
Efficient, Private and Robust Federated Learning
Meng Hao

University of Electronic Science and
Technology of China

menghao@std.uestc.edu.cn

Hongwei Li∗
University of Electronic Science and

Technology of China
hongweili@uestc.edu.cn

Guowen Xu
Nanyang Technological University

guowen.xu@ntu.edu.sg

Hanxiao Chen
University of Electronic Science and

Technology of China
hanxiaochen@std.uestc.edu.cn

Tianwei Zhang
Nanyang Technological University

tianwei.zhang@ntu.edu.sg

ABSTRACT
Federated learning (FL) has demonstrated tremendous success in
variousmission-critical large-scale scenarios. However, such promis-
ing distributed learning paradigm is still vulnerable to privacy in-
ference and byzantine attacks. The former aims to infer the privacy
of target participants involved in training, while the latter focuses
on destroying the integrity of the constructed model. To mitigate
the above two issues, a few works recently explored unified so-
lutions by utilizing generic secure computation techniques and
common byzantine-robust aggregation rules, but there are two ma-
jor limitations: 1) they suffer from impracticality due to efficiency
bottlenecks, and 2) they are still vulnerable to various types of
attacks because of model incomprehensiveness.

To approach the above problems, in this paper, we present Se-
cureFL, an efficient, private and byzantine-robust FL framework.
SecureFL follows the state-of-the-art byzantine-robust FL method
(FLTrust NDSS’21), which performs comprehensive byzantine de-
fense by normalizing the updates’ magnitude and measuring di-
rectional similarity, adapting it to the privacy-preserving context.
More importantly, we carefully customize a series of cryptographic
components. First, we design a crypto-friendly validity checking
protocol that functionally replaces the normalization operation in
FLTrust, and further devise tailored cryptographic protocols on top
of it. Benefiting from the above optimizations, the communication
and computation costs are reduced by half without sacrificing the
robustness and privacy protection. Second, we develop a novel
preprocessing technique for costly matrix multiplication. With this
technique, the directional similarity measurement can be evaluated
securely with negligible computation overhead and zero communi-
cation cost. Extensive evaluations conducted on three real-world
datasets and various neural network architectures demonstrate that
SecureFL outperforms prior art up to two orders of magnitude in
efficiency with state-of-the-art byzantine robustness.

∗corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00
https://doi.org/10.1145/3485832.3488014

KEYWORDS
Federated learning, Privacy protection, Byzantine robustness.
ACM Reference Format:
Meng Hao, Hongwei Li, Guowen Xu, Hanxiao Chen, and Tianwei Zhang.
2021. Efficient, Private and Robust Federated Learning. In Annual Computer
Security Applications Conference (ACSAC ’21), December 6–10, 2021, Virtual
Event, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3485832.3488014

1 INTRODUCTION
Federated learning (FL) [33], as a promising distributed learning par-
adigm, has shown its potential to facilitate real-world applications
like Gboard mobile keyboard [39] [47], electronic health records
mining [19] [31] and credit risk prediction [28]. Roughly speak-
ing, in FL multiple participants (e.g. mobile devices) collaboratively
train a global model via exchanging local updates (i.e., gradients)
under the orchestration of a service provider, while keeping the
training data decentralized. Despite such advantages, existing FL
approaches still suffer from privacy inference [52] [21] [20] and
byzantine attacks [4] [8] [5]. In the former, adversaries can infer
private information (e.g., sensitive training data) of target parties
from the local updates. Particularly in medical diagnosis applica-
tions, patients’ private information such as medical conditions may
be leaked from an unprotected FL system [37]. It fundamentally
violates current strict regulations, such as General Data Protection
Regulation (GDPR). The latter focuses on corrupting the global
model’s accuracy and convergence by submitting elaborate poison-
ing updates, which will cause serious security threats. For instance,
once the underlying FL models of autonomous driving suffer such
attacks, it will cause misclassification and hence severe traffic acci-
dents [4].

To mitigate the information leakage issue, a variety of secure
aggregation schemes based on cryptographic protocols [2] [50]
[7] [10] have been proposed and employed in improving the orig-
inal FL systems. For example, several works use homomorphic
encryption (HE) [2] [50] to encrypt the parties’ gradients. After
that, the service provider can aggregate such encrypted gradients
without decryption due to the homomorphic nature of HE. Besides,
secure multi-party computation (MPC) enables parties to jointly
perform arbitrary function evaluations over their inputs while keep-
ing those inputs private, which is also used in secure aggregation
in FL systems [7] [10] [46]. Consequently, the local gradients of
parties are obfuscated and only the aggregated update is revealed.
On the other hand, many works have made rapid strides towards

45

https://doi.org/10.1145/3485832.3488014
https://doi.org/10.1145/3485832.3488014
https://doi.org/10.1145/3485832.3488014

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Meng Hao, et al.

Table 1: Comparison with prior works on properties necessary for federated learning

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Meng Hao, et al.

Table 1: Comparison with prior works on properties necessary for federated learning

Proposed Works Approach Privacy Robustness Scalability User Efficiency
[10] MPC+FedAvg
[7] MPC+FedAvg
[2] HE+FedAvg
[22] HE+FedAvg
[25] MPC+Krum
[44] MPC+Krum
[30] MPC+Cosine Similarity

Our SecureFL Crypto-friendly FLTrust
with customized MPC&HE

On the other hand, many works have made rapid strides towards
realizing byzantine robustness in FL via developing statistically ro-
bust aggregation rules, such as Krum [9], Median [50], and Bulyan
[16]. The main idea is that the service provider removes suspicious
outliers by performing statistical analysis among parties’ local gra-
dients, before updating the global model with them (see Section 2
for more details). Notably, Cao et al. recently proposed the state-of-
the-art byzantine robust FL method, FLTrust [11], which performs
effective and comprehensive byzantine detection by introducing a
novel server update as the baseline and analyzing both the direction
and magnitude of local gradients. Specifically, they first designed
a normalization protocol to prevent the malicious parties’ manip-
ulation on magnitude, and then performed directional similarity
measurement to eliminate the effect of local gradients that are in
the opposite direction from the server update.

Although many works have been proposed to alleviate the prob-
lems of privacy leakage and byzantine attacks, most of them uni-
laterally separate the above two concerns and underestimate their
internal connections. Essentially, privacy violation and byzantine
attacks are intricately intertwined. Attackers may carefully exploit
byzantine vulnerabilities to infer other parties’ training datasets
and hence destroy even privacy-protected FL systems [26], while
privacy leakage provides adversaries with more favorable prior
knowledge to launch omniscient and adaptive byzantine attacks
[18] [8]. Therefore, it is necessary to design a FL system realizing
privacy protection and byzantine robustness simultaneously. To
this end, a natural approach is to integrate generic cryptographic
techniques such as MPC and HE [14] [17] with existing byzantine-
robust FL protocols [9] [11]. However, it adds a large overhead due
to the evaluation of heavy cryptographic operations, e.g. large-scale
matrix multiplication in the measurement of the parties’ gradient
quality, and complex non-linear function used to privately exclude
outlier gradients. Consequently, the challenging problem is how to
design customized cryptographic protocols for private FL systems
that can efficiently implement byzantine defense at the same time.
A few works [44] [25] [30] explored to develop unified solutions
(see Section 2 for more details), however, to "purely" facilitate the
design of efficient cryptographic protocols, they made inappro-
priate trade-offs, such as revealing intermediate values (e.g., the
quality of the parties’ updates) or exploiting simple but vulnerable
aggregation rules [9].

In this paper, we introduce SecureFL, an efficient, private and
byzantine-robust FL framework that approaches the above prob-
lems, as illustrated in Table 1. Our SecureFL follows the state-of-
the-art byzantine robust method, FLTrust [11], and adapts it to the
privacy-preserving context to achieve full privacy protection. We
mainly focus on reducing the overhead of evaluating byzantine
detection under ciphertext. Specifically, inspired by the respective
advantages of HE and MPC, we devise customized cryptographic
protocols for the two key steps of FLTrust. (1) For the magnitude
normalization, the key idea is to design a crypto-friendly
alternative that functionally replaces the costly normaliza-
tion operation. Specifically, we observe that this step involving 𝑑
(i.e., the size of the gradient) reciprocal square root and one high-
dimensional inner product is computationally expensive in secure
computation. To reduce this overhead, we leave the implementa-
tion of normalization to the party side in plaintext, and design a
crypto-friendly validity checking protocol for the service provider to
inspect whether parties deviate from the specification and explicitly
exclude updates with wrong form. Along with our customized MPC
protocols, our solution reduces the communication and computa-
tion costs roughly by half, without any privacy leakage and robust-
ness loss. (2) For the directional similarity measurement, our
main insight is that the service provider can pre-compute
some cryptographic protocols before the parties’ local gra-
dients are available. Specifically, we identify and repurpose an
important but under-utilized phase, called preamble phase, where
in prior works the service provider only stays idle and waits for
the parties to upload their local gradients. In our SecureFL, utiliz-
ing advanced HE techniques that perform well in linear function
evaluations, we develop a novel preprocessing protocol for matrix
multiplication operations (i.e., the center building block of this
step), which is evaluated in the preamble phase to accelerate the
privately robust aggregation procedure. Beneficially, once the par-
ties’ local gradients are available, the secure directional similarity
measurement can be implemented non-interactively with negligible
computation overhead. Notably, our cryptographic recipes may be
of independent interests, and can be used in other byzantine-robust
FL schemes [9] [16] and even a wider range of scenarios such as
scientific computing [13]. Besides, to demonstrate the efficiency
and robustness of SecureFL, we conduct extensive experiments on
three real-world datasets with various neural network architectures
against the latest two types of byzantine attacks.

realizing byzantine robustness in FL via developing statistically ro-
bust aggregation rules, such as Krum [9], Median [49], and Bulyan
[16]. The main idea is that the service provider removes suspicious
outliers by performing statistical analysis among parties’ local gra-
dients, before updating the global model with them (see Section 2
for more details). Notably, Cao et al. recently proposed the state-of-
the-art byzantine robust FL method, FLTrust [11], which performs
effective and comprehensive byzantine detection by introducing a
novel server update as the baseline and analyzing both the direction
and magnitude of local gradients. Specifically, they first designed
a normalization protocol to prevent the malicious parties’ manip-
ulation on magnitude, and then performed directional similarity
measurement to eliminate the effect of local gradients that are in
the opposite direction from the server update.

Although many works have been proposed to alleviate the prob-
lems of privacy leakage and byzantine attacks, most of them uni-
laterally separate the above two concerns and underestimate their
internal connections. Essentially, privacy violation and byzantine
attacks are intricately intertwined. Attackers may carefully exploit
byzantine vulnerabilities to infer other parties’ training datasets
and hence destroy even privacy-protected FL systems [25], while
privacy leakage provides adversaries with more favorable prior
knowledge to launch omniscient and adaptive byzantine attacks
[18] [8]. Therefore, it is necessary to design a FL system realizing
privacy protection and byzantine robustness simultaneously. To
this end, a natural approach is to integrate generic cryptographic
techniques such as MPC and HE [14] [17] with existing byzantine-
robust FL protocols [9] [11]. However, it adds a large overhead due
to the evaluation of heavy cryptographic operations, e.g. large-scale
matrix multiplication in the measurement of the parties’ gradient
quality, and complex non-linear function used to privately exclude
outlier gradients. Consequently, the challenging problem is how to
design customized cryptographic protocols for private FL systems
that can efficiently implement byzantine defense at the same time.
A few works [43] [24] [29] explored to develop unified solutions
(see Section 2 for more details), however, to "purely" facilitate the
design of efficient cryptographic protocols, they made inappro-
priate trade-offs, such as revealing intermediate values (e.g., the
quality of the parties’ updates) or exploiting simple but vulnerable
aggregation rules [9].

In this paper, we introduce SecureFL, an efficient, private and
byzantine-robust FL framework that approaches the above prob-
lems, as illustrated in Table 1. Our SecureFL follows the state-of-
the-art byzantine robust method, FLTrust [11], and adapts it to the
privacy-preserving context to achieve full privacy protection. We
mainly focus on reducing the overhead of evaluating byzantine
detection under ciphertext. Specifically, inspired by the respective
advantages of HE and MPC, we devise customized cryptographic
protocols for the two key steps of FLTrust. (1) For the magnitude
normalization, the key idea is to design a crypto-friendly
alternative that functionally replaces the costly normaliza-
tion operation. Specifically, we observe that this step involving d
(i.e., the size of the gradient) reciprocal square root and one high-
dimensional inner product is computationally expensive in secure
computation. To reduce this overhead, we leave the implementa-
tion of normalization to the party side in plaintext, and design a
crypto-friendly validity checking protocol for the service provider to
inspect whether parties deviate from the specification and explicitly
exclude updates with wrong form. Along with our customized MPC
protocols, our solution reduces the communication and computa-
tion costs roughly by half, without any privacy leakage and robust-
ness loss. (2) For the directional similarity measurement, our
main insight is that the service provider can pre-compute
some cryptographic protocols before the parties’ local gra-
dients are available. Specifically, we identify and repurpose an
important but under-utilized phase, called preamble phase, where
in prior works the service provider only stays idle and waits for
the parties to upload their local gradients. In our SecureFL, utiliz-
ing advanced HE techniques that perform well in linear function
evaluations, we develop a novel preprocessing protocol for matrix
multiplication operations (i.e., the center building block of this
step), which is evaluated in the preamble phase to accelerate the
privately robust aggregation procedure. Beneficially, once the par-
ties’ local gradients are available, the secure directional similarity
measurement can be implemented non-interactively with negligible
computation overhead. Notably, our cryptographic recipes may be
of independent interests, and can be used in other byzantine-robust
FL schemes [9] [16] and even a wider range of scenarios such as
scientific computing [13]. Besides, to demonstrate the efficiency
and robustness of SecureFL, we conduct extensive experiments on
three real-world datasets with various neural network architectures
against the latest two types of byzantine attacks.

46

Efficient, Private and Robust Federated Learning ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Our key contributions can be summarized as follows:

• We propose a new federated learning framework, SecureFL,
which achieves state-of-the-art robustness, full privacy pro-
tection and efficiency at the same time.
• We carefully customize a series of cryptographic compo-
nents for enjoying efficiently mathematical operations in the
evaluation of privately robust aggregation.
• Extensive experiments illustrate that SecureFL outperforms
prior art up to two orders of magnitude in efficiency with
state-of-the-art robustness.

The remainder of this paper is organized as follows. In Section
2, we overview the latest related works. In Section 3, we introduce
the system model and the threat model followed by describing the
design goals and cryptographic primitives. Then, we present our
cypto-friendly FL variant in Section 4 and carry out our SecureFL
framework in detail in Section 5. Finally, the performance evaluation
is discussed in Section 6 and we conclude our work in Section 7.

2 RELATEDWORKS
In this section, we overview the latest related works about privacy-
preserving and byzantine-robust FL.

McMahan et al. [33] developed the pioneering FL method in non-
adversarial settings, FedAvg, which computes the average of the
local model updates, but a risk (i.e., the correctness of the learned
model) emerges upon facing even a single byzantine party [9]. To
mitigate such problem, Blanchard et al. proposed Krum [9], which
selects as the global update one of the n local gradients that is
similar to other parties’ gradients based on the Euclidean distance.
After that, Bulyan [16] was designed via combining Krum and the
idea of median to further improve the byzantine robustness. Besides,
Yin et al. [49] proposed coordinate-wise aggregation rules, such
as trimmed mean and median based rules. Specifically, for each
i-th coordinate of the gradient vector, the service provider first
sorts the n local gradients and then takes their median (or trimmed
mean) as the i-th parameter of the global update. While the above
methods were claimed to be robust against byzantine failures at
the time, the latest works [18] [5] [45] [41] found that they are
still vulnerable to sophisticated byzantine attacks. Consequently,
Cao et al. proposed FLTrust, the state-of-the-art byzantine-robust
method that achieves robustness against even strong and adaptive
attacks [18]. Nevertheless, privacy issues remain unresolved in the
aforementioned byzantine-robust works.

Recently, several works [24] [43] [22] [29] [38] began to explore
unified solutions to privacy leakage and byzantine attacks. For ex-
ample, He et al. [24] combined additive secret sharing based secure
computation and a variant of the Krum aggregation protocol [9],
to mitigate the above problems. Concurrently, So et al. [43] also
devised a similar scheme based on the Krum aggregation rule, but
relied on different cryptographic techniques including verifiable
Shamir’s secret sharing and Reed-Solomon code. To further im-
prove byzantine robustness, [29] proposed a new defense by using
cosine similarity and generic secure multi-party computation tools.
Different from the Krum-based works [24] [43] that utilize the
Euclidean distance, the cosine similarity measurement addition-
ally takes into account the direction of parties’ updates. However,

unlike SecureFL, the above approaches incur a significant commu-
nication and computation cost that grows quadratically with the
number of parties. The main reason is that they perform pair-wise
byzantine statistical analysis between parties’ gradients, such that
each gradient is required to be compared with all other gradients.
Another disadvantage is that they leak intermediate information
such as confidence information that is used to measure the quality
of parties’ gradients. Such seemingly inconspicuous contents may
reveal the parties’ identity or data quality, thereby undermining
fairness. Besides, Nguyen et al. [38] proposed FLGuard to realize
full privacy protection but focused on mitigating backdoor attacks
[4]. To this end, they design a clustering-based cosine similarity
measurement and combine existing secure computation techniques.
However, its reliance on clustering computations and heavy cryp-
tographic operations results in a protocol that is more expensive
than SecureFL’s protocol with respect to both computation and
communication. Another recent work [22] for private byzantine-
robust FL was designed using Trusted Execution Environments
(TEEs). In their solution, the service provider is equipped with a
TEE, in which the robustness aggregation procedure is performed
using their customized methods without compromising the par-
ties’ privacy. However, the latest research [44] shows that TEEs
are still vulnerable to hardware-based side-channel attacks, and
hence their work may suffer potential security risks. Different from
TEE-based solutions, our SecureFL provides formal security proof
and robustness analysis theoretically (refer to Appendix B). More
importantly, all of the above schemes are still vulnerable to strong
byzantine attacks [18] [5], since they make an inappropriate trade-
off between the cryptographic performance and robustness, namely
that they use simple but vulnerable aggregation rules, such as Krum
[9]. In contrast, our SecureFL follows the state-of-the-art byzantine-
robust FLTrust [11], and does not sacrifice inference accuracy and
robustness even in designing crypto-friendly FL alternatives and
customized cryptographic protocols.

3 PRELIMINARIES
In this section, we first introduce the system model and the threat
model following the prior works [43] [24], and then describe the
design goals and the cryptographic primitives.

3.1 System Model
In our SecureFL, there are a set of parties P1, P2, ..., Pn and two
servers (i.e., the FL service provider SP and the computing server
CS). SP coordinates the whole training process and CS assists SP
in performing secure two-party computation (2PC). Assume each
party Pi holds a local dataset Di , i ∈ [n] and SP holds a small but
clean seed dataset Ds for byzantine detection (see more details in
Section 4).We denote the overall training dataset asD = ⋃

i ∈[n]Di .
The goal of n parties is to collaboratively train a global model by
solving the following optimization problem: minω ED [L(D,ω)],
whereω is the weight of the global model andL is the loss function,
e.g., the cross-entropy loss function. In practice, stochastic gradient
descent (SGD) is widely used to minimize the aforementioned loss
in FL. Figure 1 shows the system model of our SecureFL, and we
can observe it consists of three steps in each iteration. Specifically,
at step I, SP broadcasts the latest global model to parties that are

47

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Meng Hao, et al.

Local Model

Local Dataset

Malicious

Parties

Train local models and

send encrypted local

Filter out poisoned updates

in cipher text and update

Honest Parties

Global Model

Local Model

Local Dataset

Local Model

Local Dataset

Local Model

Local Dataset

Computing Server Service Providermputing S

Figure 1: System Model

selected in this iteration. Then at step II, each party pi locally
trains the global model received, computes its local gradient дi =
SGD(Di ,b,ω)where b is the batch size, and secretly sharesдi with
the two servers. Finally at step III, SP and CS privately aggregate
the received local gradients by exploiting the robust aggregation
scheme, and update the global model.

3.2 Threat Model
In our SecureFL, there are two types of adversaries: malicious par-
ties that aim to actively corrupt the global model by sending poi-
soning gradients, and honest-but-curious servers (i.e., SP and CS)
that follow the privately robust aggregation protocol but try to
passively infer information about target party’s training data Di .
Typically, malicious parties have the following knowledge: the local
training data and local gradients of the corrupted parties, the train-
ing algorithm, the loss function, and the local learning rate. The
latter honest-but-curious servers have access to all parties’ local
gradients, the aggregation algorithm and the seed dataset Ds . This
setting is reasonable and also consistent with real-world FL systems
[38]. Namely, for maintaining a good reputation to provide more
FL services, the servers (e.g., Google and Amazon) are unwilling
to be caught acting maliciously, but parties may have various bad
motives such as for competitive purposes to maliciously corrupt
the ongoing FL systems.

Remark 1. We consider two non-colluding servers. This set-
ting is actually weaker than the single-server setting, but has been
widely formalized and instantiated in previous works, especially in
the machine learning field such as Prio (USENIX NSDI’17) [13], Se-
cureML (IEEE S&P’17) [36] and Quotient (ACM CCS’19) [1]. There
are two key advantages in this setting: 1) Parties can significantly
reduce local overheads by outsourcing the privately robust aggre-
gation procedure to the two servers. This is in line with the design
goal of SecureFL, which is not to incur extra computation and com-
munication costs for parties. 2) We can benefit from a combination
of efficient secure 2PC techniques [14] for boolean circuits such
as the evaluation of compare [40] and arithmetic circuits such as
multiplication procedures [6]. As shown in subsequent sections,
our privately robust aggregation protocol, involving matrix multi-
plication and complex non-linear function, is efficiently evaluated
using the customized secure 2PC protocols we designed. Moreover,

several studies have been applied to practical scenarios; e.g., Prio
[13], a system for the privacy-preserving collection of aggregate
statistics, has been adopted by Mozilla’s Firefox browser1 and used
in iOS and Android2 to measure the effectiveness of their Exposure
Notification systems. In summary, the setting of two non-colluding
servers not only facilitates the design of efficient cryptographic
protocols, but also demonstrates potential commercial applications.

3.3 Design Goals
SecureFL aims to empower a FL framework that achieves byzantine
robustness against malicious parties, scalability and privacy pro-
tection at the same time without sacrificing the inference accuracy
and efficiency at the party side. More specifically, we aim to achieve
the following goals:

• Robustness against malicious parties: Considering real-
world business competition, malicious parties may launch
byzantine attacks to deliberately destroy the competitor’s FL
system. Our goal is to preserve the accuracy and robustness
of the trained model against such malicious parties.
• Privacy protection: In the training process, parties will
submit to the service provider their local updates that contain
the private information of their training dataset. Therefore,
the privacy of parties should be protected from being leaked.
• Scalability: The privately robust aggregation protocol should
be implemented efficiently, and hence applied to large-scale
FL systems that involve hundreds of parties and advanced
neural network architectures.
• Efficient protocols for parties: FL is particularly used in
the setting of resource-constrained mobile devices, in which
communication is extremely expensive. Therefore, compared
with vanilla FL [33], the proposed scheme should not incur
extra computation and communication costs for parties.

3.4 Cryptographic Primitives
In this section, we provide a description of the cryptographic build-
ing blocks used in SecureFL.

3.4.1 Packed Linearly Homomorphic Encryption. A packed linearly
homomorphic encryption (PLHE) scheme [27] [51] is an encryption
scheme, which additionally enables packing multiple messages into
a single ciphertext and hence supports SIMD (single instructionmul-
tiple data) [42] linearly homomorphic operations. In details, a PLHE
scheme is a tuple of algorithms PLHE = (KeyGen; Enc;Dec; Eval)
with the following syntax: 1) KeyGen(1k) → (pk, sk): on input
a security parameter k , KeyGen is a randomized algorithm that
outputs a public key pk and a secret key sk . 2) Enc(pk,m) → c:
the encryption algorithm Enc takes a packed plaintext message m
and encrypts it using pk into a ciphertext c. 3) Dec(sk, c) → m: on
input sk and a ciphertext c, the (deterministic) decryption algorithm
Dec recovers the plaintext messagem. 4) Eval(pk, c1, c2, func) → c:
on input pk , two (or more) ciphertexts c1, c2 containing m1,m2,

1https://blog.mozilla.org/security/
2https://github.com/google/exposure-notifications-android

48

Efficient, Private and Robust Federated Learning ACSAC ’21, December 6–10, 2021, Virtual Event, USA

and a linear function func, Eval outputs a new ciphertext c en-
crypting func(m1,m2). Our SecureFL builds on the Brakerski-Fan-
Vercauteren (BFV) scheme [17], which is one of the state-of-the-art
PLHE solutions.

3.4.2 Secret Sharing. There are two common secret sharing schemes:
additive secret sharing and boolean secret sharing. To additively share
x in a ring Zp , the first party samples r ∈ Zp uniformly at random,
and sends x−r ∈ Zp to the second party. In this paper, we denote an
additive secret sharing of x as a pair of (⟨x⟩0, ⟨x⟩1) = (r ,x −r) ∈ Z2p .
In boolean sharing, we denote the boolean-share of x ∈ Z2 as ⟨x⟩B0
and ⟨x⟩B1 , and the shares satisfy x = ⟨x⟩B0 ⊕ ⟨x⟩B1 . Arithmetic oper-
ations can still be executed in the form of sharing using Beaver’s
multiplicative triples (show details in Appendix C).

3.4.3 Oblivious Transfer. In the 1-out-of-2 oblivious transfer (OT)
protocol, one party called sender holds two messages x0,x1, and
the other party called receiver has a choice bit b. After the OT
protocol, the receiver learns xb without obtaining anything about
x1−b , while the sender learns nothing about b. Moreover, a widely
used technique is OT extension [26], which implements a large
number of OTs using only symmetric cryptographic primitives via
a few base OTs. Besides, on top of the OT extension, one important
variant is correlated OT (COT) [3]. Particularly, the sender inputs a
correlation function f (), and obtains a x0 randomly chosen by the
protocol itself and a correlated x1 = f (x0). By doing so, the com-
munication bandwidth from the sender to the receiver is reduced
by half.

3.4.4 Pseudorandom Generator. A Pseudorandom Generator (PRG)
[48] takes as input a uniformly random seed and generates a long
pseudorandom string. The security of PRG ensures that the output
of the generator is indistinguishable from the uniform distribu-
tion in polynomial-time, as long as the seed is hidden from the
distinguisher. PRG is instantiated in our SecureFL to cut the com-
munication to half between each party and the servers.

4 CRYPTO-FRIENDLY BYZANTINE-ROBUST
FL PROTOCOL

In this section, we first revise the state-of-the-art byzantine-robust
FL framework, FLTrust [11], and then we propose an improved
crypto-friendly variant.

4.1 Revising FLTrust
The main idea of FLTrust [11] is that SP collects a small but clean
seed dataset, and computes a server update дs on it as the base-
line to detect and exclude byzantine parties. Specifically, they first
normalizes each local gradient by scaling it to have the same mag-
nitude. Then, SP assigns a trust score to each local gradient, where
the trust score is larger if the direction of the local model update
is more similar to that of the server update. Formally, it is realized
through cosine similarity measurement along with ReLU-based
clipping. The training process of FLTrust is consistent with most FL
protocols except for the robust aggregation procedure, consisting
of the following steps:

• Normalizing gradients’ magnitude. FLTrust first normal-
izes each local gradient as follows:

д̃i =
дiдi (1)

where ∥·∥ denotes the ℓ2 norm. The role of normalization is
to alleviate such manipulation that attackers may scale the
magnitude of local gradients by a large factor.
• Measuring gradients’ direction similarity. FLTrust then
assigns a trust score TSi to each local gradient дi , by com-
puting its consine similarity cosi with the server gradient дs
and clipping the consine similarity via ReLU3. Formally, the
trust score is defined as follows:

TSi = ReLU(cosi) = ReLU(⟨д̃i , д̃s ⟩) (2)

where д̃i and д̃s are the normalized local and server gradi-
ents, respectively. The role of the ReLU function is to exclude
the local gradient that have a negative impact (i.e., negative
cosine similarity) on the global model update.
• Aggregating weighted gradients. FLTrust finally aggre-
gates the normalized local gradients weighted by their trust
scores, and scales the aggregation result as follows:

ддlobal =

дs
TS

n∑
i=1

TSi · д̃i , (3)

whereTS =
∑n
i=1TSi , and the magnitude of the aggregation

result is same as дs .
On the basis of FLTrust, it is trivial to design a privacy-preserving

protocol by utilizing state-of-the-art mixed-protocol 2PC frame-
works such as ABY[14]. Specifically, linear operations (such as
matrix multiplication) are computed in the additive sharing, while
the computation of reciprocal square root and ReLU can be realized
in the boolean sharing. Despite having realized a privately robust
aggregation protocol, it still suffers from two key efficiency issues:
1) As described in previous works [35] [40], the normalization in
FLTrust is a costly operation in 2PC, since the involved reciprocal
square root operations are computationally expensive. 2) The direc-
tional similarity measurement for all parties can be formalized as a
matrix-vector multiplication, which is time-consuming due to the
high dimension of model gradients and the large number of parties.
In Section 6, we compare against such baseline scheme.

4.2 Crypto-friendly byzantine-robust FL
protocol

In the following, we first design a crypto-friendly alternative pro-
tocol called validity checking that functionally replaces the normal-
ization of FLTrust. Then, we propose a new two-phase computing
paradigm, which effectively tackles the efficiency issue of the di-
rectional similarity measurement.

Crypto-friendly protocol for normalization. Intuitively, we
can leave the implementation of normalization on the party side in
plaintext, since such processing of each local gradient is indepen-
dent of other gradients. However, under our adversary setting, a
key challenge is malicious parties may deviate from the protocol
by providing local gradients in the wrong form. Thus, we further
3ReLU(x) is defined as x if x ≥ 0 and 0 otherwise.

49

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Meng Hao, et al.

design an efficient validity checking protocol to catch malicious par-
ties who deviate from the specification. The main idea is to check
whether the squared ℓ2 norm of each local gradient lies within a
certain interval, as follows:

f laдi = 1{|⟨дi ,дi ⟩ − 1| < ϵ}, (4)

where ϵ is a predefined constant threshold. Currently, we set it
empirically based on the gradients obtained before. Moreover, the
upper bound of the threshold can be formally analyzed according
to mathematical analysis and the Fixed-Point Arithmetic represen-
tation. We leave it in the feature work. In particular, f laдi equals
1, if the party correctly normalizes the local gradients; it equals 0,
otherwise. Note that we use interval check instead of equality test,
since in privacy-preserving FL framework fixed-point encodings
are used to represent floating-point gradients at the cost of a small
precision loss [36] [34].

Newcomputing paradigm for similaritymeasurement.We
observe that in real-world scenarios most parties (e.g., mobile de-
vices) may only have few computing resources and limited commu-
nication bandwidth. However, as a public cloud service provider,
SP has advanced computing equipment and extremely high band-
width. Our key insight inspired by the above resource asymmetry is
that SP can pre-process the heavy cryptographic operations before
the parties’ local gradients are available, instead of staying idle and
waiting for parties to submit local gradients. To this end, we propose
a new computing paradigm for directional similarity measurement,
involving two phases, i.e., the preamble phase and the online phase,
which are distinguished according to whether local gradients are
available. During the preamble phase, SP performs matrix multi-
plication preprocessing using the server gradient дs . A detailed
procedure is proposed in Section 5. Benefiting from such technique,
during the online phase, the cosine similarity measurement can
be evaluated securely with negligible computation overhead and
zero communication cost. Combining the above improvements, our
crypto-friendly FL protocol is shown in Algorithm 1, and it serves
as the underlying algorithm for our SecureFL.

5 THE SECUREFL FRAMEWORK
In this section, we show the SecureFL framework that adapts the
proposed crypto-friendly FL protocol in Algorithm 1 to the privacy-
preserving context. At a high level, each party locally trains the
local model and normalizes its gradient before sending it to SP. At
the same time, SP trains the current global model on the seed dataset
to obtain the server gradient, and pre-processes the heavy matrix
multiplication. After receiving local gradients from all selected
parties, SP and CS engage in 2PC to securely evaluate the robust
aggregation protocol utilizing several customized cryptographic
protocols. Our complete SecureFL protocol is shown in Table 2.

5.1 The Detailed SecureFL Framework
Before formally demonstrating our framework, we introduce some
notations. We denote SP’s and CS’s shares of the normalized local
gradient as ⟨дi ⟩0 and ⟨дi ⟩1, respectively. The servers’ rearranged
share matrices are denoted as ⟨R⟩0 = (⟨д1⟩0, ⟨д2⟩0, · · · , ⟨дn⟩0)T
and ⟨R⟩1 = (⟨д1⟩1, ⟨д2⟩1, · · · , ⟨дn⟩1)T , respectively. Note that R =
(д1,д2, · · · ,дn)T . Then, we mainly focus on the robust aggregation

Algorithm 1 Crypto-friendly byzantine-robust FL protocol
Input: Each party Pi , i ∈ [n], with a local dataset Di ; SP with a

seed dataset Ds ; learning rate η; batch size b; and the number
of training iterations Iter .

Output: Global model weightω.
1: ω ← random initialization.
2: for iter ∈ [Iter] do
3: // Training at the party side in parallel
4: for i ∈ [n] do
5: дi = SGD(ω,Di ,b). // Pi computes local gradient.
6: Submit дi ←

дi
∥дi ∥ to SP. // Local normalization.

7: end for
8: // Training at the server side
9: дs = SGD(ω,Ds). // SP computes server gradient.
10: дs ←

дs
∥дs ∥ . // Normalization.

11: // Robust aggregation
12: for i ∈ [n] do
13: f laдi = 1{|⟨дi ,дi ⟩ − 1| < ϵ}. // Validity checking.
14: cosi = ⟨дi ,дs ⟩. // Similarity measure with preprocessing.
15: TSi = f laдi · ReLU(cosi) // Trust score computation.
16: end for
17: TS =

∑n
i=1TSi

18: д =
∥дs ∥
TS

∑n
i=1TSi · дi . //Weighted aggregation.

19: // Update global model
20: Computeω ← ω − ηд and broadcast it to all parties.
21: end for

process. As illustrated in Section 4.2 we divide the implementation
of the protocol into the preamble phase and the online phase. In ad-
dition, we add an initialization phase to initialize the cryptographic
protocols used.
Phase 1: The Initialization Phase

This phase is called once for the entire protocol, where Beaver’s
multiplication triples and the keypair of PLHE will be generated.
• SP runs PLHE.KeyGen(1k) to obtain a public-secret key pair
(pk, sk) and sends the public key pk to CS.
• The Beaver’s triples generation procedure is called to gener-
ate a large number of Beaver’s multiplication triples.

Phase 2: The Preamble Phase
This phase can be performed independent of the local gradients,

in which the matrix multiplication is pre-processed to facilitate the
efficiency of the online phase.

Matrix multiplication preprocessing: As illustrated in Algo-
rithm 1, the center building block of directional similarity mea-
surement is the matrix multiplication between the server gradient
vector дs and the local gradients matrix R. While the Beaver’s
multiplication procedure can be called to realize such evaluation,
the computation and communication overhead is undesirable es-
pecially for large-scale inputs. The key idea to tackle this problem
is to preprocess costly cryptographic protocols and to speed up
robust aggregation operations during the online phase. Specifically,
Rдs = ⟨R⟩0дs + ⟨R⟩1дs , and ⟨R⟩0дs in the online phase can be com-
puted by SP locally, when ⟨R⟩0 is available. We observe that ⟨R⟩1дs
can be computed in the preamble phase, since ⟨R⟩1 can be generated

50

Efficient, Private and Robust Federated Learning ACSAC ’21, December 6–10, 2021, Virtual Event, USA

SP CS

[]

Sample randomly

[]

E()

E([])

Preamble

phase

Online

phase

[]
[]

[] + []

[]

SP CS

Figure 2: Matrix Multiplication Preprocessing

in advance by CS using PRGs (more details will be given in the
online phase) andдs is known by SP after training the global model.
Therefore, similar to [34] [32], we devise a matrix multiplication
preprocessing FmatMulPre by utilizing PLHE, and the protocol is
described in Figure 2.

Formally, we have the followings:
• SP sends PLHE.Enc(pk,дs) to CS. On the input the share
matrix ⟨R⟩1, the ciphertext of дs and a random vector δ , CS
computes PLHE.Enc(pk, ⟨R⟩1дs − δ) using the PLHE.Eval
procedure. After that, CS sends this ciphertext to SP.
• SP decrypts the above ciphertexts, to obtain ⟨R⟩1дs − δ . CS
holds δ and thus CS and SP hold an additive secret sharing
of ⟨R⟩1дs . Later, when ⟨R⟩0 becomes available in the online
phase, SP computes ⟨R⟩0дs + ⟨R⟩1дs − δ , hence completing
the computation of ⟨Rдs ⟩.

To enable an efficient implementation of the PLHE.Eval procedure,
we take advantage of the matrix-vector multiplication in [27] [34],
which effectively employs packed encoding, and SIMD addition and
scalar multiplication operations. Note that different from Delphi
[34] that operates on a shared vector and a plaintext matrix, our
SecureFL executes the operation of multiplying a shared matrix
with a plaintext vector, and hence a new protocol is deployed as
shown in Figure 2. The security of matrix multiplication prepro-
cessing satisfies the following theorem, and the proof is discussed
in Appendix B:

Theorem 1. The protocol in Figure 2 securely implements matrix
multiplication procedure in the semi-honest setting, if packed linearly
homomorphic encryption is semantically secure.
Phase 3: The Online Phase

This phase runs when the parties’ local gradients are available.
Assuming parties have completed local training and obtained nor-
malized local gradients, the protocol for evaluating the robust ag-
gregation consists of the following steps:

Gradients secret sharing. Each party Pi sends the share of the
local gradient ⟨дi ⟩0 = дi −r i to SP, while non-interactively sharing
⟨дi ⟩1 = r i with CS by using PRGs, to improve communication

efficiency. Specifically, Pi establishes a private seed key kseedi with
CS via the Diffie-Hellman key agreement protocol [15]. After that,
CS and Pi jointly sample a same random vector by using PRGs on
kseedi , and hence CS’s share of the local gradient ⟨дi ⟩1 = r i is gen-
erated. Compared with traditional methods in which parties send
the shares to both CS and SP, we reduce the bandwidth requirement
by half.

[+]

[+]

[+]

[+]

SP

[]

+

SP

[] , []

+

CS

[]

CS

+

[]

[< , >]

+

[< , >]

[]

Triplet ([] , [] , []) Triplet ([] , [] , [])

Triplet ([] , [] , [])

[] , []

Triplet ([] , [] , [])

Figure 3: Specialized Beaver Multiplication. The upper part
shows the evaluation of the squared ℓ2 norm in validity

check, and the lower part shows the weighted aggregation.

Validity checking. Upon receiving shares of parties’ gradients,
SP and CS need to check if each party-submitted vector (e.g., size
and range) is well formed. As illustrated in Algorithm 1, our devised
validity checking mechanism only involves 1 squared ℓ2 norm, 1
absolute value and 1 compare operations, while the corresponding
normalization operation in FLTrust requires 1 squared ℓ2 norm
and d reciprocal square root operations. Note that when being
evaluated in existing 2PC libraries [14] [40], the costs of reciprocal
square root is much higher than the cost of absolute value and
compare. Specifically, we leverage the state-of-the-art algorithm
for Millionaires [40] as the building block to construct our compare
(DReLU) protocol, as shown in Algorithm 2. Formally, this step is
evaluated as follows:
• As shown in the upper part of Figure 3, SP and CS run the
Beaver’s multiplication procedure4 to evaluate the squared
ℓ2 norm ofдi . At the end of the procedure, SP holds ⟨∥дi ∥2⟩0
and CS holds ⟨∥дi ∥2⟩1. We further observe that the gradient
дi will also be used in weighted aggregation, and hence it
suffices to mask it by the same random multiplication triplet
(more details will be given later on).

4Note that the matrix multiplication preprocessing we designed does not work in such
evaluation, since дi is in the shared form.

51

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Meng Hao, et al.

• SP and CS run the DReLU procedure in Algorithm 2 to eval-
uate f laдi = 1{|⟨дi ,дi ⟩ − 1| < ϵ}. After that, SP holds
⟨f laдi ⟩B0 and CS holds ⟨f laдi ⟩B1 .

Algorithm 2 The protocol of DReLU
Input: SP and CS hold ⟨x⟩0 and ⟨x⟩1, respectively. FMill and FAND

are adopted from [40] (more details in Appendix C).
Output: SP and CS get ⟨DReLU (x)⟩0 and ⟨DReLU (x)⟩1
1: SP and CS invoke an instance of FMill, in which SP’s input is
(p − 1− ⟨x⟩0) and CS’s input is ⟨x⟩1. After that SP and CS learn
wrap0 and wrap1, respectively.

2: SP and CS invoke an instance of FMill, in which SP’s input is
(p − 1 − ⟨x⟩0) and CS’s input is (p − 1)/2 + ⟨x⟩1. After that SP
and CS learn lwrap0 and lwrap1, respectively.

3: SP and CS invoke an instance of FMill, in which SP’s input is
(p + (p − 1)/2 − ⟨x⟩0) and CS’s input is ⟨x⟩1. After that SP and
CS learn ⟨rwrap⟩0 and ⟨rwrap⟩1, respectively.

4: SP and CS invoke an instance of FAND, in which the inputs of
CS and SP are ⟨wrap⟩ and ⟨lwrap⟩, and learn ⟨zl⟩.

5: SP and CS invoke an instance of FAND, in which the inputs of
CS and SP are ⟨wrap⟩ and ⟨rwrap⟩, and learn ⟨zr ⟩.

6: SP and CS output 1⊕⟨zl⟩0⊕⟨zr ⟩0 and ⟨zl⟩1⊕⟨zr ⟩1, respectively.

Similar to our validity checking setting, Gibbs et al. presented a
zero knowledge based input validation protocol (SNIP) [13], where
each party needs to generate a SNIP proof which will be used by
servers to validate the input. However, the SNIP does not work
in our SecureFL, since the proof generation on parties is time-
consuming especially with the large dimension of submission,
which runs counter to our goal of efficient protocols for parties.
Moreover, the result of validation is leaked in their protocol, but
rather our SecureFL provides full privacy protection including the
result of validity checking.

Cosine similarity computation. Benefiting from the matrix
multiplication shares generated in the preamble phase in Figure 2,
cosine similarity computations can be non-interactively performed
over secret-shared data without invoking heavy cryptographic
protocols like OT and PLHE.
• At the beginning of this step, CS holds δ generated in the
preamble phase, and we set ⟨cosi ⟩1 = δ[i], ∀i ∈ [n]. Then,
SP computes temp = ⟨R⟩0дs + ⟨R⟩1дs −δ , and sets ⟨cosi ⟩0 =
temp[i], ∀i ∈ [n]. As such, the cosine similarity ⟨cosi ⟩ be-
tween the local gradient дi and the server gradient дs is
computed, since cosi = Rдs [i] = дTi дs .

Note that an alternative to evaluate this step is to use the Beaver’s
multiplication technique. However, compared to our preprocessing-
based evaluation, for each cosine similarity computation it con-
sumes (|дi | + |дs |)-bits communication and about 6× more compu-
tation overhead during the online phase.

Trust score computation. In this step, the ReLU operation
and the boolean-integer multiplication are performed. Specifically,
we leverage the DReLU protocol in Algorithm 2 as the building
block to construct our ReLU protocol, as shown in Algorithm 3.
Besides, we develop an efficient boolean-integer product protocol
in Algorithm 4 based on COT techniques, which effectively reduces
the communication cost by half.

Algorithm 3 The protocol of ReLU
Input: SP and CS hold ⟨x⟩0 and ⟨x⟩1, respectively.
Output: SP and CS get ⟨ReLU (x)⟩0 and ⟨ReLU (x)⟩1
1: SP and CS invoke FDReLU with input ⟨x⟩ to learn output ⟨y⟩B .
2: SP and CS invoke FBmulA in Algorithm 4 with input ⟨x⟩ and
⟨y⟩B to learn output ⟨z⟩, and sets ⟨ReLU (x)⟩ = ⟨z⟩.

• SP and CS run the ReLU procedure for each i ∈ n, where
the inputs are ⟨cosi ⟩0 and ⟨cosi ⟩1, respectively. After that,
SP and CS learn ⟨ReLU (cosi)⟩0 and ⟨ReLU (cosi)⟩1.
• SP and CS run the boolean-integer multiplication procedure
to evaluate ⟨TSi ⟩ = ⟨f laдi ⟩B · ⟨ReLU (cosi)⟩. At the end of
the procedure, SP holds ⟨TSi ⟩0 and CS holds ⟨TSi ⟩1.

Algorithm 4 Secure Boolean-Integer Multiplication
Input: Additive shares of a ∈ Zp and boolean shares of b ∈ Z2
Output: Additive shares of c = ab ∈ Zp
1: SP and CS construct correlation functions f 0cor (x) = x −
⟨b⟩B0 ⟨a⟩0 + (1 − ⟨b⟩B0)⟨a⟩0 and f 1cor (x) = x − ⟨b⟩B1 ⟨a⟩1 + (1 −
⟨b⟩B1)⟨a⟩1, respectively.

2: The parties run COT(f 0cor , ⟨b⟩B1) with SP acting as the sender,
and SP obtains x while CS obtains y.

3: The parties run COT(f 1cor , ⟨b⟩B0) with CS acting as the sender,
and CS obtains x ′ while SP obtains y′.

4: SP sets ⟨c⟩0 = ⟨c⟩B0 ⟨a⟩0 − x + y′.
5: CS sets ⟨c⟩1 = ⟨c⟩B1 ⟨a⟩1 − x ′ + y.

Weighted aggregation. At the core of this step is a 2PC sub-
protocol for computing the weighted aggregation of the normalized
local gradients, i.e., evaluating scalar-vector product TSi · дi . The
challenge here is that previous methods evaluating TSi · дi require
2ld + 2l sent bits, where d is the dimension of each gradient and l is
the bit length of each component. To solve such challenge, as shown
in Figure 3, we develop a specialized scalar-vector product protocol,
inspired by Beaver’s triples in the matrix form [36]. The key idea
is that the same ai masking the local gradient дi in the validity
checking can be reused to hide the same дi in the scalar-vector
product evaluation. Its security is guaranteed by the security of the
multiplication triples in the matrix form [36]. For completeness,
we give a sketch of the security proof in Appendix B. Note that
Beaver’s triples cannot be used to mask дi ’s in different iterations
for security. As a result, the bandwidth requirement of our solution
is 2l , an 2ld+2l

2l = d + 1 improvement. This reduction is nontrivial
especially for state-of-the-art neural networks such as ResNets [23],
where d is in the order of millions.
• SP and CS run the Beaver’s multiplication procedure to eval-
uate ⟨TSiдi ⟩. At the end of the procedure, SP holds ⟨TSiдi ⟩0
and CS holds ⟨TSiдi ⟩1.
• SP and CS compute ⟨∑i ∈[n]TSiдi ⟩0 and ⟨

∑
i ∈[n]TSiдi ⟩1, re-

spectively. After that, CS sends ⟨∑i ∈[n]TSiдi ⟩1 to SP, which
reconstructs

∑
i ∈[n]TSiдi .

Remark 2.
(1) Our SecureFL is robust to parties dropping out. In many FL

systems, participants are mainly composed of resource-constrained

52

Efficient, Private and Robust Federated Learning ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Table 2: The SecureFL Framework

Efficient, Private and Robust Federated Learning ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Table 2: The SecureFL Framework

PARAMETERS:
• Number of parties 𝑛, dimension of each gradient 𝑑 . Ideal primitives FMult, FBeaver, FDReLU, FReLU, FAND and FBmulA.

INPUT:
• Each party 𝑃𝑖 with local datasets D𝑖 , 𝑖 ∈ [𝑛], SP with seed dataset D𝑠 .

PROTOCOL:
I. Initialization:
// Parties side.
a. All parties initialize the architecture 𝐹 and weights 𝝎 of the global model.
b. Each party generates a private seed key 𝑘𝑠𝑒𝑒𝑑

𝑖
with CS via exchanging Diffie-Hellman public keys and engaging in a key agreement.

// Servers side.
a. SP runs PLHE.KeyGen(1𝑘) → (𝑝𝑘, 𝑠𝑘) and sends the public key 𝑝𝑘 to CS.
b. SP and CS run the Beaver’s triples generation protocol FBeaver to generate Beaver’s multiplication triples.

II. Training: Repeat the steps II-IV until the stopping criterion.
// Parties side.
a. Each party 𝑃𝑖 runs 𝑆𝐺𝐷 (𝝎,D𝑖 , 𝑏) → 𝒈𝑖 , and computes the normalized local gradient 𝒈𝑖 ←

𝒈𝑖

∥𝒈𝑖 ∥ .
b. Each party 𝑃𝑖 generates 𝒓𝑖 = PRG(𝑘𝑠𝑒𝑒𝑑

𝑖
), sets ⟨𝒈𝑖 ⟩1 = 𝒓𝑖 and computes ⟨𝒈𝑖 ⟩0 = 𝒈𝑖 − 𝒓𝑖 .

// Servers side.
a. SP runs 𝑆𝐺𝐷 (𝝎,D𝑠) → 𝒈𝑠 , and computes the normalized server gradient 𝒈𝑠 ←

𝒈𝑠
∥𝒈𝑠 ∥ .

b. SP computes 𝐸 (𝒈𝑠) = PLHE.Enc(𝑝𝑘,𝒈𝑠) and sends it to CS.
c. CS generates ⟨𝒈𝑖 ⟩1 = PRG(𝑘𝑠𝑒𝑒𝑑

𝑖
), ∀𝑖 ∈ [𝑛], and sets ⟨𝑅⟩1 = (⟨𝒈1⟩1, ⟨𝒈2⟩1, · · · , ⟨𝒈𝑛⟩1)𝑇 .

d. CS samples a random vector 𝜹 , performs PLHE.Eval(𝑝𝑘, 𝐸 (𝒈𝑠), ⟨𝑅⟩1) → 𝐸 (𝑝𝑘, ⟨𝑅⟩1𝒈𝑠 −𝜹) using the devised matrix multiplication
procedure, and sends 𝐸 (𝑝𝑘, ⟨𝑅⟩1𝒈𝑠 − 𝜹) to SP. Besides, CS sets ⟨𝑐𝑜𝑠𝑖 ⟩1 = 𝜹 [𝑖], ∀𝑖 ∈ [𝑛].

e. SP decrypts the above ciphertexts to obtain ⟨𝑅⟩1𝒈𝑠 − 𝜹 .
III. Aggregation:

// Parties side.
a. Each party 𝑃𝑖 shares ⟨𝒈𝑖 ⟩0 = 𝒈𝑖 − 𝒓𝑖 to SP.
// Servers side.
a. SP and CS invoke an instance of FMult for each 𝑖 ∈ [𝑛], where SP’s input is ⟨𝒈𝑖 ⟩0 and CS’s input is ⟨𝒈𝑖 ⟩1. SP and CS learn ⟨∥𝒈𝑖 ∥2⟩0

and ⟨∥𝒈𝑖 ∥2⟩1, respectively.
b. SP and CS invoke two instances of FDReLU for each 𝑖 ∈ [𝑛], where the inputs are ⟨∥𝒈𝑖 ∥2 + 𝜖 − 1⟩ and ⟨𝜖 + 1− ∥𝒈𝑖 ∥2⟩, respectively.

SP and CS learn ⟨𝑓 𝑙𝑎𝑔𝑖,0⟩𝐵 and ⟨𝑓 𝑙𝑎𝑔𝑖,1⟩𝐵 , respectively.
c. SP and CS invoke an instance of FAND for each 𝑖 ∈ [𝑛], where the inputs are ⟨𝑓 𝑙𝑎𝑔𝑖,0⟩𝐵 and ⟨𝑓 𝑙𝑎𝑔𝑖,1⟩𝐵 , respectively. SP and CS

learn ⟨𝑓 𝑙𝑎𝑔𝑖 ⟩𝐵0 and ⟨𝑓 𝑙𝑎𝑔𝑖 ⟩𝐵1 , respectively.
d. SP sets ⟨𝑅⟩0 = (⟨𝒈1⟩0, ⟨𝒈2⟩0, · · · , ⟨𝒈𝑛⟩0)𝑇 , computes 𝑡𝑒𝑚𝑝 = ⟨𝑅⟩0𝒈 + ⟨𝑅⟩1𝒈 − 𝜹 , and sets ⟨𝑐𝑜𝑠𝑖 ⟩0 = 𝑡𝑒𝑚𝑝 [𝑖], ∀𝑖 ∈ [𝑛].
e. SP and CS invoke an instance of FReLU for each 𝑖 ∈ [𝑛], where the inputs are ⟨𝑐𝑜𝑠𝑖 ⟩0 and ⟨𝑐𝑜𝑠𝑖 ⟩1, respectively. SP and CS learn
⟨𝑅𝑒𝐿𝑈 (𝑐𝑜𝑠𝑖)⟩0 and ⟨𝑅𝑒𝐿𝑈 (𝑐𝑜𝑠𝑖)⟩1.

f. SP and CS invoke an instance of FBmulA for each 𝑖 ∈ [𝑛], where the inputs are ⟨𝑅𝑒𝐿𝑈 (𝑐𝑜𝑠𝑖)⟩ and ⟨𝑓 𝑙𝑎𝑔𝑖 ⟩𝐵 , respectively. SP and
CS learn ⟨𝑇𝑆𝑖 ⟩0 and ⟨𝑇𝑆𝑖 ⟩1.

g. SP and CS compute ⟨𝑇𝑆⟩ = ∑𝑛
𝑖=1⟨𝑇𝑆𝑖 ⟩, locally.

h. SP and CS invoke an instance of FMult for each 𝑖 ∈ [𝑛], where the inputs are ⟨𝒈𝑖 ⟩ and ⟨𝑇𝑆𝑖 ⟩, respectively. SP and CS learn
⟨𝑇𝑆𝑖𝒈𝑖 ⟩0 and ⟨𝑇𝑆𝑖𝒈𝑖 ⟩1.

i. SP and CS compute ⟨𝒈⟩ = ∑𝑛
𝑖=1⟨𝑇𝑆𝑖𝒈𝑖 ⟩ locally.

j. CS sends ⟨𝑇𝑆⟩1 and ⟨𝒈⟩1 to SP. After that, SP reconstructs 𝑇𝑆 and 𝒈, and computes 𝒈𝑔𝑙𝑜𝑏𝑎𝑙 = ∥𝒈𝑠 ∥
𝑇𝑆

𝒈.
IV. Broadcast:

// Servers side.
a. SP updates the global weight 𝝎 ← 𝝎 − [𝒈𝑔𝑙𝑜𝑏𝑎𝑙 , and broadcasts it to all parties.
// Parties side.
a. Each party 𝑃𝑖 updates its local model by utilizing the global weight 𝝎 received.

53

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Meng Hao, et al.

mobile devices, so they are likely to drop in each round of aggrega-
tion. However, CS non-interactively generates the sharing ⟨R⟩1 of
the local gradient matrix by using PRGs, assuming that all parties
are online. We resolve this problem by using a simple method, i.e.,
letting CS remove the corresponding rows in ⟨R⟩1 that are gener-
ated for dropped parties, to align with ⟨R⟩0. Note that as the number
of dropped parties increases, existing methods such as [10] cause a
quadratic communication overhead, but our approach to handling
dropped-out parties can actually reduce the overhead of CS and SP
(see our experimental results in Tables 4 and 5).

(2) SecureFL performs fixed-point arithmetic in finite fields. The
implementation of the FL gradient aggregation performs arithmetic
operations on floating-point numbers. We work around this by
using fixed-point representations of floating-point numbers and
embedding them in our finite fields, consistent with existing meth-
ods [29] [34]. Furthermore, to prevent values from overflowing due
to arithmetic operations, we use the truncation technique from [36].
This method simply truncates the extra LSBs of fixed-point values
even when the value is secretly shared, albeit at the cost of a 1-bit
error.

(3) SecureFL can be flexibly extended to support layer-wise robust
aggregation. The discussion so far assumes that the robust aggrega-
tion is performed over the entire gradient of each party. However,
for modern large-scale neural networks that even contain thou-
sands of layers, we may need to perform the robust aggregation
layer-wisely. Concretely, to compute the trust score of each party,
we can adaptively assign a weight to each layer (or a combina-
tion of several layers). After that, SecureFL is called iteratively for
each layer, and the overall trust score is calculated by performing
a weighted aggregation of each layer’s trust score. This has two
advantages: 1) mainly focusing on the more important layers for
large-scale models, and 2) preventing overflow when performing
the cosine similarity and the squared ℓ2 norm evaluations.

(4) The cryptographic recipes of SecureFL may be of general inter-
ests. Given that several recent byzantine-robust FL schemes [9] [16]
extensively utilize similarity measurements, our matrix multiplica-
tion pre-processing and ReLU-based comparison techniques can be
extended to empower the realization of privacy protection. More-
over, the use cases of the validity checking technique go beyond
byzantine-robust FL schemes, such as scientific computing [13] and
secure querying [12], where servers need to check whether values
uploaded by (malicious) users are well-formed in the ciphertext.

5.2 Security analysis
Theorem 2. The protocol in Table 2 is a cryptographic FL protocol
in the honest-but-curious setting, given the ideal primitives of the
Beaver’s multiplication procedure, ReLU/DReLU and packed linearly
homomorphic encryption.

Proof. We provide a hybrid argument proof in Appendix B that
relies on the simulators of the above ideal functionalities.

Theorem 3. Our SecureFL is byzantine-robust (i.e., can reject in-
correctly formatted and poisoned gradients), assuming the soundness
of the validity checking construction and the robustness property of
our crypto-friendly FL method (directly derived from FLTrust [11]).

Proof. We provide a brief sketch of the byzantine robustness
argument in Appendix B.

6 EVALUATION
We employ two distinct code bases for the implementation of Se-
cureFL. Cryptographic protocols are implemented in C++, relying
on the SEAL homomorphic encryption library5 for PLHE andCrypT-
Flow library6 for 2PC protocols. On the other hand, FL experiments
are developed in Python and experimental settings mainly follow
the previous work [11].

6.1 Experimental Setup
We describe the detailed experimental setup in this section.

Cryptographic setting: To purely measure our SecureFL’s
performance, we conduct simulations on a Linux machine with an
Intel Xeon(R) CPU E5-2620 v4 (2.10 GHz), 16 GB of RAM. Moreover,
we compare prior works with our SecureFL in a simulated LAN
network.

Datasets and model architectures: Our experiments rely on
the HAR, MNIST and CIFAR-10 datasets. A multinomial Logistic
Regression (LR) classifier [11] and a shallow convolutional neural
network LeNet [30], and a widely used residual neural network
ResNet20 [23] are employed as the global model respectively. By
default, we set the parties’ dataset independent and identically dis-
tributed (IID). We also simulate Non-IID dataset using the method
of [18] [11]. Details refer to Appendix A.

Evaluated byzantine attacks:We conduct experiments against
both data poisoning attacks and local model poisoning attacks. In
the former case, we utilize the popular label flipping attack [11],
where malicious parties change each sample’s label to an arbitrar-
ily wrong label. In the latter case, we use the same attack setting
as [18], which is the state-of-the-art local model poisoning attack
specific for the Krum aggregation rule.

6.2 SecureFL’s Cryptographic Protocols
In our evaluations, we omit the cost of the base OTs, and generating
the Beaver’s multiplicative triples and the keypair of PLHE, as they
are a one-time expense during the whole protocol execution.

The performance of SecureFL. Figure 4 reports the execution
time and communication cost of SecureFL. From Figures 4(a) and
4(c), we can observe that the execution time of both SP and CS
increases linearly with both the number of parties and the number
of data entries. The difference between CS and SP is small, which
is also reflected in the communication overhead in Figures 4(b)
and 4(d). The main reason is that the protocol of our SecureFL is
executed between CS and SP and realizes O(dn) overhead, where
d denotes the size of gradient and n is the number of parties. This
shows SecureFL has excellent scalability despite a large number of
parties and data entries involved. Note that we omit communication
cost plots for the parties, as they are essentially identical to those
for the vanilla FL setting. This is because parties only communicate
with SP, and additionally utilize PRGs to non-interactively share
secrets (i.e., the sharing of local gradients) with CS. We also re-
port the detailed communication and computational overheads of
SecureFL’s building blocks in Table 4 and Table 5 of Appendix A.

Comparison with prior works. To demonstrate the effective-
ness of SecureFL, we implement state-of-the-art private and robust
5https://github.com/Microsoft/SEAL
6https://github.com/mpc-msri/EzPC/tree/master/SCI

54

Efficient, Private and Robust Federated Learning ACSAC ’21, December 6–10, 2021, Virtual Event, USA

(a) Execution time of CS and SP, as the num-
ber of parties increases.

(b) Communicaiton cost of CS and SP, as
the number of parties increases.

(c) Execution time of CS and SP, as the size
of the data increases.

(d) Communicaiton cost CS and SP, as the
size of the data increases.

Figure 4: Execution Time and Communication Cost of SecureFL. In (a)(b), different lines show different data sizes, and in
(c)(d), different lines show different numbers of parties. Each point in the figures is the average value over 10 runs.

(a) Execution time over the different model
architectures.

(b) Communicaiton cost over the different
model architectures.

(c) Execution time over the different num-
bers of parties.

(d) Communicaiton cost over the different
numbers of parties.

Figure 5: Execution Time and Communication Cost of SecureFL and Prior Works. In (a)(b), the number of parties is fixed as
100. In (c)(d), LR is used to evaluate. Each point in the figures is the average value over 10 runs and the y-axis is in loд scale.

Table 3: The Test Error of Different FL Methods under Different Datasets and Various Attacks. The fraction of malicious
parties is fixed as 20% and the number of parties is fixed as 100.

No attack LabelFlip attack LocalModel attack
HAR MNIST CIFAR HAR MNIST CIFAR HAR MNIST CIFAR

FedAvg 0.03 0.04 0.16 0.17 0.06 0.21 0.03 0.10 0.24
Krum 0.12 0.10 0.54 0.10 0.10 0.56 0.22 0.90 0.90
FLTrust 0.04 0.04 0.18 0.04 0.04 0.18 0.04 0.04 0.18

Our SecureFL 0.03 0.04 0.19 0.03 0.04 0.19 0.04 0.04 0.19

(a) Test error under label flipping attack
with different numbers of parties.

(b) Test error under local model poisoning
attack with different numbers of parties.

(c) Test error under label flipping attack
with different fractions of malicious parties.

(d) Test error under local model poisoning
attack with different fractions of malicious
parties.

Figure 6: Impact of the Number of Parties and the Fraction of Malicious Parties on the Test Error. The MNIST dataset is used
to evaluate. In (a)(b), the fraction of malicious parties is fixed as 20% and in (c)(d), the number of parties is fixed as 100.

55

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Meng Hao, et al.

FL methods including privacy-preserving Krum [24] and FLTrust
[11] with generic MPC techniques, as well as secure Cosine dis-
tance based FL (called CosineFL) [29]. We compare them with our
SecureFL in terms of execution time and communication cost in Fig-
ure 5. Note that current implementations of the above FL variants
execute top-k7 under plaintext due to the efficiency issue, but there
are serious privacy risks as discussed in Section 2. For making a
fair comparison, we implement the top-k protocol (Algorithm 1 in
[12]), and utilize it to securely evaluate the above FL variants. In our
evaluation, k is fixed as 10%. In addition, we implement the recip-
rocal squared root protocol in FLTrust by utilizing the CrypTFlow
framework [40], which achieves state-of-the-art optimizations of
math operators.

Figures 5(a) and 5(b) compare the execution time and commu-
nication cost required to securely execute the robust aggregation
of prior works and our SecureFL over three datasets and various
model architectures. We observe that among the three model ar-
chitectures with different parameter scales, SecureFL requires 2-97
× less time to evaluate the privately robust aggregation protocol,
and 2.5-129 × less communication. This is because matrix multipli-
cation preprocessing and specialized validity checking techniques
achieve significant savings in computational overhead and com-
munication cost. Furthermore, Figures 5(c) and 5(d) compare the
execution time and communication cost of four FL methods with
different numbers of parties over the LR model architecture. In both
cases, we observe that as the number of parties increases, the gap
between SecureFL and prior methods grows larger. This is because
our SecureFL achievesO(dn) computation and communication com-
plexity, while prior works require O(dn2) complexity. Actually, the
privacy-preserving FLTrust also achieves O(dn) complexity, but
costly matrix multiplication and reciprocal square root operations
reduce its performance. Overall, among the different numbers of
parties, SecureFL requires 7-214 × less time to evaluate the privately
robust aggregation, and 3-327 × less communication.

6.3 SecureFL’s Byzantine-robust Aggregation
In this evaluation, we report the result of SecureFL’s robustness,
and compare it with existing byzantine-robust FL methods.

Comparison with existing byzantine-robust aggregations.
We compare our SecureFL with prior works, including FedAvg [33],
Krum [9] and FLTrust [11], which are popular aggregation rules in
(robust) FL frameworks. Table 3 shows the test errors of different FL
algorithms under three attack settings and three real-world datasets.
First, we can observe that SecureFL achieves comparable accuracy
to the traditional FedAvgmethod when there is no attack. Moreover,
SecureFL has test errors similar to the state-of-the-art FLTrust with
and without byzantine attacks, which indicates that our crypto-
friendly variant does not sacrifice robustness and inference accuracy.
Second, SecureFL is byzantine-robust against both the label flipping
attack and the local model poisoning attack. In contrast, existing
methods such as FedAvg and Krum are still vulnerable to advanced
byzantine attacks. This is because our SecureFL considers both the
magnitude and direction of the local gradients to resist existing
attacks.

7SP selects k local gradients that are more likely submitted by honest parties.

Impact of the number of parties. We report the test errors
under different numbers of parties in Figures 6(a) and 6(b). We can
observe that as the number of parties increases, SecureFL achieves
stable test errors under the label flipping and local model poisoning
attacks, which are similar to FedAvg without any attacks. Specifi-
cally, the test errors of SecureFL are close to 0.04 under the above
attacks. However, under different numbers of parties, the Krum
method cannot defend against the label flipping and the local model
attacks (giving about 0.1 and 0.9 test errors respectively). Hence,
compared with other methods, our SecureFL has excellent byzan-
tine robustness against various attacks.

Impact of the fraction of malicious parties. Figures 6(c) and
6(d) show the test errors of different proportions of malicious par-
ties under the label flipping and local model poisoning attacks. Our
SecureFL can tolerate up to 80% of byzantine parties, while realizing
the test errors comparable to FedAvg without any attacks. Specifi-
cally, when achieving test errors less than 0.1, SecureFL can resist
95% of malicious parties under the label flipping attack and 80%
of ones under the local model poisoning attack. However, existing
byzantine-robust FL frameworks such as Krum are still vulnerable
to attacks despite a small number of malicious parties. For example,
under the label flipping attack, the Krum method can only resist
40% of malicious parties, while sacrificing about 5% of test accuracy.
It is even worse under the local model poisoning attack, namely
that even 10% of malicious parties are still able to completely com-
promise the training process. Therefore, SecureFL is still byzantine
robust against a large number of malicious parties.

7 CONCLUSION
In this paper, we introduce SecureFL, a new federated learning
framework that achieves full privacy protection, high scalability
and robustness against strong byzantine attacks at the same time.
SecureFL employs crypto-friendly FL algorithms and customized
cryptographic protocols for enjoying efficiently mathematical op-
erations. Moreover, we evaluate our SecureFL on three real-world
datasets and various neural network architectures against two types
of latest byzantine attacks, to justify our claim.

Themain downside is that SecureFL adapts the scheme of FLTrust
to the privacy-preserving context and thus inherits some con-
straints of the scheme. In particular, it requires a clean seed dataset
collected by the service provider. An additional limitation is that
our techniques require two non-colluding servers and they do not
efficiently scale to the setting of single-server, tolerating malicious
clients. Overcoming this limitation would require constructing com-
pletely different secure multi-party computation protocols. We
leave the improvements for future works.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd Shagufta
Mehnaz for constructive comments. This work is supported by
the National Natural Science Foundation of China under Grants
62020106013, 61972454, 61802051, 61772121, and 61728102, Sichuan
Science and Technology Program under Grants 2020JDTD0007 and
2020YFG0298, the Fundamental Research Funds for Chinese Central
Universities under Grant ZYGX2020ZB027.

56

Efficient, Private and Robust Federated Learning ACSAC ’21, December 6–10, 2021, Virtual Event, USA

REFERENCES
[1] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J Kusner, and Adrià Gascón. 2019.

QUOTIENT: two-party secure neural network training and prediction. In Pro-
ceedings of ACM CCS. 1231–1247.

[2] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. 2017. Privacy-
preserving deep learning via additively homomorphic encryption. IEEE Transac-
tions on Information Forensics and Security 13, 5 (2017), 1333–1345.

[3] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.
More efficient oblivious transfer and extensions for faster secure computation.
In Proceedings of ACM CCS. 535–548.

[4] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. 2020. How to backdoor federated learning. In Proceedings of AISTATS.
2938–2948.

[5] Moran Baruch, Gilad Baruch, and Yoav Goldberg. 2019. A little is enough:
Circumventing defenses for distributed learning. In Proceedings of NeuIPS.

[6] Donald Beaver. 1991. Efficient multiparty protocols using circuit randomization.
In Proceedings of CRYPTO. 420–432.

[7] James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and
Mariana Raykova. 2020. Secure single-server aggregation with (poly) logarithmic
overhead. In Proceedings of ACM CCS. 1253–1269.

[8] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.
2019. Analyzing federated learning through an adversarial lens. In Proceedings of
ICML. 634–643.

[9] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
2017. Machine learning with adversaries: Byzantine tolerant gradient descent. In
Proceedings of NeurIPS. 118–128.

[10] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-
tical secure aggregation for privacy-preserving machine learning. In Proceedings
of ACM CCS. 1175–1191.

[11] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. 2021. FLTrust:
Byzantine-robust Federated Learning via Trust Bootstrapping. In Proceedings of
NDSS.

[12] Hao Chen, Ilaria Chillotti, Yihe Dong, Oxana Poburinnaya, Ilya Razenshteyn,
and M Sadegh Riazi. 2020. {SANNS}: Scaling up secure approximate k-nearest
neighbors search. In Proceedings of USENIX Security. 2111–2128.

[13] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, robust, and scalable
computation of aggregate statistics. In Proceedings of USENIX NSDI. 259–282.

[14] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-
work for efficient mixed-protocol secure two-party computation.. In Proceedings
of NDSS.

[15] Whitfield Diffie and Martin Hellman. 1976. New directions in cryptography. IEEE
Transactions on Information Theory 22, 6 (1976), 644–654.

[16] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Louis Alexandre Rouault.
2018. The Hidden Vulnerability of Distributed Learning in Byzantium. In Pro-
ceedings of ICML.

[17] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homomor-
phic encryption. IACR Cryptology ePrint Archive (2012).

[18] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. 2020. Local model poi-
soning attacks to Byzantine-robust federated learning. In Proceedings of USENIX
Security. 1605–1622.

[19] FeatureCloud. [n.d.]. Transforming health care and medical research with feder-
ated learning. https://featurecloud.eu/about/our-vision/.

[20] Wei Gao, Shangwei Guo, Tianwei Zhang, Han Qiu, Yonggang Wen, and Yang Liu.
2021. Privacy-preserving collaborative learning with automatic transformation
search. In Proceedings of CVPR. 114–123.

[21] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. 2020.
Inverting Gradients–How easy is it to break privacy in federated learning?. In
Proceedings of NeurIPS.

[22] Hanieh Hashemi, Yongqin Wang, Chuan Guo, and Murali Annavaram. 2021.
Byzantine-Robust and Privacy-Preserving Framework for FedML. In ICLR Work-
shop on Security and Safety in Machine Learning Systems.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of IEEE CVPR. 770–778.

[24] Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. 2020. Secure byzantine-
robust machine learning. arXiv:2006.04747 (2020).

[25] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. 2017. Deep mod-
els under the GAN: information leakage from collaborative deep learning. In
Proceedings of ACM CCS. 603–618.

[26] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending oblivious
transfers efficiently. In Proceedings of CRYPTO. 145–161.

[27] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
GAZELLE: A low latency framework for secure neural network inference. In
Proceedings of USENIX Security. 1651–1669.

[28] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2019. Advances and open problems in federated learning.

arXiv:1912.04977 (2019).
[29] Youssef Khazbak, Tianxiang Tan, and Guohong Cao. 2020. MLGuard: Mitigating

Poisoning Attacks in Privacy Preserving Distributed Collaborative Learning. In
Proceedings of IEEE ICCCN. 1–9.

[30] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. 1989. Backpropagation applied
to handwritten zip code recognition. Neural computation 1, 4 (1989), 541–551.

[31] Beibei Li, Yuhao Wu, Jiarui Song, Rongxing Lu, Tao Li, and Liang Zhao. 2021.
DeepFed: Federated Deep Learning for Intrusion Detection in Industrial Cyber-
Physical Systems. IEEE Transactions on Industrial Informatics 17, 8 (2021), 5615–
5624.

[32] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious neural
network predictions via minionn transformations. In Proceedings of ACM CCS.
619–631.

[33] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Proceedings of AISTATS. 1273–1282.

[34] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. 2020. Delphi: A cryptographic inference service for neural
networks. In Proceedings of USENIX Security. 2505–2522.

[35] PaymanMohassel, Mike Rosulek, and Ni Trieu. 2020. Practical privacy-preserving
k-means clustering. Proceedings on Privacy Enhancing Technologies 2020, 4 (2020),
414–433.

[36] Payman Mohassel and Yupeng Zhang. 2017. Secureml: A system for scalable
privacy-preserving machine learning. In Proceedings of IEEE S&P. 19–38.

[37] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks against
centralized and federated learning. In Proceedings of S&P. 739–753.

[38] Thien Duc Nguyen, Phillip Rieger, Hossein Yalame, Helen Möllering, Hossein
Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Ahmad-Reza
Sadeghi, Thomas Schneider, et al. 2021. FLGUARD: Secure and Private Federated
Learning. arXiv preprint arXiv:2101.02281 (2021).

[39] Sundar Pichai. 2019. Privacy should not be a luxury good. The New York Times
(2019).

[40] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-party
secure inference. In Proceedings of ACM CCS. 325–342.

[41] Virat Shejwalkar and Amir Houmansadr. 2021. Manipulating the Byzantine:
Optimizing Model Poisoning Attacks and Defenses for Federated Learning. In
Proceedings of NDSS.

[42] Nigel P Smart and Frederik Vercauteren. 2014. Fully homomorphic SIMD opera-
tions. Designs, codes and cryptography 71, 1 (2014), 57–81.

[43] Jinhyun So, Başak Güler, and A Salman Avestimehr. 2020. Byzantine-resilient
secure federated learning. IEEE Journal on Selected Areas in Communications
(2020).

[44] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the intel {SGX} kingdomwith transient
out-of-order execution. In Proceedings of USENIX Security. 991–1008.

[45] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. 2020. Fall of empires: Break-
ing Byzantine-tolerant SGD by inner product manipulation. In Uncertainty in
Artificial Intelligence. 261–270.

[46] Guowen Xu, Hongwei Li, Sen Liu, Kan Yang, and Xiaodong Lin. 2019. Veri-
fynet: Secure and verifiable federated learning. IEEE Transactions on Information
Forensics and Security 15 (2019), 911–926.

[47] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas
Kong, Daniel Ramage, and Françoise Beaufays. 2018. Applied federated learning:
Improving google keyboard query suggestions. arXiv:1812.02903 (2018).

[48] Andrew C Yao. 1982. Theory and application of trapdoor functions. In Proceedings
of FOCS. 80–91.

[49] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018.
Byzantine-robust distributed learning: Towards optimal statistical rates. In Pro-
ceedings of ICML. 5650–5659.

[50] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu. 2020.
Batchcrypt: Efficient homomorphic encryption for cross-silo federated learning.
In Proceedings of USENIX ATC. 493–506.

[51] Qiao Zhang, Chunsheng Xin, and HongyiWu. 2021. GALA: Greedy ComputAtion
for Linear Algebra in Privacy-Preserved Neural Networks. In Proceedings of NDSS.

[52] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep Leakage from Gradients. In
Proceedings of NeurIPS.

A ADDITIONAL EXPERIMENTAL RESULTS
A.1 Performance of SecureFL’s building blocks
In Tables 4 and 5, we plot in detail the communication and compu-
tational overhead of each step of SecureFL.

57

https://featurecloud.eu/about/our-vision/

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Meng Hao, et al.

As shown in Table 4, the validity checking and cosine computa-
tion steps occupy most of the computation overhead. With devised
matrix multiplication preprocessing in the preamble phase, the
online overhead of cosine similarity computations only requires
less than 13 ms. For the weighted aggregation step, it only takes
less than 230 ms, since the same multiplication triples generated in
the validity checking phase will be reused in this step. Beneficially,
compared with traditional methods that generate fresh masks for
each calculation, the cost of the validity checking and weighted
aggregation steps is reduced by about half. Besides, our SecureFL
is fully robust to party dropping, where the computational over-
head decreases proportionally as the number of dropped parties
increases. Below we focus on the communication performance of
SecureFL. In Table 5, the validity checking step produces relatively
high communications compared to other operations. Nevertheless,
similar to the execution time we discussed above, it significantly
saves the cost of the weighted aggregation step by reusing the
same masks to local gradients, i.e., less than 1 KB under 100 parties
setting. More importantly, in the cosine similarity evaluation, the
communication overhead is low and remains constant as the num-
ber of parties increases. Besides, as the number of dropped parties
increases, the communication overhead decreases proportionally.

A.2 Additional Robustness Evaluations
We simulated Non-IID dataset using the method of [18] [11]. Specif-
ically, assumingM classes in the classification task, we evenly split
the parties into M groups. We assign a sample with label m to
them-th group with probability β , and to any other group with
probability 1−β

M−1 . Informally, the value of β controls the degree of
Non-IID-ness. β = 1

M represents IID data distributions, and the
higher β is, the more likely the parties hold samples from only one
class.

We evaluate the impact of the degree of Non-IID-ness on the
test error on MNIST dataset. The fraction of malicious parties is
fixed as 20% and the number of parties is fixed as 100. Figure 7(a)
shows, when the degree of Non-IID-ness of seed dataset varies,
the test error of our method under different attacks, i.e., no attack,
label flipping attack and local model poisoning attack. We observe
that SecureFL is accurate and robust when the degree of Non-IID-
ness is not significant. In particular, when β ≤ 0.4 for seed dataset,
SecureFL realizes the test errors comparable to FedAvg without any
attacks. Besides, we also study the impact of the Non-IID parties’
local datasets in Figure 7(b). Our results show that when β ≤ 0.6
for parties’ datasets, SecureFL achieves excellent performance, i.e.,
the test error is less than 0.1. Therefore, SecureFL works well when
the parties’ data distribution does not differ too much.

B SECURITY PROOFS
B.1 Proof of Theorem 1
Proof . Our security proof follows the ideal-world/real-world para-
digm: in real-world, SP and CS interact according to the protocol
specification, whereas in ideal-world they have access to a ideal
functionality FmatMulPre. The executions in both worlds are coor-
dinated by the environment Env, who chooses the inputs to CS
and SP and plays the role of a distinguisher between the real and

(a) Test error under Non-IID root dataset. (b) Test error under Non-IID parties’ local
dataset.

Figure 7: Impact of the Degree of Non-IID-ness on the Test
Error.

ideal executions. We will show that the real-world distribution is
computationally indistinguishable to the ideal-world distribution.

Proof of indistinguishability with corrupted SP. Below, we first
construct an ideal-world simulator Sim that performs as follows:
• Sim receives дs from the environment Env, and sends it to
FmatMulPre and gets the result u ′.
• Sim encrypts u ′ using SP’s public key and returns ũ ′ =
PLHE.Enc(pk,u ′) to SP.
• Sim outputs whatever SP outputs.

Then, we show that the view Sim simulates for SP is indistin-
guishable from the view of SP interacting in the real execution.
The message PLHE.Dec(ũ ′) is same as u in real execution, where
u = ⟨R⟩1дs −δ . Thus, they are indistinguishable even if the private
key sk is observed. In addition, it does not reveal any information
about ⟨R⟩1 fromu, since δ is randomly chosen. Therefore, we claim
that the output distribution of Env in real-world is computationally
indistinguishable from that in ideal-world.

Proof of indistinguishability with corrupted CS. Below, we first
construct an ideal-world simulator Sim that performs as follows:
• Sim receives ⟨R⟩1 and δ from the environment Env, and
sends it to FmatMulPre.
• Sim constructs д̃s ′ ← PLHE.Enc(pk, 0), and gives it to CS.
• Sim outputs whatever CS outputs.

Then, we show that the view д̃s
′ Sim simulates for CS is indis-

tinguishable from the view PLHE.Enc(pk,дs) of CS interacting in
the real execution, because of the semantic security of PLHE. Thus,
the output distribution of Env in real-world is computationally
indistinguishable from that in ideal-world.

□

B.2 Proof of Theorem 2
Proof . We construct a simulator Sim simulates the view of cor-
rupted SP, which consists of her input/output and received mes-
sages. The simulator for CS should be the same. Sim proceeds as
follows:
• In the validity checking, Sim calls simulators SimFMult (⟨дi ⟩),
SimFDReLU (⟨∥дi ∥2⟩) and SimFAND (⟨f laдi,0⟩B , ⟨f laдi,1⟩B) for
each i ∈ [n], and appends their output to the general view.
• In the cosine similarity computation, Sim calls FmatMulPre
simulator SimFmatMulPre (⟨R⟩1,дs), and computes the matrix

58

Efficient, Private and Robust Federated Learning ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Table 4: Execution Time of Each Step of SecureFL. The data size is fixed as 10K entries. Different rows show different
numbers of users/dropped users. The values in "CosineComp" column represent preamble/online costs.

UsersNum Dropout SharingGen ValidityCheck CosineComp TrustScore WeightedAgg TotalTime
100 0% 20 ms 9730 ms 6804 ms / 10 ms 92 ms 67 ms 16723 ms
100 10% 20 ms 8739 ms 6244 ms / 10 ms 88 ms 62 ms 15163 ms
100 20% 20 ms 7725 ms 5637 ms / 9 ms 83 ms 54 ms 13528 ms
300 0% 61 ms 31530 ms 16219 ms / 12 ms 98 ms 230 ms 48150 ms
300 10% 60 ms 26213 ms 14735 ms / 13 ms 95 ms 213 ms 41329 ms
300 20% 61 ms 24033 ms 12929 ms / 11 ms 93 ms 190 ms 37317 ms

Table 5: Communication Cost of Each Step of SecureFL. The data size is fixed as 10K entries. Different rows show different
numbers of users/dropped users. The values in "CosineComp" column represent preamble/online costs.

UsersNum Dropout SharingGen ValidityCheck CosineComp TrustScore WeightedAgg TotalComm
100 0% 0 KB 15689.2 KB 512.1 KB / 0 KB 66.4 KB 0.8 KB 16268.5 KB
100 10% 0 KB 14124.7 KB 512.1 KB / 0 KB 65.2 KB 0.7 KB 14702.7 KB
100 20% 0 KB 12558.3 KB 512.1 KB / 0 KB 62.8 KB 0.6 KB 13133.8 KB
300 0% 0 KB 46988.7 KB 512.1 KB / 0 KB 109.1 KB 2.3 KB 47612.2 KB
300 10% 0 KB 42293.2 KB 512.1 KB / 0 KB 104.2 KB 2.1 KB 42911.6 KB
300 20% 0 KB 37597.9 KB 512.1 KB / 0 KB 87.4 KB 1.9 KB 38199.3 KB

multiplication in the online phase, followed by appending
its output to the view.
• In the trust score computation, Sim first calls FReLU simula-
tor SimFReLU (⟨cosi ⟩) for each i ∈ [n], and then simulates TSi
computation by calling SimFBmulA (⟨ReLU (cosi)⟩, ⟨f laдi ⟩B)
for each i ∈ [n].
• In the weighted aggregation, Sim calls FMult simulator
SimFMult (⟨ReLU (cosi)⟩, ⟨f laдi ⟩B) for each i ∈ [n], and sums
parties’ trust scores.

We show that the real world distribution is computationally in-
distinguishable to the simulated distribution via a hybrid argument.
For this, we formally show the simulation by proceeding the se-
quence of hybrid arguments, H0, · · · , H4, where H0 is the real view
and H4 is the simulated view generated by Sim.

• Hybrid1: Let H1 be the same as H0, except the followings.
First, for the squared ℓ2 norm evaluation in the validity check-
ing phase, we use the simulator SimFMult (⟨дi ⟩). Then the
FDReLU and FAND evaluations are replaced with the simula-
tors SimFDReLU (⟨∥дi ∥2⟩) and SimFAND (⟨f laдi,0⟩B , ⟨f laдi,1⟩B),
respectively. Given the simulation security of these protocols,
H1 is indistinguishable from H0.
• Hybrid2: LetH2 be the same asH1, except the FmatMulPre ex-
ecution is replaced with execution the SimFmatMulPre (⟨R⟩1,дs).
Because FmatMulPre is guaranteed to produce output indis-
tinguishable from that of real world, H2 and H1 are indistin-
guishable. Note that the matrix multiplication in the online
phase is evaluated non-interactively, thus the view is not
changed.
• Hybrid3: In this hybrid, for the boolean-integer multiplica-
tion evaluation and ReLU evaluation, we use the simulators
SimFReLU (⟨cosi ⟩) and SimFBmulA (⟨ReLU (cosi)⟩, ⟨f laдi ⟩B). It

follows from simulation security thatH3 is indistinguishable
from H2.
• Hybrid4: Let H4 be the same as H3, except the weighted
aggregation evaluation is replaced with execution the simu-
lator SimFMult (⟨ReLU (cosi)⟩, ⟨f laдi ⟩B). Because SimFMult is
guaranteed to produce output indistinguishable from real,
H4 and H3 are indistinguishable.

In summary, H4 is identically distributed to the simulator’s output,
completing the proof.

□

B.3 Proof of Theorem 3
Proof. The robustness of SecureFL is guaranteed by the soundness
of the validity checking and the robustness of FLTrust. Specifically,
in the validity checking, CS and SP check each party’s input дi , and
assign the result to f laдi . f laдi concludes that either the servers
accept дi (f laдi = 1) or the servers reject дi (f laдi = 0). Thus, any
misbehaving party must either submit a well-formed submission
or be treated as zero input. On the other hand, to further exclude
wrong inputs that are actually in the required domain, our SecureFL
employs the byzantine-robust aggregation rule, whose robustness
guarantee directly relies on the FLTrust’s protocol (the proof is in
Section IV-D of [11]). It preserves the accuracy of the global model,
even when a part of malicious clients perform strong byzantine
attacks. In summary, our SecureFL is robust.

□

B.4 Proof of Specialized Beaver’s Triplets
Proof. We give a sketch of the security proof here. Assume two
servers aim to compute ⟨x⟩ · ⟨y⟩ and ⟨x⟩ · ⟨z⟩. The Beaver’s triplets
are given, i.e., ⟨a⟩, ⟨b⟩, ⟨c⟩, ⟨b ′⟩, ⟨c ′⟩. Without loss of generality, we

59

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Meng Hao, et al.

Table 6: The ideal functionality FBmulA

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Meng Hao, et al.

B.4 Proof of Specialized Beaver’s Triplets
Proof. We give a sketch of the security proof here. Assume two
servers aim to compute ⟨𝑥⟩ · ⟨𝑦⟩ and ⟨𝑥⟩ · ⟨𝑧⟩. The Beaver’s triplets
are given, i.e., ⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩, ⟨𝑏 ′⟩, ⟨𝑐 ′⟩. Without loss of generality, we
assume SP is corrupted by an adversary, since the protocol is sym-
metric with respect to the two servers. The message of SP received
from CS is ⟨𝑥⟩1 + ⟨𝑎⟩1, ⟨𝑦⟩1 + ⟨𝑏⟩1, and ⟨𝑧⟩1 + ⟨𝑏 ′⟩1. Because the
triplets are randomly sample from the field, the above messages are
indistinguishable from random values. Therefore, the specialized
Beaver’s multiplication is secure for any adversary.

C FUNCTIONALITIES AND PROTOCOLS
We introduce the ideal primitives and protocols used by SecureFL.

Boolean-integer multiplication. The functionality FBmulA of
boolean-integer multiplication (Algorithm 4 shows the protocol) is
described in Table 6. Security trivially follows 1-out-of-2 OTs.

Table 6: The ideal functionality FBmulA

Input:
• SP: ⟨𝑥⟩𝐵0 ∈ Z2, ⟨𝑦⟩0 ∈ Z𝑝 .
• CS: ⟨𝑥⟩𝐵1 ∈ Z2, and ⟨𝑦⟩1, 𝑟 ∈ Z𝑝 .

Output:
• SP: ⟨𝑧⟩0 = 𝑥 · 𝑦 − 𝑟 mod 𝑝 where 𝑥 = ⟨𝑥⟩𝐵0 ⊕ ⟨𝑥⟩𝐵1 and
𝑦 = ⟨𝑦⟩0 + ⟨𝑦⟩1 mod 𝑝 .
• CS: ⟨𝑧⟩1 = 𝑟 .

Beaver’s multiplication procedure. Given two shared values
⟨𝑥⟩, ⟨𝑦⟩ and constant 𝑐 , linear operations such as ⟨𝑐𝑥 +𝑦⟩ can be di-
rectly computed by parties via locally adding the shares. In addition,
multiplication operations on shared values can be implemented by
calling Beaver’s multiplicative triples [6]. The ideal functionality
FBeaver is: sampling 𝑎, 𝑏 from Z𝑝 uniformly at random, and return-
ing ⟨𝑎⟩0, ⟨𝑏⟩0, ⟨𝑎𝑏⟩0 to the first party and ⟨𝑎⟩1, ⟨𝑏⟩1, ⟨𝑎𝑏⟩1 to the
second party. After generating the Beaver’s multiplicative triples,
two parties holding ⟨𝑥⟩, ⟨𝑦⟩ can implement multiplication opera-
tions FMult and receive as the output the shares of ⟨𝑥𝑦⟩ at the end
of the protocol. The protocols of FMult and FBeaver are shown in
Algorithm 5 and Algorithm 6. In addition, the functionality FAND
implements that on input ⟨𝑥⟩𝐵, ⟨𝑦⟩𝐵 , SP and CS learn ⟨𝑧⟩𝐵0 and
⟨𝑧⟩𝐵1 , where 𝑧 = 𝑥 ⊕ 𝑦. The protocol of FAND can be realized using
bit-triples (a boolean variant of the Beaver’s triples) via an instance
of 1-out-of-16 OTs. We omit a detailed description of the protocol
due to space limits.

DReLU and ReLU. The functionalities FDReLU and FReLU of
DReLU/ReLU operations are discussed in Tables 7 and 8. For a
finite field Z𝑝 , 𝐷𝑅𝑒𝐿𝑈 (𝑥) = 1 if 𝑥 < ⌈𝑝/2⌉ and 0 otherwise. Let
arithmetic shares of 𝑥 be ⟨𝑥⟩0 and ⟨𝑥⟩1. We define wrap = 1{⟨𝑥⟩0 +
⟨𝑥⟩1 > 𝑝 − 1}, lwrap = 1{⟨𝑥⟩0 + ⟨𝑥⟩1 > (𝑝 − 1)/2} and rwrap =

1{⟨𝑥⟩0 + ⟨𝑥⟩1 > 𝑝 + (𝑝 − 1)/2}. Then, 𝐷𝑅𝑒𝐿𝑈 (𝑥) is (1 ⊕ lwrap) if
wrap = 0, else it is (1 ⊕ rwrap) if wrap = 1. The detailed protocols
for realizing FDReLU and FReLU are discussed in Algorithms 2 and
3, where we utilize the millionaire functionality FMill of [41]. We

Algorithm 5 Beaver’s Triples Generation
Input: Additive shares of random vectors ⟨a⟩ ∈ Z𝑛𝑝 and ⟨b⟩ ∈ Z𝑛𝑝
Output: Additive shares of vector ⟨c⟩ ∈ Z𝑛𝑝 , where c = a · b
1: SP computes 𝑐𝑡𝑎 ← Enc(𝑝𝑘, ⟨a⟩0), 𝑐𝑡𝑏 ← Enc(𝑝𝑘, ⟨b⟩0), and

sends 𝑐𝑡𝑎 , 𝑐𝑡𝑏 to CS.
2: CS samples a random vector r ∈ Z𝑛𝑝 and computes 𝑐𝑡𝑟 ←

Enc(𝑝𝑘, a). Then, she homomorphically evaluates 𝑐𝑡 ′𝑎 ←
Enc(𝑝𝑘, ⟨a⟩0 · ⟨b⟩1) and 𝑐𝑡 ′𝑏 ← Enc(𝑝𝑘, ⟨b⟩0 · ⟨a⟩1), along with
𝑐𝑡𝑑 ← Enc(𝑝𝑘, ⟨b⟩0 · ⟨a⟩1 + ⟨a⟩0 · ⟨b⟩1 + 𝑟). After that, CS sets
⟨c⟩1 = ⟨a⟩1 · ⟨b⟩1 − r, and sends 𝑐𝑡𝑑 to SP.

3: SP decrypts the above ciphertexts d ← Dec(𝑠𝑘, 𝑐𝑡𝑑), and ob-
tains ⟨c⟩0 = ⟨a⟩0 · ⟨b⟩0 + d.

Algorithm 6 Beaver’s Multiplication Procedure
Input: Additive shares of inputs ⟨x⟩ ∈ Z𝑛𝑝 and ⟨y⟩ ∈ Z𝑛𝑝 , along

with Beaver’s triples ⟨a⟩ ∈ Z𝑛𝑝 , ⟨b⟩ ∈ Z𝑛𝑝 and ⟨c⟩ ∈ Z𝑛𝑝
Output: Additive shares of vector ⟨z⟩ ∈ Z𝑛𝑝 , where z = x · y
1: SP and CS first set ⟨e⟩ = ⟨x⟩ − ⟨a⟩ mod 𝑝 and ⟨f⟩ = ⟨y⟩ − ⟨b⟩

mod 𝑝

2: SP and CS reconstruct e and f interactively.
3: SP sets ⟨z⟩0 = f · ⟨a⟩0 + e · ⟨b⟩0 + ⟨c⟩0 and CS sets ⟨z⟩1 =

e · f + f · ⟨a⟩1 + e · ⟨b⟩1 + ⟨c⟩1.

omit a detailed description of the protocol for realizing FMill due
to space limits.

Table 7: The ideal functionality FDReLU

Input:
• SP: ⟨𝑥⟩0 ∈ Z𝑝 .
• CS: ⟨𝑥⟩1 ∈ Z𝑝 , 𝑟 ∈ Z2.

Output:
• SP: ⟨𝑧⟩𝐵0 = 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 (𝑥, 0) ⊕ 𝑟 where 𝑥 = ⟨𝑥⟩0 + ⟨𝑥⟩1
mod 𝑝 .
• CS: ⟨𝑧⟩𝐵1 = 𝑟 .

Table 8: The ideal functionality FReLU

Input:
• SP: ⟨𝑥⟩0 ∈ Z𝑝 .
• CS: ⟨𝑥⟩1, 𝑟 ∈ Z𝑝 .

Output:
• SP: ⟨𝑧⟩0 = DReLU(𝑥) ·𝑥−𝑟 mod 𝑝 where 𝑥 = ⟨𝑥⟩0+⟨𝑥⟩1
mod 𝑝 .
• CS: ⟨𝑧⟩1 = 𝑟 .

assume SP is corrupted by an adversary, since the protocol is sym-
metric with respect to the two servers. The message of SP received
from CS is ⟨x⟩1 + ⟨a⟩1, ⟨y⟩1 + ⟨b⟩1, and ⟨z⟩1 + ⟨b ′⟩1. Because the
triplets are randomly sample from the field, the above messages are
indistinguishable from random values. Therefore, the specialized
Beaver’s multiplication is secure for any adversary.

Algorithm 5 Beaver’s Triples Generation
Input: Additive shares of random vectors ⟨a⟩ ∈ Znp and ⟨b⟩ ∈ Znp
Output: Additive shares of vector ⟨c⟩ ∈ Znp , where c = a · b
1: SP computes cta ← Enc(pk, ⟨a⟩0), ctb ← Enc(pk, ⟨b⟩0), and

sends cta , ctb to CS.
2: CS samples a random vector r ∈ Znp and computes ctr ←

Enc(pk, a). Then, she homomorphically evaluates ct ′a ←
Enc(pk, ⟨a⟩0 · ⟨b⟩1) and ct ′b ← Enc(pk, ⟨b⟩0 · ⟨a⟩1), along with
ctd ← Enc(pk, ⟨b⟩0 · ⟨a⟩1 + ⟨a⟩0 · ⟨b⟩1 + r). After that, CS sets
⟨c⟩1 = ⟨a⟩1 · ⟨b⟩1 − r, and sends ctd to SP.

3: SP decrypts the above ciphertexts d ← Dec(sk, ctd), and ob-
tains ⟨c⟩0 = ⟨a⟩0 · ⟨b⟩0 + d.

Algorithm 6 Beaver’s Multiplication Procedure
Input: Additive shares of inputs ⟨x⟩ ∈ Znp and ⟨y⟩ ∈ Znp , along

with Beaver’s triples ⟨a⟩ ∈ Znp , ⟨b⟩ ∈ Znp and ⟨c⟩ ∈ Znp
Output: Additive shares of vector ⟨z⟩ ∈ Znp , where z = x · y
1: SP and CS first set ⟨e⟩ = ⟨x⟩ − ⟨a⟩ mod p and ⟨f⟩ = ⟨y⟩ − ⟨b⟩

mod p
2: SP and CS reconstruct e and f interactively.
3: SP sets ⟨z⟩0 = f · ⟨a⟩0 + e · ⟨b⟩0 + ⟨c⟩0 and CS sets ⟨z⟩1 =

e · f + f · ⟨a⟩1 + e · ⟨b⟩1 + ⟨c⟩1.

C FUNCTIONALITIES AND PROTOCOLS
We introduce the ideal primitives and protocols used by SecureFL.

Boolean-integer multiplication. The functionality FBmulA of
boolean-integer multiplication (Algorithm 4 shows the protocol) is
described in Table 6. Security trivially follows 1-out-of-2 OTs.

Beaver’s multiplication procedure. Given two shared values
⟨x⟩, ⟨y⟩ and constant c , linear operations such as ⟨cx +y⟩ can be di-
rectly computed by parties via locally adding the shares. In addition,
multiplication operations on shared values can be implemented by

Table 7: The ideal functionality FDReLU

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Meng Hao, et al.

B.4 Proof of Specialized Beaver’s Triplets
Proof. We give a sketch of the security proof here. Assume two
servers aim to compute ⟨𝑥⟩ · ⟨𝑦⟩ and ⟨𝑥⟩ · ⟨𝑧⟩. The Beaver’s triplets
are given, i.e., ⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩, ⟨𝑏 ′⟩, ⟨𝑐 ′⟩. Without loss of generality, we
assume SP is corrupted by an adversary, since the protocol is sym-
metric with respect to the two servers. The message of SP received
from CS is ⟨𝑥⟩1 + ⟨𝑎⟩1, ⟨𝑦⟩1 + ⟨𝑏⟩1, and ⟨𝑧⟩1 + ⟨𝑏 ′⟩1. Because the
triplets are randomly sample from the field, the above messages are
indistinguishable from random values. Therefore, the specialized
Beaver’s multiplication is secure for any adversary.

C FUNCTIONALITIES AND PROTOCOLS
We introduce the ideal primitives and protocols used by SecureFL.

Boolean-integer multiplication. The functionality FBmulA of
boolean-integer multiplication (Algorithm 4 shows the protocol) is
described in Table 6. Security trivially follows 1-out-of-2 OTs.

Table 6: The ideal functionality FBmulA

Input:
• SP: ⟨𝑥⟩𝐵0 ∈ Z2, ⟨𝑦⟩0 ∈ Z𝑝 .
• CS: ⟨𝑥⟩𝐵1 ∈ Z2, and ⟨𝑦⟩1, 𝑟 ∈ Z𝑝 .

Output:
• SP: ⟨𝑧⟩0 = 𝑥 · 𝑦 − 𝑟 mod 𝑝 where 𝑥 = ⟨𝑥⟩𝐵0 ⊕ ⟨𝑥⟩𝐵1 and
𝑦 = ⟨𝑦⟩0 + ⟨𝑦⟩1 mod 𝑝 .
• CS: ⟨𝑧⟩1 = 𝑟 .

Beaver’s multiplication procedure. Given two shared values
⟨𝑥⟩, ⟨𝑦⟩ and constant 𝑐 , linear operations such as ⟨𝑐𝑥 +𝑦⟩ can be di-
rectly computed by parties via locally adding the shares. In addition,
multiplication operations on shared values can be implemented by
calling Beaver’s multiplicative triples [6]. The ideal functionality
FBeaver is: sampling 𝑎, 𝑏 from Z𝑝 uniformly at random, and return-
ing ⟨𝑎⟩0, ⟨𝑏⟩0, ⟨𝑎𝑏⟩0 to the first party and ⟨𝑎⟩1, ⟨𝑏⟩1, ⟨𝑎𝑏⟩1 to the
second party. After generating the Beaver’s multiplicative triples,
two parties holding ⟨𝑥⟩, ⟨𝑦⟩ can implement multiplication opera-
tions FMult and receive as the output the shares of ⟨𝑥𝑦⟩ at the end
of the protocol. The protocols of FMult and FBeaver are shown in
Algorithm 5 and Algorithm 6. In addition, the functionality FAND
implements that on input ⟨𝑥⟩𝐵, ⟨𝑦⟩𝐵 , SP and CS learn ⟨𝑧⟩𝐵0 and
⟨𝑧⟩𝐵1 , where 𝑧 = 𝑥 ⊕ 𝑦. The protocol of FAND can be realized using
bit-triples (a boolean variant of the Beaver’s triples) via an instance
of 1-out-of-16 OTs. We omit a detailed description of the protocol
due to space limits.

DReLU and ReLU. The functionalities FDReLU and FReLU of
DReLU/ReLU operations are discussed in Tables 7 and 8. For a
finite field Z𝑝 , 𝐷𝑅𝑒𝐿𝑈 (𝑥) = 1 if 𝑥 < ⌈𝑝/2⌉ and 0 otherwise. Let
arithmetic shares of 𝑥 be ⟨𝑥⟩0 and ⟨𝑥⟩1. We define wrap = 1{⟨𝑥⟩0 +
⟨𝑥⟩1 > 𝑝 − 1}, lwrap = 1{⟨𝑥⟩0 + ⟨𝑥⟩1 > (𝑝 − 1)/2} and rwrap =

1{⟨𝑥⟩0 + ⟨𝑥⟩1 > 𝑝 + (𝑝 − 1)/2}. Then, 𝐷𝑅𝑒𝐿𝑈 (𝑥) is (1 ⊕ lwrap) if
wrap = 0, else it is (1 ⊕ rwrap) if wrap = 1. The detailed protocols
for realizing FDReLU and FReLU are discussed in Algorithms 2 and
3, where we utilize the millionaire functionality FMill of [41]. We

Algorithm 5 Beaver’s Triples Generation
Input: Additive shares of random vectors ⟨a⟩ ∈ Z𝑛𝑝 and ⟨b⟩ ∈ Z𝑛𝑝
Output: Additive shares of vector ⟨c⟩ ∈ Z𝑛𝑝 , where c = a · b
1: SP computes 𝑐𝑡𝑎 ← Enc(𝑝𝑘, ⟨a⟩0), 𝑐𝑡𝑏 ← Enc(𝑝𝑘, ⟨b⟩0), and

sends 𝑐𝑡𝑎 , 𝑐𝑡𝑏 to CS.
2: CS samples a random vector r ∈ Z𝑛𝑝 and computes 𝑐𝑡𝑟 ←

Enc(𝑝𝑘, a). Then, she homomorphically evaluates 𝑐𝑡 ′𝑎 ←
Enc(𝑝𝑘, ⟨a⟩0 · ⟨b⟩1) and 𝑐𝑡 ′𝑏 ← Enc(𝑝𝑘, ⟨b⟩0 · ⟨a⟩1), along with
𝑐𝑡𝑑 ← Enc(𝑝𝑘, ⟨b⟩0 · ⟨a⟩1 + ⟨a⟩0 · ⟨b⟩1 + 𝑟). After that, CS sets
⟨c⟩1 = ⟨a⟩1 · ⟨b⟩1 − r, and sends 𝑐𝑡𝑑 to SP.

3: SP decrypts the above ciphertexts d ← Dec(𝑠𝑘, 𝑐𝑡𝑑), and ob-
tains ⟨c⟩0 = ⟨a⟩0 · ⟨b⟩0 + d.

Algorithm 6 Beaver’s Multiplication Procedure
Input: Additive shares of inputs ⟨x⟩ ∈ Z𝑛𝑝 and ⟨y⟩ ∈ Z𝑛𝑝 , along

with Beaver’s triples ⟨a⟩ ∈ Z𝑛𝑝 , ⟨b⟩ ∈ Z𝑛𝑝 and ⟨c⟩ ∈ Z𝑛𝑝
Output: Additive shares of vector ⟨z⟩ ∈ Z𝑛𝑝 , where z = x · y
1: SP and CS first set ⟨e⟩ = ⟨x⟩ − ⟨a⟩ mod 𝑝 and ⟨f⟩ = ⟨y⟩ − ⟨b⟩

mod 𝑝

2: SP and CS reconstruct e and f interactively.
3: SP sets ⟨z⟩0 = f · ⟨a⟩0 + e · ⟨b⟩0 + ⟨c⟩0 and CS sets ⟨z⟩1 =

e · f + f · ⟨a⟩1 + e · ⟨b⟩1 + ⟨c⟩1.

omit a detailed description of the protocol for realizing FMill due
to space limits.

Table 7: The ideal functionality FDReLU

Input:
• SP: ⟨𝑥⟩0 ∈ Z𝑝 .
• CS: ⟨𝑥⟩1 ∈ Z𝑝 , 𝑟 ∈ Z2.

Output:
• SP: ⟨𝑧⟩𝐵0 = 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 (𝑥, 0) ⊕ 𝑟 where 𝑥 = ⟨𝑥⟩0 + ⟨𝑥⟩1
mod 𝑝 .
• CS: ⟨𝑧⟩𝐵1 = 𝑟 .

Table 8: The ideal functionality FReLU

Input:
• SP: ⟨𝑥⟩0 ∈ Z𝑝 .
• CS: ⟨𝑥⟩1, 𝑟 ∈ Z𝑝 .

Output:
• SP: ⟨𝑧⟩0 = DReLU(𝑥) ·𝑥−𝑟 mod 𝑝 where 𝑥 = ⟨𝑥⟩0+⟨𝑥⟩1
mod 𝑝 .
• CS: ⟨𝑧⟩1 = 𝑟 .

Table 8: The ideal functionality FReLU

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Meng Hao, et al.

B.4 Proof of Specialized Beaver’s Triplets
Proof. We give a sketch of the security proof here. Assume two
servers aim to compute ⟨𝑥⟩ · ⟨𝑦⟩ and ⟨𝑥⟩ · ⟨𝑧⟩. The Beaver’s triplets
are given, i.e., ⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩, ⟨𝑏 ′⟩, ⟨𝑐 ′⟩. Without loss of generality, we
assume SP is corrupted by an adversary, since the protocol is sym-
metric with respect to the two servers. The message of SP received
from CS is ⟨𝑥⟩1 + ⟨𝑎⟩1, ⟨𝑦⟩1 + ⟨𝑏⟩1, and ⟨𝑧⟩1 + ⟨𝑏 ′⟩1. Because the
triplets are randomly sample from the field, the above messages are
indistinguishable from random values. Therefore, the specialized
Beaver’s multiplication is secure for any adversary.

C FUNCTIONALITIES AND PROTOCOLS
We introduce the ideal primitives and protocols used by SecureFL.

Boolean-integer multiplication. The functionality FBmulA of
boolean-integer multiplication (Algorithm 4 shows the protocol) is
described in Table 6. Security trivially follows 1-out-of-2 OTs.

Table 6: The ideal functionality FBmulA

Input:
• SP: ⟨𝑥⟩𝐵0 ∈ Z2, ⟨𝑦⟩0 ∈ Z𝑝 .
• CS: ⟨𝑥⟩𝐵1 ∈ Z2, and ⟨𝑦⟩1, 𝑟 ∈ Z𝑝 .

Output:
• SP: ⟨𝑧⟩0 = 𝑥 · 𝑦 − 𝑟 mod 𝑝 where 𝑥 = ⟨𝑥⟩𝐵0 ⊕ ⟨𝑥⟩𝐵1 and
𝑦 = ⟨𝑦⟩0 + ⟨𝑦⟩1 mod 𝑝 .
• CS: ⟨𝑧⟩1 = 𝑟 .

Beaver’s multiplication procedure. Given two shared values
⟨𝑥⟩, ⟨𝑦⟩ and constant 𝑐 , linear operations such as ⟨𝑐𝑥 +𝑦⟩ can be di-
rectly computed by parties via locally adding the shares. In addition,
multiplication operations on shared values can be implemented by
calling Beaver’s multiplicative triples [6]. The ideal functionality
FBeaver is: sampling 𝑎, 𝑏 from Z𝑝 uniformly at random, and return-
ing ⟨𝑎⟩0, ⟨𝑏⟩0, ⟨𝑎𝑏⟩0 to the first party and ⟨𝑎⟩1, ⟨𝑏⟩1, ⟨𝑎𝑏⟩1 to the
second party. After generating the Beaver’s multiplicative triples,
two parties holding ⟨𝑥⟩, ⟨𝑦⟩ can implement multiplication opera-
tions FMult and receive as the output the shares of ⟨𝑥𝑦⟩ at the end
of the protocol. The protocols of FMult and FBeaver are shown in
Algorithm 5 and Algorithm 6. In addition, the functionality FAND
implements that on input ⟨𝑥⟩𝐵, ⟨𝑦⟩𝐵 , SP and CS learn ⟨𝑧⟩𝐵0 and
⟨𝑧⟩𝐵1 , where 𝑧 = 𝑥 ⊕ 𝑦. The protocol of FAND can be realized using
bit-triples (a boolean variant of the Beaver’s triples) via an instance
of 1-out-of-16 OTs. We omit a detailed description of the protocol
due to space limits.

DReLU and ReLU. The functionalities FDReLU and FReLU of
DReLU/ReLU operations are discussed in Tables 7 and 8. For a
finite field Z𝑝 , 𝐷𝑅𝑒𝐿𝑈 (𝑥) = 1 if 𝑥 < ⌈𝑝/2⌉ and 0 otherwise. Let
arithmetic shares of 𝑥 be ⟨𝑥⟩0 and ⟨𝑥⟩1. We define wrap = 1{⟨𝑥⟩0 +
⟨𝑥⟩1 > 𝑝 − 1}, lwrap = 1{⟨𝑥⟩0 + ⟨𝑥⟩1 > (𝑝 − 1)/2} and rwrap =

1{⟨𝑥⟩0 + ⟨𝑥⟩1 > 𝑝 + (𝑝 − 1)/2}. Then, 𝐷𝑅𝑒𝐿𝑈 (𝑥) is (1 ⊕ lwrap) if
wrap = 0, else it is (1 ⊕ rwrap) if wrap = 1. The detailed protocols
for realizing FDReLU and FReLU are discussed in Algorithms 2 and
3, where we utilize the millionaire functionality FMill of [41]. We

Algorithm 5 Beaver’s Triples Generation
Input: Additive shares of random vectors ⟨a⟩ ∈ Z𝑛𝑝 and ⟨b⟩ ∈ Z𝑛𝑝
Output: Additive shares of vector ⟨c⟩ ∈ Z𝑛𝑝 , where c = a · b
1: SP computes 𝑐𝑡𝑎 ← Enc(𝑝𝑘, ⟨a⟩0), 𝑐𝑡𝑏 ← Enc(𝑝𝑘, ⟨b⟩0), and

sends 𝑐𝑡𝑎 , 𝑐𝑡𝑏 to CS.
2: CS samples a random vector r ∈ Z𝑛𝑝 and computes 𝑐𝑡𝑟 ←

Enc(𝑝𝑘, a). Then, she homomorphically evaluates 𝑐𝑡 ′𝑎 ←
Enc(𝑝𝑘, ⟨a⟩0 · ⟨b⟩1) and 𝑐𝑡 ′𝑏 ← Enc(𝑝𝑘, ⟨b⟩0 · ⟨a⟩1), along with
𝑐𝑡𝑑 ← Enc(𝑝𝑘, ⟨b⟩0 · ⟨a⟩1 + ⟨a⟩0 · ⟨b⟩1 + 𝑟). After that, CS sets
⟨c⟩1 = ⟨a⟩1 · ⟨b⟩1 − r, and sends 𝑐𝑡𝑑 to SP.

3: SP decrypts the above ciphertexts d ← Dec(𝑠𝑘, 𝑐𝑡𝑑), and ob-
tains ⟨c⟩0 = ⟨a⟩0 · ⟨b⟩0 + d.

Algorithm 6 Beaver’s Multiplication Procedure
Input: Additive shares of inputs ⟨x⟩ ∈ Z𝑛𝑝 and ⟨y⟩ ∈ Z𝑛𝑝 , along

with Beaver’s triples ⟨a⟩ ∈ Z𝑛𝑝 , ⟨b⟩ ∈ Z𝑛𝑝 and ⟨c⟩ ∈ Z𝑛𝑝
Output: Additive shares of vector ⟨z⟩ ∈ Z𝑛𝑝 , where z = x · y
1: SP and CS first set ⟨e⟩ = ⟨x⟩ − ⟨a⟩ mod 𝑝 and ⟨f⟩ = ⟨y⟩ − ⟨b⟩

mod 𝑝

2: SP and CS reconstruct e and f interactively.
3: SP sets ⟨z⟩0 = f · ⟨a⟩0 + e · ⟨b⟩0 + ⟨c⟩0 and CS sets ⟨z⟩1 =

e · f + f · ⟨a⟩1 + e · ⟨b⟩1 + ⟨c⟩1.

omit a detailed description of the protocol for realizing FMill due
to space limits.

Table 7: The ideal functionality FDReLU

Input:
• SP: ⟨𝑥⟩0 ∈ Z𝑝 .
• CS: ⟨𝑥⟩1 ∈ Z𝑝 , 𝑟 ∈ Z2.

Output:
• SP: ⟨𝑧⟩𝐵0 = 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 (𝑥, 0) ⊕ 𝑟 where 𝑥 = ⟨𝑥⟩0 + ⟨𝑥⟩1
mod 𝑝 .
• CS: ⟨𝑧⟩𝐵1 = 𝑟 .

Table 8: The ideal functionality FReLU

Input:
• SP: ⟨𝑥⟩0 ∈ Z𝑝 .
• CS: ⟨𝑥⟩1, 𝑟 ∈ Z𝑝 .

Output:
• SP: ⟨𝑧⟩0 = DReLU(𝑥) ·𝑥−𝑟 mod 𝑝 where 𝑥 = ⟨𝑥⟩0+⟨𝑥⟩1
mod 𝑝 .
• CS: ⟨𝑧⟩1 = 𝑟 .

calling Beaver’s multiplicative triples [6]. The ideal functionality
FBeaver is: sampling a,b from Zp uniformly at random, and return-
ing ⟨a⟩0, ⟨b⟩0, ⟨ab⟩0 to the first party and ⟨a⟩1, ⟨b⟩1, ⟨ab⟩1 to the
second party. After generating the Beaver’s multiplicative triples,
two parties holding ⟨x⟩, ⟨y⟩ can implement multiplication opera-
tions FMult and receive as the output the shares of ⟨xy⟩ at the end
of the protocol. The protocols of FMult and FBeaver are shown in
Algorithm 5 and Algorithm 6. In addition, the functionality FAND
implements that on input ⟨x⟩B , ⟨y⟩B , SP and CS learn ⟨z⟩B0 and
⟨z⟩B1 , where z = x ⊕ y. The protocol of FAND can be realized using
bit-triples (a boolean variant of the Beaver’s triples) via an instance
of 1-out-of-16 OTs. We omit a detailed description of the protocol
due to space limits.

DReLU and ReLU. The functionalities FDReLU and FReLU of
DReLU/ReLU operations are discussed in Tables 7 and 8. For a finite
field Zp ,DReLU (x) = 1 if x < ⌈p/2⌉ and 0 otherwise. Let arithmetic
shares of x be ⟨x⟩0 and ⟨x⟩1. We define wrap = 1{⟨x⟩0 + ⟨x⟩1 >
p − 1}, lwrap = 1{⟨x⟩0 + ⟨x⟩1 > (p − 1)/2} and rwrap = 1{⟨x⟩0 +
⟨x⟩1 > p + (p − 1)/2}. Then, DReLU (x) is (1 ⊕ lwrap) if wrap = 0,
else it is (1⊕ rwrap) if wrap = 1. The detailed protocols for realizing
FDReLU and FReLU are discussed in Algorithms 2 and 3, where we
utilize the millionaire functionality FMill of [40]. We omit a detailed
description of the protocol for realizing FMill due to space limits.

60

	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 System Model
	3.2 Threat Model
	3.3 Design Goals
	3.4 Cryptographic Primitives

	4 Crypto-friendly Byzantine-robust FL Protocol
	4.1 Revising FLTrust
	4.2 Crypto-friendly byzantine-robust FL protocol

	5 The SecureFL Framework
	5.1 The Detailed SecureFL Framework
	5.2 Security analysis

	6 Evaluation
	6.1 Experimental Setup
	6.2 SecureFL's Cryptographic Protocols
	6.3 SecureFL's Byzantine-robust Aggregation

	7 CONCLUSION
	Acknowledgments
	References
	A Additional Experimental results
	A.1 Performance of SecureFL's building blocks
	A.2 Additional Robustness Evaluations

	B Security proofs
	B.1 Proof of Theorem 1
	B.2 Proof of Theorem 2
	B.3 Proof of Theorem 3
	B.4 Proof of Specialized Beaver's Triplets

	C functionalities and protocols

