
Systematic Testing of Autonomous Driving Systems Using Map
Topology-Based Scenario Classification

Yun Tang†, Yuan Zhou†∗, Tianwei Zhang†, Fenghua Wu†, Yang Liu†, Gang Wang‡
†Nanyang Technological University, Singapore 639798

Email: yun005@e.ntu.edu.sg, {y.zhou, tianwei.zhang, fenghua.wu, yangliu}@ntu.edu.sg
‡Alibaba DAMO Academy, Alibaba Group, China.

E-mail: wg134231@alibaba-inc.com
∗Corresponding author

Abstract—Autonomous Driving Systems (ADSs), which replace
humans to drive vehicles, are complex software systems deployed
in autonomous vehicles (AVs). Since the execution of ADSs highly
relies on maps, it is essential to perform global map-based
testing for ADSs to guarantee their correctness and AVs’ safety
in different situations. Existing methods focus more on specific
scenarios rather than global testing throughout the map. Testing
on a global map is challenging since the complex lane connections
in a map can generate enormous scenarios. In this work, we
propose ATLAS, an approach to ADSs’ collision avoidance testing
using map topology-based scenario classification. The core insight
of ATLAS is to generate diverse testing scenarios by classifying
junction lanes according to their topology-based interaction
patterns. First, ATLAS divides the junction lanes into different
classes such that an ADS can execute similar collision avoidance
maneuvers on the lanes in the same class. Second, for each class,
ATLAS selects one junction lane to construct the testing scenario
and generate test cases using a genetic algorithm. Finally, we
implement and evaluate ATLAS on Baidu Apollo with the LGSVL
simulator on the San Francisco map. Results show that ATLAS
exposes nine types of real issues in Apollo 6.0 and reduces the
number of junction lanes for testing by 98%.

Index Terms—Autonomous Driving Systems, Collision Avoid-
ance Testing, Scenario Classification

I. INTRODUCTION

Autonomous vehicles (AVs) will play an essential role in

intelligent transportation systems to relieve traffic congestion

and eliminate accidents, especially at junctions. Many com-

panies have been devoting themselves to this domain, such

as Google Waymo [1], Baidu Apollo [2], and Autoware [3].

In AVs, Autonomous Driving Systems (ADSs) are deployed

to replace human drivers to provide high-level autonomy. To

guarantee the safety and reliability of AVs, ADSs must be

tested sufficiently to ensure their correctness.

Since on-road testing is risky, costly, and insufficient, de-

velopers carry out extensive testing on simulators. However,

since the environments vary dramatically in different aspects,

such as road networks, road participants, and traffic signs,

the number of scenarios for ADS testing is infinite. Hence,

researchers usually focus on the generation of critical scenar-

ios, such as those causing collisions between the ego vehicle

(i.e., the AV) and the NPC (non-player character) vehicles

(i.e., other vehicles on the roads) [4]–[21]. These approaches

usually consider different scenarios one by one, and only

one specific kind of scenario is covered in each test. There

are limited studies on systematic collision avoidance testing

for ADSs concerning a map (e.g., the road map of a city)

where the AVs operate [22], [23]. Road maps of modern

cities are usually complex and consist of various intersections

[24]. Different intersections manifest different scenarios and

interactions between the ego and NPC vehicles, demanding

different collision avoidance maneuvers by the ego vehicle.

Intersections with different junction lanes also present a variety

of scenarios due to different numbers of traffic participants.

Hence, a map may contain various scenarios. Global testing

on such a map with existing methods will be time-consuming.
In this paper, we propose an approach, ATLAS, to collision

avoidance testing for ADSs using map topology-based sce-

nario classification. Given a map, ATLAS first extracts the con-

nection relations between one-way roads and junction lanes.

Based on the connections, each junction lane is characterized

by its road topology, i.e., the set of road pairs connected by

its intersecting junction lanes. Such a road topology identifies

the motion directions of NPC vehicles that may collide with

the ego one. ATLAS then categorizes junction lanes with the

same road topology into the same lane class. Thus, inspired

by the traffic rules and common human-driving practices, the

ego vehicle following the junction lanes in the same class

is expected to perform similar collision avoidance maneuvers.

Hence, by sampling only one lane from each class, ATLAS can

create diverse scenarios at the minimum testing effort. There

are different configurable parameters for each scenario, e.g.,

the relative speeds and distances between the ego and NPC

vehicles. ATLAS applies the genetic algorithm (GA) to search

for potential collision test cases.
We implement and evaluate ATLAS on Apollo running with

the LGSVL simulator and San Francisco map. We use the

ground truth perception data during the experiments to avoid

perception uncertainties and focus on Apollo’s motion part.

ATLAS selects 13 out of 786 junction lanes for testing after

map-topology-based classification, reducing the testing effort

by 98%. ATLAS discovers nine types of issues in Apollo. The

contributions of this paper are as follows:

• A junction lane classification approach is proposed, guaran-

teeing scenario diversity at the minimum testing effort.

• A GA-based black-box testing is proposed for collision

avoidance testing in each junction lane class, which can

generate collision test cases efficiently.

1342

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-6654-0337-5/21/$31.00 ©2021 IEEE
DOI 10.1109/ASE51524.2021.00165

20
21

 3
6t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
ed

 S
of

tw
ar

e
En

gi
ne

er
in

g
(A

SE
) |

 9
78

-1
-6

65
4-

03
37

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SE
51

52
4.

20
21

.9
67

87
35

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 28,2022 at 03:53:42 UTC from IEEE Xplore. Restrictions apply.

R4 R5

R6

R7

R8R1

R2

R3

l1

l2

l3

l4
l5

l6 l7

l8

l9

l10
l11

l12

l13

l14

l15

l16 l17

l18

l19

l20

Fig. 1: Illustration of a junction J0.

• Comprehensive evaluations on the Apollo ADS are con-

ducted, and nine types of safety issues are discovered.

II. PRELIMINARIES AND PROBLEM STATEMENT

Modern AVs operate with the guidance of High-Definition

(HD) maps, which contain map geometry and semantic objects

such as lane boundaries, intersections, crosswalks, parking

spots, stop signs, and traffic lights [25]. A lane is the atomic

geometry in a map. It is bounded by two boundaries and

contains a reference path set as its centerline. Vehicles should

move along the reference paths. We represent a lane by its

reference path in the following discussion. A one-way road is a

set of lanes, among which a vehicle can perform lane changing

at any position. A junction contains a set of junction lanes that

connect different roads. The ego vehicle cannot change lanes

in a junction. Fig. 1 shows an example of a junction formed by

eight roads. The bold black lines are the lane boundaries (also

road boundaries in this case); the arrow lines are the lanes (the

black ones are road lanes and the colored ones are junction

lanes); R1 - R8 are eight roads connected by the junction, and

each road contains one lane.

The problem we address can be described as follows: Given
an ADS and a map, our goal is to design an approach to
evaluating the ADS’ ability to avoid collisions on the map.

We limit our discussion with the following assumptions. (1)

An ADS can be roughly divided into the perception and the

motion parts. This paper mainly focuses on the testing of the

motion part. Testing of AI models in perception is orthogonal

to our work. (2) The target ADS is a black box without

disclosing the detailed designs, algorithms, or implementa-

tions. (3) Our discussion mainly focuses on systematic testing

of collision avoidance with the NPC vehicles in junctions.

However, ATLAS can extend to road testing on a map and

collision avoidance with pedestrians.

III. METHODOLOGY

A. Junction Lane Classification

Given an HD map, let li denote a lane in the map. A

road Rr containing nr lanes, say lr1, . . . , l
r
nr

, is denoted as

Rr = lr1‖ . . . ‖lrnr
, and the set of all roads is denoted as

R = {R1, R2, . . . , Rn}. A junction Jj containing nj lanes

is denoted as Jj = {lj1, . . . , ljnj
}, and the set of all junctions

and all junction lanes are denoted as J = {J1, . . . , Jm} and

LJ =
⋃

j∈Nm
Jj , respectively, where Nm = {1, 2, . . . ,m}.

Given a junction lane lj , lj = (lr1 , lr2) if lr1 and lr2 are

connected directly by lj , where lr1 ∈ Rr1 and lr2 ∈ Rr2 ; Rr1

and Rr2 are called the incoming and the outgoing roads of

lj , denoted as I(lj) and O(lj), respectively. The set of roads

connected by the junction Jj can be described as RI
j ∪ RO

j ,

where RI
j =

⋃
lji∈Jj

I(lji) and RO
j =

⋃
lji∈Jj

O(lji) are called

incoming and outgoing roads of Jj , respectively.

For an arbitrary junction lane l ∈ Jj , we introduce the

l-index of the roads in RI
j ∪ RO

j . First, all the roads are

listed in a counter-clockwise order starting from I(l): Cj
l =

(Rr1 , . . . , Rrk), where Rr1 = I(l) and k = |RI
j ∪RO

j |. Then,

the l-index, denoted as f j
l , can be determined as:

f j
l (C

j
l (i)) =

{
i, if Cj

l (i) = Rri ∈ RI
j .

−i, if Cj
l (i) = Rri ∈ RO

j .
(1)

Indeed, the l-index describes the roads’ relative orientations

with respect to I(l).
Definition 1: Given a junction Jj and two junction lanes
lji1 , l

j
i2
∈ Jj , lji1 and lji2 are called in-junction intersecting if

lji1 and lji2 are intersecting and with different start points. The
set of intersecting junction lanes of lji1 is denoted as IL(lji1).
Definition 2: The road-topology characteristic of a junction
lane l, denoted as TC(l), is the set of incoming-outgoing road
pairs of its intersecting lanes, i.e.,

TC(l) =
⋃

lji∈IL(l){[f j
l (I(l

j
i)), f

j
l (O(lji))]}

For example, consider l2 in Fig. 1. Since I(l2) = R1,

we have C0
l2

= (R1, R2, R3, R4, R5, R6, R7, R8) and f0
l2

=
(1,−2, 3,−4, 5,−6, 7,−8). The intersecting junction lanes of

l2 are IL(l2) = {l11, l7, l4, l5, l6, l10}. Hence, TC(l2) =
{[7,−2], [5,−2], [3,−8], [3,−6], [3,−4], [7,−4]}.

The road-topology characteristic describes the relative di-

rections from which the NPC vehicles may collide with the

ego vehicle moving along the junction lane. It measures the

complexity of scenarios for collision avoidance testing.

Definition 3: Two junction lanes with the same road-topology
characteristic are said to be topology equivalent.

Based on this definition, we can divide all junction lanes

on a map into a set of equivalence classes. In each equiva-

lence class, the junction lanes have the same road-topology

characteristic. It means if the ego vehicle drives along these

lanes, it may collide with NPC vehicles that approach from the

same relative directions. Thus, motivated by human driving

behaviors, the ego vehicle is expected to perform similar

maneuvers to avoid collisions. Hence, with a limited time

budget, we can improve the diversity of the generated test

cases by testing only one junction lane in each class.

B. Test Case Generation via Genetic Algorithm

Each selected junction lane can construct a scenario from

which we can generate test cases. Given a selected junction

lane l, the scenario is constructed by parameterizing the initial

position of the ego vehicle on the incoming road lane of

1343

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 28,2022 at 03:53:42 UTC from IEEE Xplore. Restrictions apply.

l and the motion of the NPCs, each of which runs along

an intersecting junction lane of l. Hence, test cases can be

generated from the parameter space. Among many methods

for test case generation, search-based methods are widely used

[26], [27]. ATLAS uses GA for test case generation.

Genetic Representation. In our case, the solution domain

is represented by an array of real numbers. Without loss of

generality, we assume that each NPC vehicle moves with a

constant speed since a variable motion can be segmented into a

set of uniform motions for the testing purpose. Hence, the ego

vehicle’s safety is affected by the initial relative distances and

speeds between the ego and the NPC vehicles. After fixing the

start positions of NPC vehicles and the initial speed of the ego

vehicle, each test can be parameterized by the initial position

of the ego vehicle and the initial speeds of NPC vehicles.

Hence, each individual in the solution domain can be described

as a vector (s, v1, . . . , vil), where il is the number of junction

lanes in IL(l) based on Definition 1.

Fitness Function. In ATLAS, the fitness function for each

test case indv is defined as f(indv) = 1/min{di : i =
1, . . . , il}, where di is the minimal distance between the ego

and the i-th NPC vehicle during the entire motion process.

If the ego vehicle collides with any NPC vehicle, the fitness

value becomes infinity, and the GA stops.

Selection, Crossover, and Mutation. First, we use the 2-way

tournament selection strategy [28] to select individuals from

the population. Second, we adopt a fixed crossover rate (0.9

in our experiment) to select individual pairs for crossover. For

each pair of crossover individuals, the two-point crossover is

performed. Third, we implement a constant mutation rate (0.2

in our experiment) to select offspring for mutation, and due to

its local convergence [29], the Gaussian mutation is applied

to mutate each gene in an individual. Hence, for a selected

individual indv = (d, v1, . . . , vil), the mutation operator is:

g′ = min{max{N(g, δ), gmin}, gmax}, ∀g ∈ {d, v1, . . . , vi1},
where g is the corresponding gene value in indv, N(g, δ) is

a Gaussian distribution whose mean is g and variance is δ,

gmax and gmin are the maximal and minimal values of the

corresponding gene, and max and min functions are used to

bound the mutated gene values.

IV. EXPERIMENTS

To demonstrate the effectiveness and efficiency of ATLAS,

we conduct evaluations on Apollo, one of the most popular

ADSs in both the research community and industry. Two

desktop computers (i7-6850K CPU with 64GB RAM, Xeon

E5-2660 v4 CPU with 96GB RAM, and one GTX 1080 Ti

GPU for either) are used to run the experiments in parallel.

We use the LGSVL simulator [30] to simulate real-world

environment and vehicle dynamics, and Apollo 6.0 [31] as

the system under testing. The global map is the San Francisco

downtown area [32], which contains 84 signal-controlled junc-

tions and 686 junction lanes with intersecting lanes. These

lanes are divided into 34 classes. ATLAS selects 13 lane

classes for testing, which subsume the remaining 21 classes.

Since ATLAS is the first method for ADSs’ systematic global

map testing, we consider the random sampling approach the

baseline for comparison with ATLAS. For GA, we set the pop-

ulation size as 20 and the maximal number of generations as

16. Thus, the maximal number of test cases per lane generated

by either method is 320. Each experiment is repeated 16 times.

The crossover rate and mutation rate are set heuristically to

0.9 and 0.2, respectively, based on preliminary experiments.

A. Issues Discovered in Apollo

There are mainly three actions for collision avoidance:

yielding (including stopping), following, and overtaking. We

use ATLAS to successfully uncover nine types of issues in

Apollo, which could cause collisions, traffic congestion, and

deadlocks. These are never discussed in previous works.

1) Soft braking in emergencies: In some emergent situations,

the ego vehicle brakes too gently and collides with NPC

vehicles. They can be avoided with more braking power.

2) Wrong overtaking: Apollo may fail to overtake and thus

collide with slow NPC vehicles. In such cases, it is safe

for the ego vehicle to yield instead of trying to overtake.

3) Wrong intersecting trajectory: Sometimes, Apollo produces

an incorrect trajectory that intersects with an NPC’s driving

path, resulting in an inevitable collision.

4) Deadlock: Apollo’s aggressive path planning will block the

motion of NPC vehicles; The stopped NPC vehicles, in

turn, will block the motion of the ego vehicle. This leads

to a deadlock.

5) Wrong prediction: Apollo may make incorrect motion

predictions of the crossing NPC vehicles nearby, which sig-

nificantly affects the generation of collision-free trajectory

and eventually causes collisions.

6) Planning delay: Apollo sometimes suffers from planning

delays, i.e., it cannot update real-time trajectory in time.

Hence, the ego vehicle will follow the old trajectory,

resulting in a collision.

7) Unidentified traffic accidents: When a traffic accident hap-

pens at the junction, Apollo cannot recognize it and will

stop the ego vehicle inside the junction forever and block

other vehicles’ motion.

8) Wrong switch from yielding to overtaking: Sometimes

Apollo is too aggressive in switching from yielding to

overtaking before the crossing NPC vehicles pass through

the collision regions.

9) Prediction delay: Apollo may experience a delay of ob-

stacle predictions at runtime. In this case, it cannot make

collision-free decisions and eventually cause the vehicle to

collide with NPC vehicles.

We also discover one simulator-related issue; However, it

is out of the scope of this paper and will not be discussed

here. Detailed explanations and videos of all these issues can

be found on https://av-testing.github.io/atlas/.

B. Justification of Lane Classification

We analyze the rationality of lane classification based on

the distribution of discovered issues in different junction lane

1344

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 28,2022 at 03:53:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Issues discovered in selected junction lane classes.

Fig. 3: Average number of test cases to trigger an issue.

classes, as shown in Fig. 2. We find that even though some

issues (e.g., soft braking and wrong overtaking) are common

in various classes, each junction lane class shows its unique

distribution of discovered issues. For example, the issue of

wrong yielding to overtaking is common in J688 and J1440,

while the issue of wrong prediction occurs frequently in J686.

Moreover, although we distinguish the situations that NPC

vehicles come from the opposite relative directions (e.g., J657

and J663) due to different rights of way, Apollo does not

identify such different situations during its collision avoidance.

From Fig. 2, we observe that the distributions of discovered

issues in J657 and J663 are similar.

In conclusion, ATLAS can distinguish the most representa-

tive intersection patterns, discover diverse types of issues, and

assist in debugging and improving function.

C. Efficiency of ATLAS

This section demonstrates the efficiency of ATLAS from

different perspectives.

First, we evaluate the efficiency of the GA method. We

record the average number of generated test cases to trigger

an issue in each run during our experiments. The results are

shown in Fig. 3. For all the 16 runs, the average number and

standard deviation of the test cases executed by the GA method

are 95.7 and 21.82, respectively. In contrast, the random

sampling approach requires an average of 134.96 test cases

with a standard deviation of 30.76. To further demonstrate the

significance, we perform Levene test for equal variances and

two-sample t-test for equal means [33], as shown in Table

I. We observe a significant difference between the means of

GA and random sampling. Hence, we conclude that the GA

TABLE I: Significance Testing between the two approaches

mean std
Levene Test for
Equal Variances

Two-Sample t-Test
for Equal Means

GA 95.70 21.82
p-value: 0.274 p-value: 2.429e-04

Random 134.96 30.76

method can reduce the number of test cases by 29.1% to

discover an issue on average.

Next, we consider the time cost to perform testing on a

global map. Based on our experiment, one test case takes

about one minute. As Table I shows, the average number of

executed tests with GA is 95.7. So the average testing time

per junction lane is about 95.70 minutes, and the total testing

time for all 686 valid junction lanes on the San Francisco

map is about 95.7 ∗ 686/60/24 ≈ 45.59 days. If we repeat

the experiment 16 times, the total time is almost 730 days,

which is computationally infeasible. On the other hand, by

performing lane classification, ATLAS samples 13 lanes per

run, reducing the testing effort by 98%. Thus, ATLAS offers

a huge efficiency boost with lane classification.

V. DISCUSSION AND CONCLUSION

Discussion. ADSs are complex and domain-specific software

systems. On the one hand, regarding an ADS as a general

software system, we can apply conventional software testing

technologies (e.g., unit testing, fuzzing testing, and regression

testing) and coverage criteria (function coverage, statement

coverage, branch coverage, condition coverage, and line cov-

erage). On the other hand, as a domain-specific software

system, an ADS shows its own characteristics. For example, an

ADS is implemented with various motion planning algorithms,

so testing these algorithms needs domain-related methods to

design diverse scenarios. Thus, in ADS testing, scenarios play

an essential role in validating the correctness of ADSs. Com-

bining scenario-related coverage and code-related coverage is

a promising direction for ADS testing. This work makes a first

attempt for ADS testing from scenario-related coverage.

Conclusion. In this paper, we propose ATLAS, a novel method

for efficient ADS testing on a global map. It first generates

a set of map topology-based scenarios for testing via junc-

tion lane classification and selection. For each selected lane,

ATLAS parameterizes the scenario with the initial and target

positions of the ego vehicle on the lane and the initial speeds of

the NPCs moving along the lane’s intersecting junction lanes.

Finally, a genetic algorithm is adopted to generate test cases.

The effectiveness and efficiency of ATLAS are validated via

global testing of Apollo on a map.

ACKNOWLEDGMENTS

This work was supported by Singapore MOE Academic

Research Fund Tier 2 grant (MOE-T2EP20120-0004), Singa-

pore Ministry of Education (MOE) AcRF Tier 1 RG108/19

(S), Singapore National Research Foundation (NRF) under

its National Cybersecurity R&D Program (NRF2018NCR-

NCR005-0001 and NRF2018NCR-NSOE003-0001), NRF In-

vestigatorship (NRF-NRFI06-2020-0001), and Alibaba Group

through Alibaba Innovative Research Program and Alibaba-

NTU Joint Research Institute.

1345

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 28,2022 at 03:53:42 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Waymo, “Waymo,” https://waymo.com/, 2016, online; accessed April
2020.

[2] Baidu, “Apollo open platform,” http://apollo.auto/.

[3] Autoware.AI, “Autoware.AI,” www.autoware.ai/.

[4] S. K. Bashetty, H. B. Amor, and G. Fainekos, “Deepcrashtest: Turning
dashcam videos into virtual crash tests for automated driving systems,”
in 2020 IEEE International Conference on Robotics and Automation,
ICRA, Paris, France, 2020, pp. 11 353–11 360.

[5] A. Gambi, T. Huynh, and G. Fraser, “Generating effective test cases for
self-driving cars from police reports,” in the 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 257–267.

[6] W. G. Najm, S. Toma, J. Brewer et al., “Depiction of priority light-
vehicle pre-crash scenarios for safety applications based on vehicle-to-
vehicle communications,” National Highway Traffic Safety Administra-
tion, U.S. Department of Transportation, Washington, DC, Tech. Rep.
DOT HS 811 732, Apr. 2013.

[7] P. Nitsche, P. Thomas, R. Stuetz, and R. Welsh, “Pre-crash scenarios
at road junctions: A clustering method for car crash data,” Accident
Analysis & Prevention, vol. 107, pp. 137–151, 2017.

[8] F. Hauer, T. Schmidt, B. Holzmüller, and A. Pretschner, “Did we test
all scenarios for automated and autonomous driving systems?” in 2019
IEEE Intelligent Transportation Systems Conference (ITSC), 2019, pp.
2950–2955.

[9] W. Ding, M. Xu, and D. Zhao, “Cmts: A conditional multiple trajectory
synthesizer for generating safety-critical driving scenarios,” in 2020
IEEE International Conference on Robotics and Automation (ICRA),
2020, pp. 4314–4321.

[10] C. Roesener, F. Fahrenkrog, A. Uhlig, and L. Eckstein, “A scenario-
based assessment approach for automated driving by using time series
classification of human-driving behaviour,” in 2016 IEEE 19th interna-
tional conference on intelligent transportation systems (ITSC), 2016, pp.
1360–1365.

[11] J.-P. Paardekooper, S. Montfort, J. Manders, J. Goos, E. d. Gelder,
O. Camp, O. Bracquemond, and G. Thiolon, “Automatic identification of
critical scenarios in a public dataset of 6000 km of public-road driving,”
in 26th International Technical Conference on the Enhanced Safety of
Vehicles (ESV), 2019.

[12] D. Zhao, H. Lam, H. Peng, S. Bao, D. J. LeBlanc, K. Nobukawa,
and C. S. Pan, “Accelerated evaluation of automated vehicles safety in
lane-change scenarios based on importance sampling techniques,” IEEE
Transactions on Intelligent Transportation Systems, vol. 18, no. 3, pp.
595–607, 2017.

[13] M. Althoff and S. Lutz, “Automatic generation of safety-critical test
scenarios for collision avoidance of road vehicles,” in 2018 IEEE
Intelligent Vehicles Symposium (IV), 2018, pp. 1326–1333.

[14] M. Klischat and M. Althoff, “Generating critical test scenarios for auto-
mated vehicles with evolutionary algorithms,” in 2019 IEEE Intelligent
Vehicles Symposium (IV), 2019, pp. 2352–2358.

[15] H. Beglerovic, M. Stolz, and M. Horn, “Testing of autonomous vehicles
using surrogate models and stochastic optimization,” in 2017 IEEE 20th
International Conference on Intelligent Transportation Systems (ITSC),
2017, pp. 1–6.

[16] G. E. Mullins, P. G. Stankiewicz, R. C. Hawthorne, and S. K. Gupta,
“Adaptive generation of challenging scenarios for testing and evaluation
of autonomous vehicles,” Journal of Systems and Software, vol. 137, pp.
197–215, 2018.

[17] G. E. Mullins, A. G. Dress, P. G. Stankiewicz, J. D. Appler, and S. K.
Gupta, “Accelerated testing and evaluation of autonomous vehicles via
imitation learning,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA), 2018, pp. 1–7.

[18] L. Li, W.-L. Huang, Y. Liu, N.-N. Zheng, and F.-Y. Wang, “Intelligence
testing for autonomous vehicles: A new approach,” IEEE Transactions
on Intelligent Vehicles, vol. 1, no. 2, pp. 158–166, 2016.

[19] S. Masuda, H. Nakamura, and K. Kajitani, “Rule-based searching for
collision test cases of autonomous vehicles simulation,” IET Intelligent
Transport Systems, vol. 12, no. 9, pp. 1088–1095, 2018.

[20] A. Calò, P. Arcaini, S. Ali, F. Hauer, and F. Ishikawa, “Generating
avoidable collision scenarios for testing autonomous driving systems,”
in 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST), 2020, pp. 375–386.

[21] S. Feng, Y. Feng, C. Yu, Y. Zhang, and H. X. Liu, “Testing scenario
library generation for connected and automated vehicles, part I: Method-
ology,” IEEE Transactions on Intelligent Transportation Systems, 2020.

[22] Y. Tang, Y. Zhou, F. Wu, Y. Liu, J. Sun, W. Huang, and G. Wang, “Route
coverage testing for autonomous vehicles via map modeling,” in IEEE
Int. Conf. Robot.d Autom., 2021.

[23] Y. Tang, Y. Zhou, Y. Liu, J. Sun, and G. Wang, “Collision avoidance
testing for autonomous driving systems on complete maps,” in 2021
IEEE Intelligent Vehicles Symposium (IV21), 2021.

[24] K. Czarnecki, “Operational world model ontology for automated driving
systems–part 1: Road structure,” Waterloo Intelligent Systems Engineer-
ing Lab (WISE) Report, University of Waterloo, 2018.

[25] K. Chellapilla, “Rethinking maps for self-driving,” https:
//medium.com/lyftlevel5/https-medium-com-lyftlevel5-rethinking-
maps-for-self-driving-a147c24758d6, Oct. 2018.

[26] R. B. Abdessalem, A. Panichella, S. Nejati, L. C. Briand, and T. Stifter,
“Testing autonomous cars for feature interaction failures using many-
objective search,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018, pp. 143–154.

[27] A. Gambi, M. Mueller, and G. Fraser, “Automatically testing self-driving
cars with search-based procedural content generation,” in Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2019, pp. 318–328.

[28] T. Blickle and L. Thiele, “A mathematical analysis of tournament se-
lection.” in Proceedings of the 6th International Conference on Genetic
Algorithms, vol. 95. Citeseer, 1995, pp. 9–15.

[29] K.-T. Lan and C.-H. Lan, “Notes on the distinction of gaussian and
cauchy mutations,” in 2008 Eighth International Conference on Intelli-
gent Systems Design and Applications, vol. 1, 2008, pp. 272–277.

[30] LG Silicon Valley Lab, “Lgsvl simulator,” https://github.com/lgsvl/
simulator/releases/tag/2020.06, 2019, online; accessed Oct 2020.

[31] Baidu, “Apollo 6.0,” https://github.com/ApolloAuto/apollo/releases/tag/
v6.0.0, 2019, online; accessed Oct 2020.

[32] LG Electronics, “Map for San Francisco,” https://
content.lgsvlsimulator.com/maps/sanfrancisco/, 2020.

[33] N. A. Heckert and J. J. Filliben, “Nist/sematech e-handbook of statistical
methods; chapter 1: Exploratory data analysis,” 2003.

1346

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 28,2022 at 03:53:42 UTC from IEEE Xplore. Restrictions apply.

