J.F. Cremers. 2008. The Scyther Tool: Verification, Falsification, and Analysis
of Security Protocols. In Computer Aided Verification, Aarti Gupta and Sharad
Malik (Eds.). Lecture Notes in Computer Science, Vol. 5123. Springer Berlin
Heidelberg, 414–418. https://doi.org/10.1007/978-3-540-70545-1_38

[12] Cas J.F. Cremers. 2008. Unbounded verification, falsification, and characterization
of security protocols by pattern refinement. In CCS ’08: Proceedings of the 15th
ACM conference on Computer and communications security (Alexandria, Virginia,
USA). ACM, New York, NY, USA, 119–128. https://doi.org/10.1145/1455770.
1455787

[13] Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. 2007. Protocol
Composition Logic (PCL). Electronic Notes in Theoretical Computer Science 172, 0
(2007), 311–358. https://doi.org/10.1016/j.entcs.2007.02.012

[14] David L. Dill. 1996. The Murphi Verification System. In Proceedings of the 8th
International Conference on Computer Aided Verification (CAV). 390–393.

[15] Steven Eker, JosŽ Meseguer, and Ambarish Sridharanarayanan. 2004. The Maude
LTL Model Checker. Electronic Notes in Theoretical Computer Science 71, 0 (2004),
162–187. https://doi.org/10.1016/S1571-0661(05)82534-4

[16] Daniel Jackson. 2006. Software Abstractions: Logic, Language, and Analysis. The
MIT Press.

[17] Ruby B. Lee, Peter Kwan, John Patrick McGregor, Jeffrey Dwoskin, and
Zhenghong Wang. 2005. Architecture for Protecting Critical Secrets in Micropro-
cessors. In Proceedings of the International Symposium on Computer Architecture
(ISCA). 2–13.

[18] Xun Li, Mohit Tiwari, Jason K Oberg, Vineeth Kashyap, Frederic T Chong, Tim-
othy Sherwood, and Ben Hardekopf. 2011. Caisson: a hardware description
language for secure information flow. ACM Sigplan Notices 46, 6 (2011), 109–120.

[19] David Lie, John C. Mitchell, Chandramohan A. Thekkath, and Mark Horowitz.
2003. Specifying and verifying hardware for tamper-resistant software. In Pro-
ceedings of Symposium on Security and Privacy (S&P). 166 – 177.

[20] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. 2000. Architectural support for copy and
tamper resistant software. SIGPLAN Not. 35 (November 2000), 168–177. Issue 11.
https://doi.org/10.1145/356989.357005

[21] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday Savagaonkar. 2013. Innovative Instructions and
Software Model for Isolated Execution. In ACM Intl. Workshop on Hardware and

http://www.event-b.org/
http://amd-dev.wpengine.netdna-cdn. com/wordpress/media/2013/12/AMD_Memory_ Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn. com/wordpress/media/2013/12/AMD_Memory_ Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn. com/wordpress/media/2013/12/AMD_Memory_ Encryption_Whitepaper_v7-Public.pdf
https://doi.org/10.1007/978-3-540-45069-6_23
https://doi.org/10.1007/978-3-540-45069-6_23
https://doi.org/10.1109/HPCA.2010.5416657
https://doi.org/10.1109/HPCA.2010.5416657
https://doi.org/10.1007/978-3-540-31987-0_12
https://doi.org/10.1007/978-3-540-70545-1_38
https://doi.org/10.1145/1455770.1455787
https://doi.org/10.1145/1455770.1455787
https://doi.org/10.1016/j.entcs.2007.02.012
https://doi.org/10.1016/S1571-0661(05)82534-4
https://doi.org/10.1145/356989.357005

Practical and Scalable Security Verification of Secure Architectures HASP ’21, October 18, 2021, Virtual, CT, USA

Architectural Support for Security and Privacy.
[22] Andrew W. Roscoe, C. A. R. Hoare, and Richard Bird. 1997. The Theory and

Practice of Concurrency. Prentice Hall.
[23] Andrew W. Roscoe and Zhenzhong Wu. 2006. Verifying Statemate Statecharts

Using CSP and FDR. In Formal Methods and Software Engineering, Zhiming Liu
and Jifeng He (Eds.). Lecture Notes in Computer Science, Vol. 4260. Springer
Berlin Heidelberg, 324–341. https://doi.org/10.1007/11901433_18

[24] Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. 2012. Automated
analysis of Diffie-Hellman protocols and advanced security properties. In 2012
IEEE 25th Computer Security Foundations Symposium. IEEE, 78–94.

[25] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. 2007. SecVisor: A tiny
hypervisor to provide lifetime kernel code integrity for commodity OSes. SIGOPS
Oper. Syst. Rev. 41, 6 (2007), 335–350. https://doi.org/10.1145/1323293.1294294

[26] Rohit Sinha, Sriram Rajamani, Sanjit Seshia, and Kapil Vaswani. 2015. Moat:
Verifying confidentiality of enclave programs. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. 1169–1184.

[27] Sean Smith, Ron Perez, Steve Weingart, and Vernon Austel. 1999. Validating a
High-Performance, Programmable Secure Coprocessor. In Proceedings of the 22nd
National Information Systems Security Conference (NISSC).

[28] Chengyu Song, Hyungon Moon, Monjur Alam, Insu Yun, Byoungyoung Lee,
Taesoo Kim, Wenke Lee, and Yunheung Paek. 2016. HDFI: Hardware-assisted
data-flow isolation. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
1–17.

[29] Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas, and Sanjit A
Seshia. 2017. A formal foundation for secure remote execution of enclaves. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2435–2450.

[30] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas
Devadas. 2003. AEGIS: Architecture for tamper-evident and tamper-resistant

processing. In Proceedings of the 17th annual International Conference on Super-
computing (San Francisco, CA, USA) (ICS ’03). 160–171. https://doi.org/10.1145/
782814.782838

[31] Jun Sun, Yang Liu, and JinSong Dong. 2021. PAT: Process Analysis Toolkit.
https://pat.comp.nus.edu.sg/.

[32] Jakub Szefer. 2013. Architectures for Secure Cloud Computing Servers. Ph.D.
Dissertation. Princeton University.

[33] Jakub Szefer and Ruby B. Lee. 2012. Architectural Support for Hypervisor-Secure
Virtualization. In Proceedings of International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 437–450.

[34] Johannes Winter. 2008. Trusted computing building blocks for embedded linux-
based ARM trustzone platforms. In Proceedings of the 3rd ACM workshop on
Scalable trusted computing. 21–30.

[35] Danfeng Zhang, Yao Wang, G Edward Suh, and Andrew C Myers. 2015. A
hardware design language for timing-sensitive information-flow security. Acm
Sigplan Notices 50, 4 (2015), 503–516.

[36] Tianwei Zhang and Ruby B. Lee. 2015. CloudMonatt: An Architecture for Security
Health Monitoring and Attestation of Virtual Machines in Cloud Computing. In
ACM International Symposium on Computer Architecture.

[37] Tianwei Zhang and Ruby B. Lee. 2016. Monitoring and Attestation of Virtual
Machine Security Health in Cloud Computing. IEEE Micro 36, 5 (2016).

[38] Tianwei Zhang and Ruby B Lee. 2017. Design, implementation and verification
of cloud architecture for monitoring a virtual machine’s security health. IEEE
Trans. Comput. 67, 6 (2017), 799–815.

[39] Tianwei Zhang, Jakub Szefer, and Ruby B. Lee. 2012. Security Verification of
Hardware-enabled Attestation Protocols. In Proceedings of the Workshop on Hard-
ware and Architectural Support for Security and Privacy (HASP).

https://doi.org/10.1007/11901433_18
https://doi.org/10.1145/1323293.1294294
https://doi.org/10.1145/782814.782838
https://doi.org/10.1145/782814.782838
https://pat.comp.nus.edu.sg/

	Abstract
	1 Introduction
	2 Verification Approach
	2.1 External and Internal Verification
	2.2 Security Verification Framework

	3 Verifying a Standalone Server
	3.1 External Protocol: VM Startup Validation
	3.2 Internal Interaction: VM Launch
	3.3 Security Discussion

	4 Verifying A Distributed System
	4.1 External Protocol: Cloud Attestation
	4.2 Internal Interaction: Evidence Collection
	4.3 Security Discussion

	5 Verification Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

