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Abstract. It is well known that Deep Neural Networks are vulnerable to
adversarial examples. An adversary can inject carefully-crafted pertur-
bations on clean input to manipulate the model output. Past years have
witnessed the arms race between adversarial attacks and defenses. In this
paper, we propose a novel method, WED, to better resist adversarial ex-
amples. Specifically, WED adopts a wavelet transform to extend the input
dimension with the image structures and basic elements. This can add
significant difficulty for the adversary to calculate effective perturbations.
WED further utilizes wavelet denoising to reduce the impact of adversarial
perturbations on the model performance. Evaluations show that WED can
resist 7 common adversarial attacks under both black-box and white-box
scenarios. It outperforms two state-of-the-art wavelet-based approaches
for both model accuracy and defense effectiveness.
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1 Introduction

With the revolutionary development of Deep Learning technology, Deep Neural
Networks (DNN) has been widely adopted in many computer vision tasks and
applications, e.g., image classification, objective detection, image reconstruction,
etc. However, DNN models are well known to be vulnerable against Adversar-
ial Examples (AEs) [5]. An adversary can add carefully-crafted imperceptible
perturbations to the original images, which can totally alter the model results.
Various methods have been proposed to generate AEs efficiently and effectively
such as FGSM [5] and CW [2]. These adversarial attacks have been applied to
physical scenarios [7] and real-world computer vision applications.

? Jialiang Lu is the corresponding author.
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It is extremely challenging to defend AEs. First, an adversary has different
approaches to generate AEs. It is hard to train a attack-agnostic DNN model
without pre-knowledge of the specific attack techniques. Second, correcting the
model’s results on AEs can usually alter its behaviors on normal inputs, which
can lead to non-negligible performance loss. Third, due to the strong transfer-
ability of the adversarial examples, the adversary can compromise the models
without having access to the model structures or parameters. Such black-box
techniques significantly increase the difficulty of model protection via hiding or
restricting model information.

There are a variety of works attempting to address those challenges, how-
ever, they all suffer certain drawbacks or practical issues. Up to now, there are
no satisfactory solutions to defeat all adversarial attacks under both black-box
and white-box scenarios. Specifically, (1) adversarial training [5, 8] is a class of
methods that consider generating AEs during training. Such methods require
the knowledge of adversarial attacks to create AEs, which depends on the type
of the attacks. (2) Defensive distillation [11] enhances the model robustness dur-
ing training through the model distillation mechanisms. This approach has been
shown ineffective when the adversary slightly modifies the AE generation al-
gorithm. (3) Some approaches proposed to pre-process the input images [12]
to remove the adversarial perturbations at the cost of accuracy degradation on
clean images. The adversary can still easily defeat such methods by including
the transformations into optimization procedure [1].

In this paper, we propose a novel approach, WED, to defend AEs via Wavelet
Extension and Denoising. The key insight of our approach is that by extending
the input image into a higher dimensional tensor with non-differentiable wavelet
transforms, it is extremely difficult for the adversary to generate perturbations
that alter the model’s output. Specifically, WED consists of two innovations. The
first innovation is Wavelet Extension. WED adopts wavelet transform to extend
the input image into two scales: the original one and low-frequency one. These
two scales are then combined as one tensor as the input, which makes it difficult
to generate effective adversarial perturbations. The second innovation is to adopt
wavelet denoising only at the inference step. The original image, as one scale,
keeps the original visual content and elements to assist the model classification.
WED also utilizes wavelet denoising during the inference phase to reduce the
impact of the adversarial perturbations.

Our comprehensive experiments show that WED outperforms state-of-the-art
defenses (e.g., Pixel Deflection (PD) [12] or Wavelet Approximation (WA) [13])
from different aspects. For robustness, WED shows higher robustness against al-
most all known adversarial attacks under black-box scenarios (e.g. 97% accuracy
for AEs generated by CW) compared with PD. For performance, WED has higher
classification accuracy on clean image samples (97% accuracy on the test com-
pared with 92%from PD, more details see Section 4.2).

The roadmap of this paper is as follows. In Section 2, we briefly introduce
the background of adversarial attacks and defenses. In Section 3, we presents
the design of our proposed WED. In Section 4, we comprehensively evaluate the
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robustness and performance of WED and compare it with state-of-the-art solutions
under different scenarios. We conclude in Section 5.

2 Research Background

2.1 Adversarial Attacks

The goal of adversarial attacks is to make the DNN model give wrong predictions
by adding imperceptible perturbations to the original input. Formally, for a clean
image x, we denote its corresponding AE as x̃ = x+ δ where δ is the adversarial
perturbation. Let F be the classifier mapping function of the DNN model, the
process of generating AEs can be formulated as the following problem:

min‖δ‖
s.t. F (x̃) = l′, F (x) = l, l′ 6= l

(1)

where l is the correct class of clean image x, l′ is the target class misled by
x̃. The adversary aims to find the optimal perturbation to mislead the classifier.

Various techniques have been proposed to generate AEs, and there are two
main categories. (1) Naive Gradient-based approaches: the adversary generates
AEs by calculating the model gradients with pre-set constraints of how much
modification can be made on input samples. For instance, Fast Gradient Sign
Method (FGSM) [5] calculates the perturbations based on the sign of the gradi-
ent of the loss function with respect to the input sample. This kind of methods,
also including I-FGSM [7] and MI-FGSM [4], aim at iteratively calculating the
perturbations with a small step or with momentum. (2) Optimized Gradient-
based approaches: the adversary adopts optimization algorithms [2] to find opti-
mal perturbations by considering the gradients of the predictions with respect to
input images. This kind of solutions are very powerful under white-box scenario
since the attackers can adjust the AE generation according to defense methods.
Recently, there are many optimized gradient-based approaches to generate AEs
including JSMA [10], DeepFool [9], LBFGS [15], CW [2].

2.2 Defense Strategies

There exists an arms race between adversarial attacks and defenses. Different
solutions were proposed to defend different attacks, which are mainly following
two directions. The first direction is to apply preprocessing like transformations
on input images to reduce the impact of carefully-crafted adversarial perturba-
tions. As shown in Eq. 2, the defense applies a transformation function τ on
the input image. It tries to maximize the probability of classifying the adversar-
ial examples x̃ to the correct class of the original image x. The transformation
function can be non-differentiable and non-invertible, which makes it difficult
for adversaries to get the gradients through back-propagation. Signal processing
techniques are commonly adopted in this case, e.g., wavelet transformation [13]
and denoising [12]. However, there exists a trade-off between effectiveness and
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performance: weak transformation fails to remove the impact of small adversarial
perturbations; while intensive transformation can result in an obvious accuracy
loss on the clean images. Also, under the white-box scenario, such methods are
vulnerable to the optimized gradient-based adversarial attacks. If the adversary
includes the preprocessing in the optimization procedure, the AEs generated can
still be effective to mislead the DNN model.

max
τ

P (F (τ(x̃)) = F (τ(x))) (2)

The second direction is to modify the target model to increase its robustness.
As shown in Eq. 3, F ′ denotes the classifier mapping function of the modified
model. Typical examples include adversarial training [5, 8] and network distilla-
tion [11]. These approaches are effective under some conditions, however, there
will be a high cost due to model retraining.

max
F ′

P (F ′(x̃) = F ′(x)) (3)

3 Methodology

3.1 Overview

The key idea of our approach WED is to extend the input image x into two parts
(τ1(x), τ2(x)) with two transformation functions (τ1 and τ2), as shown in Eq. 4.

max
F ′,τ1,τ2

P (F ′(τ1(x̃), τ2(x̃)) = F ′(τ1(x), τ2(x))) (4)

Eq. 4 combines two defenses strategies in Eq. 2 and Eq. 3 at the same time
by introducing transformations (τ1 and τ2) and modifying the mapping function
of model F ′. We then try to maximize the probability of classifying the AE x̃ to
the correct class as the original image x.

These two transformations must be carefully designed to satisfy two require-
ments: (1) it should prevent the adversary from affecting the processed images by
perturbing the input; (2) it should maintain high prediction accuracy on clean
images. To achieve those goals, we adopt the wavelet transformations (exten-
sion and denoising) for τ1 and τ2 respectively. Fig. 1 shows the overview of our
approach. During the training phase (Fig. 1(a)), each image is extended to a
higher dimensional tensor of two scales, τ1: an identity mapping of the original
image; τ2: the low-frequency scale extracted by wavelet decomposition. During
the inference phase (Fig. 1(b)), the input image is pre-processed in a similar way,
except that τ1 is now a wavelet denoising function applied to the original image.

Both of these two transformations play critical roles in increasing robustness.
In order to fool the target model, the two parts must be affected in a sophisticated
and collaborative way at the same time. However, since the adversary can only
make changes to the original image x, it is difficult to affect the model output
by small perturbations. Below, we elaborate and validate each technique.
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Fig. 1. Methodology Overview. (a) Training phase; (b) Inference phase.

3.2 Wavelet Extension

As shown in Fig. 1, WED adopts Wavelet Extension (WavExt) to extract low-
frequency information and extend the input. This process can build an image
extension that represents the basic visual structures, which can be hardly influ-
enced by adversarial perturbations and can assist the model prediction. This is
done by extending the RGB image from N ×N × 3 into N ×N × 6 by adding
an image obtained by a reconstruction algorithm based on wavelet transform.

Generally, the wavelet transform represents any arbitrary signal as a superpo-
sition of wavelets. Discrete Wavelet Transformation (DWT) decomposes a signal
into different levels. DWT decomposes one signal into a low-frequency band (L
band) and a high-frequency band (H band) with equal size. For image process-
ing, the DWT is normally processed in a two-dimensional manner as 2D-DWT in
two directions: vertical and horizontal. There will be four sub-bands generated
as shown in Fig. 2: LL band, LH band, HL band, and HH band. With the
proper choice of the wavelet filter, the image can be decomposed into different
frequency bands representing various elements such as basic structures, details,
etc. As we can observe in Fig. 2, the LL band is an abstract of the basic image
structures while the rest three bands represent the image details.

Algorithm 1 shows the detailed steps to process the images. After one level
of two-dimensional DWT (Line 1), there are four sub-bands generated each of
size floor(N−12 ) + n, with n = 4 as the filter length. We crop the LL band of

each RGB layer to N
2 ×

N
2 (Line 2), and then perform the Bicubic interpolation

to resize the extracted low-frequency component back to N ×N (Line 4).
We visually show the effectiveness of the wavelet extension by the saliency

map [14]. The saliency map is obtained by first calculating gradients of outputs of
the penultimate layer with respect to the input images, and then by normalizing
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Fig. 2. Examples of 2D-DWT decomposition. 2D-DWT operations: (a1) and (a2); two
images as examples: (b1) and (b2), (c1) and (c2).

ALGORITHM 1: WED: Wavelet Extension and Wavelet Denoising.

Input: Image x, size N ×N × 3
Output: processed tensor xExtended, size N ×N × 6

1: LL, LH, HL, HH = wavelet-decomposition(x)
2: The size of LL is cropped to N/2×N/2× 3
3: The value of LL is re-scaled to [0, 255]
4: xExt = Bicubic-interpolation(LL)
5: if Inference phase then
6: xExtended = concat(wavelet-denoising(x), xExt)
7: else
8: xExtended = concat(x, xExt)
9: end if

the absolute values of those gradients. A brighter pixel in the saliency map
means that the corresponding pixel in the original image has more influence on
the model’s output. Fig. 3 shows that although the saliency maps of a clean
image (e) and its AE (f) are very different, the saliency maps of their extended
components are nearly identical (see (g) and (h)). This indicates that the wavelet
extension can effectively remove the effects of adversarial perturbations.

During training phase, we concatenate the extended component with the
original input as the actual input tensor of size N ×N × 6 (Line 8). We adjust
the model structure to accept this input size only by changing the dimension
of weights in the first layer. The reason that we include the original image is
that they still keep details of the images, which can assist the classification
and maintain accuracy. However, the existence of those original images provides
adversaries with opportunities to manipulate the model behaviors. We introduce
another mechanism to eliminate this threat during inference phase.

3.3 Wavelet Denoising

During inference phase, an extra non-differentiable transformation is applied to
the original input (Fig. 1(b)). Due to the different pre-processing steps between
training phase and inference phase, the AEs generated using the gradients of the
trained weights will not have the optimized result as desired by the adversary.
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Fig. 3. Similar saliency maps between wavelet extension results ((g) and
(h)). (a) and (e): a clean image and its saliency map; (b) and (f): corresponding AE
image and its saliency map; (c) and (g): wavelet extension of image (a) and its saliency
map; (d) and (h): wavelet extension of AE image (b) and its saliency map.

We implement the wavelet denoising method by combining two approaches,
VisuShrink and BayesShrink [3]. Normally wavelet denoising relies on the basic
assumption that the noise tends to be represented by small values in the fre-
quency domain. These small values can be removed by setting coefficients below
a given threshold to zero (hard threshold) or by shrinking different coefficients
to zero by a soft threshold. First, we use the VisuShrink to set a threshold to
remove additive noise. For an image X with N pixels, this threshold is given
by σ

√
2logN , where the σ is normally smaller than the standard deviation of

noise. Second, we adopted the method from [12] and use the BayesShrink based
on a soft threshold. We model the threshold for each wavelet coefficient as a
Generalized Gaussian Distribution (GGD). The optimal threshold can be fur-

ther approximated by σ2

σx
where σx and β are parameters of the GGD for each

wavelet sub-band (Eq. 5). Normally, an approximation of Th, as shown on the
right side of Eq. 5, is used to adapts to the amount of noise in the given image.
We adopted the parameter settings from [12].

T ∗h (σx, β) = argmin
Th

E(X̂ −X)2 ≈ σ2

σx
(5)

4 Evaluations

4.1 Experimental Settings and Implementations

Dataset and models. We consider an image classification task on CIFAR-
10 with 50,000 images for training and 10,000 images for testing. Each image
(32× 32× 3) belongs to one of ten classes. All pixel values are normalized to the
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range [0, 1]. The target model is ResNet-29 [6]. It consists of 29 layers containing
three bottleneck residual blocks with channel sizes 64, 128, 256, respectively.
We use Keras package with Tensorflow backend to implement the model. The
training is done by using Adam optimization with its hyper-parameters β1 =
0.9, β2 = 0.999. The model reaches the Top-1 accuracy of 92.27% over the testing
set after about 150 epochs. Experiments are done on a platform with Intel(R)
Core(TM) i7-8700K CPU @ 2.40GHz and NVIDIA GeForce GTX 1080 Ti GPU.

Attack and defense implementations. We test our defense by 7 common
AE generation methods: FGSM [15], I-FGSM [7], MI-FGSM [4], L-BFGS [5],
JSMA [10], DeepFool [9], CW [2]. All attacks are implemented with the help of
the CleverHans library (v3.0.1). We consider two attack scenarios. (1) Black-box
scenario: the adversary does not have access to the model parameters, defense
mechanism, etc. (2) White-box scenario: the adversary has detailed knowledge
of the target model including the trained parameters and defense mechanism.
Since the size of input after wavelet extension becomes N × N × 6, we train
another ResNet-29 model by only changing the dimension of weights of the first
layer to accept the extended input. The Top-1 testing accuracy reaches 91.96%,
which means that WED does not influence the performance of the target model.

Under different attacks, we compare WED with two wavelet transform-based
defense solutions: Wavelet Approximation (WA) [13] and Pixel Deflection (PD) [12].
WA uses level-1 wavelet approximation on the input image to get low-resolution
images. PD randomly replaces pixels by other pixels randomly selected within a
small window and use Bayeshrink wavelet denoising to reduce adversarial noise.
For each experiment, we consider the targeted attack, where a new label different
from the correct one is selected as the adversary’s target. We randomly select
100 samples which are correctly predicted by the original model from the test
set, generate the corresponding AEs and measure the top-1 accuracy.

4.2 Black-box Scenario

In the black-box scenario, the adversary does not know the model parameter. He
trains another shadow model with the same network architecture (ResNet-29)
to generate AEs. Table 1 shows the top-1 prediction accuracy on the generated
AEs for the models without any protection (baseline), with WA, PD and WED,
respectively. To clearly show the magnitude of AEs distortion compared with
the original images, we calculate the average normalized Linf and L2 distance.

We observe that our defense is effective towards all kinds of attacks, and
outperforms both WA and PD in most cases. Particularly, for attacks with larger
Linf distortion (e.g., I-FGSM, and MI-FGSM), PD is less effective. In contrast,
our defense still shows strong resistance. Moreover, WED has better accuracy on
clean images than WA or PD. Such high prediction accuracy on both clean images
and AEs is due to the concatenation of two scales of information, details from
the wavelet denoised part and structures from the wavelet extended part.
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Table 1. The Top-1 accuracy on baseline, WA, PD, WED in the black-box scenario.

Attack Linf L2 Baseline WA PD WED

Clean 0.0 0.0 1.0 0.89 0.92 0.97
FGSM 0.005 0.28 0.39 0.84 0.84 0.94

I-FGSM 0.005 0.21 0.21 0.85 0.86 0.93
MI-FGSM 0.005 0.25 0.29 0.84 0.86 0.92

JSMA 0.832 4.12 0.0 0.60 0.49 0.68
DeepFool 0.015 0.12 0.0 0.87 0.95 0.95
LBFGS 0.018 0.15 0.0 0.86 0.92 0.97

CW 0.011 0.09 0.0 0.86 0.95 0.97

4.3 White-box Scenario

In this scenario, the adversary knows the exact values of the model parameters.
Then he can directly generate AEs based on the target model. In WED, the model
input are the tensor (N×N×6) extended by wavelet transformations, while the
adversary can only provide AEs that have three channels (N×N×3). Due to the
non-differentiability of the transformations, it is hard for the adversary to adjust
the original input with small perturbations to change the output tensors to the
malicious ones. Thus in this scenario, we assume the adversary will directly use
half of the calculated adversarial tensors as the input.

Table 2. Top-1 accuracy on WavExt and WED in the white-box scenario.

Attack Linf L2 WavExt(without denoising) WED

FGSM 0.005 0.28 0.48 0.62
I-FGSM 0.005 0.21 0.24 0.48

MI-FGSM 0.005 0.24 0.28 0.50
JSMA 0.898 4.95 0.19 0.68

DeepFool 0.015 0.12 0.85 0.95
LBFGS 0.017 0.15 0.77 0.97

CW 0.012 0.09 0.87 0.97

Existing approaches like WA or PD cannot fit into this scenario as the model
input and pre-processed input have different dimensions. So we only compare the
effectiveness of WED and the one with only Wavelet Extension (Section 3). The
results are shown in Table 2. The comparison results indicate that the robustness
is increased with the wavelet denoising at the inference phase. We observe that
our defense still shows strong resistance against some attacks even the adversary
knows the parameters, especially for DeepFool, LBFGS, and CW.

5 Conclusion

In this paper, we propose a novel approach to defend DNN models against ad-
versarial examples. First, we apply a wavelet transform to extend the input
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images with their structures and basic elements. Second, we utilize wavelet de-
noising to further reduce the impact of the adversarial perturbations. These two
non-differentiable operations can increase the difficulty of generating adversarial
perturbations while maintaining the model performance. Our approach provides
better robustness and effectiveness over other wavelet-based solutions in defeat-
ing different popular adversarial attacks under different scenarios.
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