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Abstract. Modern cloud robotic applications face new challenges in
managing today’s highly distributed and heterogeneous environment.
For example, the application programmers must make numerous sys-
tematical decisions between the local robot and the cloud server, such as
computation deployment, data sharing and function integration.

In this paper, we propose RobotCenter, a composable cloud
robotics operating system for developing and deploying robotics applica-
tions. RobotCenter provides three key functionalities: runtime man-
agement, data management and programming abstraction. With these
functionalities, RobotCenter enables application programmers to eas-
ily develop powerful and diverse robotics applications. Meanwhile, it
can efficiently execute these applications with high performance and low
energy consumption. We implement a prototype of the design above and
use an example of AGV/UAV cooperative transport application to illus-
trate the feasibility of RobotCenter. In the experiment, we reduce the
total energy consumption and mission completion time up to 41.2% and
51.5%, respectively.

Keywords: Cloud robotics · Runtime management · Data
management · Programming abstraction · Composable system

1 Introduction

Over the past decade, we have witnessed two revolutionary hardware trends:
the massive-scale cloud computing platforms and plentiful, cheap wireless net-
works. These technologies have triggered the killer applications of edge-cloud
revolution – cloud robotics [6,27,30,31]. On one hand, robotic applications, such
as Microsoft FarmBeats [46] and Dji FlightGub [12], enable robots to publish
and share information with other edge robots or sensors. On the other hand,
Rapyuta [37] and Amazon IoT Greengrass [8] provide a platform for robots to
offload computation-intensive tasks on cloud servers. The rise in demands for
those applications has led more researchers and practitioners to develop cloud
robotics systems for computation offloading and data sharing.
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The state-of-the-art cloud robotics systems mainly fall into two ends of the
spectrum in the robotic community. One end is the monolithic systems, which
tightly integrate edge robots with cloud servers for specific tasks, including auto-
mated logistics (e.g. Amazon Kiva [22]) and precision agriculture (e.g. Microsoft
FarmBeats [7]). However, these systems are usually ad-hoc and hard to be
extended with other kinds of robots or customized tasks [44].

The other end is the robotic middlewares (e.g. ROS [2], Player [20]). They
provide an abstraction layer to facilitate coordination and message passing
between different modules of robots [23]. All the modules are loose-coupled and
easy to be integrated with third-party libraries, such as OpenCV [10], PCL [11]
and so forth. Those flexible robotic middlewares have drawn much attention
and became the de facto operating systems for developing robotic applications.
Those middlewares work well for managing one or a few robots. However, there
are still a lot of unresolved challenges when managing a group of heterogeneous
robots. Cloud robotics application programmers have to take into consideration
plenty of complicated resource management details by their own, e.g. availability,
adaptability, fault-tolerance and reactivity.

Fig. 1. The robot application environments and system architectures.

In this paper, we argue that the cloud robotics applications need a new software
stack to manage and share multi-robots resources. Figure 1 shows the robot appli-
cation environments and system architectures. The bottom layer is the hardware,
containing computing processor, memory, sensors, etc. The middle layer is the soft-
ware stack, developed by system programmers. The top layer is the robotics appli-
cations developed by application programmers. The software stack should provide
at least three key functionalities: 1) Runtime Management: the stack should
make decisions when (dynamic migration) and where (robots or cloud) to deploy
user-defined jobs. 2) Data Management: the stack should maintain a bunch of
state information about each robot, such as ID, heartbeats, maps and so forth,
which can be shared among multiple robots. 3) Programming Abstraction: the
stack should provide a high-level and easy-to-use interface for applicationprogram-
mers to manage the underlying robot resources.
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We further propose RobotCenter, a software stack for cloud robotics
composable systems. Specifically, (1) for runtime management, we implement
Avalon, an adaptive resource management system, to provide the functionalities
of computation offloading for better performance and energy usage. (2) For data
management, we introduce Shared Knowledge Base (SKBase), a shared mem-
ory database to maintain the data for application programmers and provide
data abstraction for availability. (3) For programming abstraction, we propose
ActionFlow, a cloud robotics programming framework to provide modularity
through a collection of pluggable planner modules that extend the software stack
to support application-specific scheduling needs.

The combination of Avalon, SKBase and ActionFlow provide a composable
cloud robotics system that manages distributed computation and data for cloud
robotics applications. Programmers can develop their applications with modular-
ized interfaces without considering availability, adaptability, fault-tolerance and
reactivity. Our prototype show that the processing time of path panning process
in cloud based multi-robot cooperative transport application can be reduced by
52%.

The rest of this paper is organized as follows: In Sect. 2, we discuss the
main challenges and requirements for designing a cloud robotics OS. The mech-
anisms and functionalities of RobotCenter framework is presented in Sect. 3.
In Sect. 4, we use an example of AGV/UAV cooperative transport application to
illustrate the feasibility and experimental results of RobotCenter. Section 5
discusses some open problems and our future work. Section 6 concludes this
paper.

2 Background

2.1 Cloud Robotics Application

This section first describes the characteristics of developing a cloud robotics
application, and then discusses the new challenges and requirements for design-
ing a cloud robotics OS.

Development Characteristics. Today, robotic applications have become
inherently distributed, with data and computation spreading across edge robots
and cloud servers. As a result, modern robotic application development has
acquired two new characteristics:

1. A distributed computation deployment. Different from past robotic
applications that run on a single robot, modern cloud robotics applications
distribute computation across edge robots and cloud servers with wireless
network. However, due to uncontrollable environmental factors, such as insta-
bility of wireless connections, fluctuation of communication bandwidth, and
robot mobility, programmers must consider an adaptive computation schedul-
ing policy under the highly unreliable and unpredictable data transmission.
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2. New reliable and persistence guarantees. Different from past robotic
applications that store robot’s states in local file systems, modern cloud
robotics applications shift the states storage from edge to cloud back-ends.
The definition of the term “states” is the collection of states of a robot and its
environment. Such a distributed data storage can incur more frequent faults,
and make it harder to recover them. It is challenging to satisfy users’ require-
ments of executing cloud robotics applications reliably without process crash
or data loss.

Table 1. Cloud robotics OS requirements and challenges

Characteristic Requirement

Distributed computation deployment Availability: Remain usable with
unreachable nodes

Adaptability: Respond with low
latency under variable
performance

Reliable and persistence guarantees Fault-tolerance: Ensure data is not lost
on crashes

Reactivity: Propagate state
updates automatically

Inherent application design Modularity: Simple to reuse at low
cost

Application Development. As shown in Table 1, the two characteristics lead
to a set of new challenges for programmers while developing cloud robotic appli-
cations. These challenges dictate the requirements for a cloud robotics OS which
guide our stack design.

The first two challenges and requirements stem from the distributed compu-
tation deployment. Since mobile robots execute tasks in a highly unpredictable
environment, the interaction between edge robots and cloud is influenced by
many incontrollable factors. For example, As a robot keeps moving, its uplink
and downlink bandwidth can fluctuates frequently, or even get disconnection,
due to the absorption of electromagnetic waves or wireless interference with
other devices. As a result, programmers must ensure that their applications are
available so the robot can continuously execute tasks with unreachable nodes in
the cloud. Meanwhile, the benefit from computation offloading can be decreased
in the poor wireless environment, thus the cloud robotics applications should be
adaptive to migrate between edge robots and cloud servers.

The next two challenges and requirements arise from new reliable and persis-
tence guarantees. Robotic applications are used to be executed in a closed-loop
streaming processing model, e.g. sensing data from the environment, interpreting
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and making decision, navigating or modifying the environment. Each component
generates large amounts of states that need to be stored in either edge robots or
cloud. Consequently, cloud robotics applications must periodically checkpoint or
log to the storage system for fault-tolerance, and keep reactive to automatically
propagate the state updates from each component to persistent storage.

The final challenge and requirement is a consequence of inherent cloud
robotics application design. Modularity plays an important role in the rapid
development of applications, as it allows programmers to develop a new applica-
tion from existing components. So, programmers must make their code easier to
be integrated in other robotic applications to meet different demands of dynamic
environment.

2.2 Cloud Robotics OS Abstractions

It is necessary to have a cloud robotics OS to meet the five requirements for
developing applications. In this section, we describe the related work from three
OS functionalities: runtime management, data management and programming
abstraction. We further discuss the issues of current technologies to address these
challenges.

Runtime Management. Cloud robotics OSes manage runtime processes of
applications and decides when and where to deploy these computations dynam-
ically. Recently, the RoboEarth project [3] introduces a centralized task con-
troller to manage a group of robots [29]. It also uses Rapyuta [37] to offload
computation to clouds and speed up computation-intensive robotic applications
such as navigation [29] and SLAM [39,40]. Amazon recently released a cloud
robotics platform, RoboMaker [9], which provides a cloud-based platform for
robotic application development and simulation. Programmers can deploy their
applications in the edge robot and cloud through IoT Greengrass [8].

These cloud runtime systems support lightweight containers that allow appli-
cation programmers to easily execute customized processes in the cloud (mod-
ularity). They provide basic runtime management that monitors and updates
states of each robot periodically (reactivity), detects and restarts crashed con-
tainers (fault-tolerance).

Issue #1: Both Rapyuta and RoboMaker systems are in short of adaptivity
and availability. Specifically, they require programmers to set up and deploy
containers without automatically computation migration for better performance
or energy usage, and neglect the network disconnection due to unpredictable
wireless network (Table 2).

Data Management. Cloud robotics OSes also manage the storage distribution
of robots’ states. For example, the KnowRob [15,45] and the RoboBrain [5]
intend to build a robotic wikipedia to share information that guide robots to
perform actions and interact with objects.
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Table 2. Comparison of our stack to prior work for cloud robotics application devel-
opment

OS Availability AdaptabilityFault-toleranceReactivity Modularity

Rapyuta [37] � � �
RoboMaker [9] � � �
Cloud Database [5,45] � � �
ROS [2] �
SOA [32,35,36,40,42] �
Monolithic OS [7,22] � � � �
Our Framework: RobotCenterSKBase ($3.2)Avalon ($3.1)SKBase ($3.2) SKBase ($3.2)ActionFlow ($3.3)

These cloud database systems store the logic data in the relation database
(e.g. Sesame [17]) and the binary data in the distributed storage systems (e.g.
Apache HDFS [1]). The robot is regarded as a completely stateless mobile client
that can query and analyze knowledge representation languages (e.g. Web Ontol-
ogy Language [4]) that are related to objects and maps of applications. Appli-
cation programmers can continuously checkpoint to these storage systems for
fault-tolerance and periodically poll to update reactive state updates.

Issue #2: These cloud database systems do not meet the requirements of adap-
tivity and availability. While applications are implemented with stateless mobile
clients, users cannot access the data in cloud storage under poor wireless band-
width. Moreover, replicating data to the cloud increases the availability of the
applications at the cost of responsiveness. It is ineffective for some tasks with
strong real time constraints for fault recovery.

Programming Abstraction. The key role of an Cloud Robotics OS is to
provide abstractions and APIs, hiding the underlying complex implementations
of robotic functions and hardware features for the programmers. ROS (Robot
Operating System [2]) makes a great progress towards programming abstrac-
tion through providing a series of common libraries for low-level device con-
trol and inter-process communication. Application programmers achieve func-
tions via launching a set of concurrent long-running processes, called “nodes”.
The communication between two nodes can be either a two-way request/reply
pattern called rosservice or a many-to-many publish/subscribe pattern called
rostopic. Application programmers can easily achieve these functions by send-
ing/subscribing to each function with ROS-type message. Besides, researchers in
the robotic community have proposed many cloud robotics services to meet the
needs of different applications, such as 3D Mapping [40,42] and grasp planning
[32,35,36].

Issue #3: Unfortunately, ROS just provides the basic communication and
hardware control abstraction. Application programmers need to implement all
cloud robotics application requirements for themselves. Besides, current Service-
Oriented Architectures (SOA) frameworks focus on the efficiency of algorithm
implementations and cannot meet other OS requirements.
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3 RobotCenter Framework

This section describes the mechanisms and functionalities of RobotCenter
framework. We present how RobotCenter meets five requirements discussed
in Sect. 2.

3.1 Runtime Management: Avalon

We designed a resource management framework, Avalon, to achieve adaptability
in RobotCenter. Avalon implements an adaptive energy-efficient scheduler
to migrate the computation across edge robots and cloud servers automatically
under unpredictable wireless transmission latency. Although adaptive compu-
tation offloading problem is widely studied in mobile cloud computing domain
(e.g. CloneCloud [19], MAUI [21] and ThinkAir [33]), they are not well suited
for robotics applications because of several reasons. First, robotic applications
are multi-process while mobile applications are multi-thread without exposing
sockets. Second, the offloading decision model of robotic application depends on
not only data transmission latency, task processing time and CPU frequency,
but also some robotic factors, e.g. velocity and decision accuracy.

To ensure the responsiveness of various robotic applications, Avalon delegates
control over scheduling to the framework with a customized energy-efficient util-
ity model. Specifically, the energy-efficient utility function is characterized along
two dimensions: total completion time and total energy consumption. The total
completion time (TT ) denotes the time a mobile robot completes the mission,
which depends on the traveling distance and robot’s velocity. In contrast, the
total energy consumption (TE) means the energy consumed during the mission
execution. Thus, we propose the energy-efficient cost (EEC) by the following
definition.

Definition 1 (Energy-Efficiency Cost (EEC)): The energy-efficiency cost
(EEC) is defined as the weight sum of total completion time and total energy
consumption. Thus, the EEC of a robotic workload is given by

Z = γTTT + γETE (1)

where 0 ≤ γT , γE ≤ 1 denotes the weights of total completion time and totally
energy consumption for the workload execution of the mobile robot. In this equa-
tion, we normalize the measurement of TT and TE so that the value of Z will
fall in [0, 1]. To provide a scalable and resilient core for enabling various mobile
robots to efficiently perform the workload, we allow that different framework
programmers can customize different weighting parameters in the decision mak-
ing. For example, when a mobile robot has a long journey at a low battery state,
the robot prefers to set a larger weight on TE to save more energy. When a
mobile robot executes some applications that are sensitive to the delay, such as
search and rescue, choosing a larger weight on TT would navigate the robot to
the destination as soon as possible.
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The utility function of local mode Zlocal (robot only) and remote mode
Zremotel (robot + cloud) is different due to the resource characteristics. Thus,
the intersection of two utility curves determines the migration time to maximize
performance. As discussed in recent works of mobile cloud offloading [18,26],
the utility function Zlocal and Zremotel depend on many factors, such as cpu fre-
quency, transmission time, processing time of computations in local and remote
server. Here, we introduce a novel factor that only exists in robot workloads, i.e.
decision accuracy. Unlike mobile phones, robots can sacrifice the decision accu-
racy to reduce computation utilization under constraints [16,44]. For instance,
the increase in planning resolution makes the voxels of map larger, so space is
represented more coarsely and less accurately, then performance improves due
to the less needed computation. However, the mission may fail in a complex
environment under a low accuracy. Hence, Avalon attaches the accuracy con-
straints to utility function and helps programmers to determine on redirecting
a computation replication with proper accuracy.

Fig. 2. Avalon architecture overview.

As Fig. 2 shows, the Avalon implements the utility model with three parts:
Static Analyzer, Dynamic Profiler and Adaptive Scheduler. The Static Analyzer
identifies the legal range of outputs in the utility model, according to a set
of customized migration constraints. For example, maximum CPU frequency
and maximum velocity limit the upper bound of frequency and speed scaling
policy. The Dynamic Profiler collects the robot’s states (e.g. CPU load, network
latency) as the input of the model and sends to the cloud servers periodically.
Finally, the Adaptive Scheduler finds the optimal decision by minimizing the
utility function, including computation migration, edge robot’s CPU frequency
and planning accuracy control.

3.2 Data Management: SKBase

We propose SKBase, a shared knowledge database, to achieve availability, fault-
tolerance and reactivity for data management. SKBase keeps multiple copies of
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states on edge robots and cloud servers for fault recovery, and automatically
propagate updates across these copies.

To ensure the availability of application effectively, SKBase provides shared
memory among processes in both edge and cloud. Further, SKBase introduces a
new data abstraction, called shared data object (SDO) as the sharing unit. SDOs
support various data type, including simple primitives (e.g. string), collections
(e.g. list) and ROS messages (e.g. geometry msgs). Thus, application program-
mers can encapsulate robot’s states without modifying original data type.

Due to various real time requirements for fault recovery of processes, SDOs
should be deposited in different places. For example, the localization process
should be auto-restarted with initial position on crash. The application might
place the current position state on edge robot for low latency because the robot’s
position is still changing while moving. On the other hand, states like generated
map could be placed on a cloud server for sharing with other robots. Thus,
SKBase proposes a new data mapping interface to place copies in a cloud-based
distributed storage system or edge robot’s disk. Application programmers use
this interface to link in-memory states to keys in different storage systems and
all SDOs with the same key will be automatically synchronized.

Fig. 3. ActionFlow execution process.

3.3 Programming Abstraction: ActionFlow

We propose ActionFlow, a ROS based modularized cloud robotics programming
framework, which provides a RPC-like action abstraction for job scheduling.
ActionFlow delegates data management and resource management to SKBase
and Avalon respectively. Thus, RobotCenter meets all five cloud robotics
application requirements.

ActionFlow encapsulates the SOA frameworks as a collection of pluggable
modules that support application-specific scheduling needs. Figure 3 presents the
basic components and execution workflow in ActionFlow. Specifically, applica-
tion programmers submit their work to ActionFlow in the form of jobs, each of
which consists of one or more actions that all run the same program. System
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programmers design different planners to parse jobs into different actionDAGs.
The scheduler then maps each action into a corresponding ROS task through
SKBase and sends it to available robots. After the worker in each robot com-
pletes the task, it returns the results to the planner and updates the data. Each
robot works in a stateless process, which means they are agnostic about the job
collaboration, while the action scheduling is decided by the planner.

Another contribution of ActionFlow is the RPC-like action abstraction based
on action mapping, which hides ROS relevant interfaces for interacting with
robots. ActionFlow provides various APIs for different types of actions to sim-
plify development of cloud robotics frameworks through storing mapping from
its action interface to the a specific ROS task.

4 Use Case and Evaluation

We implemented a prototype1 of the design above to illustrate the feasibility
of RobotCenter. We use the example of AGV/UAV cooperative transport
application. In this workload, both AGV (automatic guided vehicle) and UAV
(unmanned aerial vehicle) are put in an obstacle-filled environment. The UAV
takes off and sends its position to the AGV periodically. The AGV navigates
to the designated position and calibrates the relative position with vision recog-
nition to ensure correctness. At last, the UAV lands on the AGV to simulate
cargo offloading. RobotCenter programmers can decompose the job into four
actions with ActionFlow action interfaces, including (1) uav.takeoff(height), (2)
agv.move(uav.position), (3) agv.calibration(uav.model), and (4) uav.land(agv.h-
eight).

Fig. 4. A time-line sketch of cooperative transport. All white blocks construct Robot-
center base built in gateway, and grey blocks are launched in robots.

1 The experiment video can be found in https://youtu.be/KeYyS6lZxo0.

https://youtu.be/KeYyS6lZxo0
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In our experiment, We deployed the Dji Spark and turtlebot in our lab. The
turtlebot is equipped with an Intel i5-2450M CPU @ 2.5 GHz, 1.8 GB of RAM
netbook and a Dji guidance over the top board. The two robots were connected
to a powerful gateway server (Intel i7-7700K CPU @ 4.2 GHz with 16 GB of
RAM and a GeForce GTX 1080) with a passive 5 GHz band wireless network. In
this application, we controlled the turtlebot to create a 2D occupancy grid map
of our lab environment and upload it to the SKBase as a shared data object.

Figure 4 shows the runtime of the collaboration between the turtlebot and
UAV. We describe each step executed (the numbers in Fig. 4 correspond to the
numbers in the following list):

1. The AGV and UAV are registered to Avalon and the static knowledge is
stored in SKBase.

2. A cooperative transport job is submitted through the application with some
parameters. The application passes the job to the Planner in ActionFlow.

3. The Planner parses the job into an actionDAG, including six action primitives
shown in Fig. 3.

4. The Planner forwards each action to the Scheduler in order and waits for the
feedback of these actions.

5. The Scheduler queries SKBase through ActionFlow scheduler API to allocate
the two robots and map each action to ROS task.

6. The Scheduler sends ROS tasks to the turtlebot and UAV with Avalon API.
Notice that the worker in turtlebot detects that the processing time of the
path planning node is too high and migrates it to the gateway server.

7. The Avalon worker executes each task in an ROS environment and returns the
result and updates the related information in SKBase. The Planner determines
the next action until the job is finished.

In the whole life cycle of above job, the ‘move’ and ‘calibration’ actions are
important because they use Avalon to offload computation nodes and SKbase
to share knowledge respectively. Thus, we discuss the detail implementation of
these two actions in the next subsections.

4.1 Move Action

The function of action “move” aims to navigate the robot through an obstacle-
filled environment to reach some arbitrary destination. Specifically, it plans an
efficient collision-free path in the map and follows. For each movement, it sim-
ulates multiple trajectories based on some mechanical characteristics (velocity,
acceleration limit), and identifies each trajectory whether conflicts with obsta-
cles. Obviously, this action is a computation-intensive task that consumes much
energy of the robot. Moreover, the robot has to sacrifice velocity to meet some
constraints of each functional node, such as the accuracy loss in localization and
the conflict possibility in obstacle avoidance. The reduction of velocity further
prolongs the mission completion time in navigation task. In summary, the lim-
ited resource constrains both total energy and mission completion time of this
action.
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Fig. 5. The computation offloading example of “move” action.

Figure 5 shows the computation offloading example of “move” action in our
experiment. We implement our “move” action with ROS navigation stack [13].
In our initial prototype, we simply consider processing time as the only factor to
affect our utility function. We preset offloading threshold of processing time of
local robot to 250 ms through Static Analyzer, which means while the processing
time of any functional node in local robot is bigger than 250 ms, it would be
migrated to the gateway server for energy and performance optimization through
Adaptive Scheduler. The Dynamic Profiler monitors the processing time of each
node in runtime.

While the turtlebot received the position of the UAV from SKBase, it launches
a group of ROS functional nodes to setup action runtime environment, such as
amcl, move base node. From the figure, we can observe that the processing time
of move base node exceeds our threshold, the Avalon automatically migrates
the move base node to the remote gateway server and synchronizes related data
(e.g. UAV position, node status) to the SKBase. Based on these operations, the
processing time of move base node reduces almost 64%. Besides, the total energy
and mission completion time reduce up to 41.2% and 51.5% during the life cycle
of “move” action execution.

4.2 Calibration Action

The function of action “calibration” is the process of identifying relative position
between the turtlebot and the UAV based on the sensor data. Specifically, the
turtlebot moves to the bottom of the UAV and receives the UAV’s image through
Dji guidance in five directions. To reduce unnecessary computation, once recog-
nizing UAV in one direction, the turtlebot will only process the images from this
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direction. All the received images are used to predict the UAV position relative
to itself through an on-line image recognition model.

Fig. 6. The implementation of UAV-AGV “calibration” action.

Figure 6 shows the implementation of UAV-AGV “calibration” action. The
edge gateway is responsible for receiving images from the turtlebot and we label
the UAV position in each image. These preprocessing images will be used for
off-line training in a convolutional neural network. The trained model is later
saved in the SKBase and downloaded by the turtlebot for the on-line detection
when the turtlebot makes “calibration” action. For each receiving raw image,
the turtlebot identifies the related position of the UAV and then computes the
velocity command for calibration.

We use TensorFlow framework [14] to implement an SSD-MobileNet [34,
41] as our image recognition model. The reason we choose the SSD-MobileNet
is because the process of on-line detection is sensitive to latency. This model
decomposes the standard convolutional layer into depth-wise convolutional layer
and point-wise convolutional layer, which decreases the numbers of parameter,
reduces the computation complexity, and further shortens the detection time.
In our experiment, we trained 500 labeled images with the UAV through the
TensorFlow Objection Detection interface [28] and reduced the loss up to 1.213
after 2700 iterative operations. In the turtlebot side, the detection time reduced
up to almost 280 ms. Note that although the processing time of on-line detection
is bigger than 250 ms, we did not migration this node because of the real-time
constraint.

5 Discussion and Future Work

RobotCenter is our initial attempt to build a general-purpose and composable
cloud robotics framework for robotic applications. While this system addresses
most of drawbacks of current robotic systems, there are still some open problems
listed below, which are our future work.

– Multi-robot Challenge. In our use case, we only consider the robotic appli-
cation with two heterogeneous robots. While the number of robots scales up to
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hundreds and access concurrently, RobotCenter must coordinate synchro-
nized accesses to shared data in real time and ensures data sharing without
conflicts. Thus, scalability and consistency will be new requirements and chal-
lenges for cloud robotics OS.

– Mobility Management. In our initial prototype of Avalon, we only consider
the trade-off between processing time and planning accuracy. There are also
some others factors that determine the total energy consumption and mission
completion time, such as the robot’s velocity and the CPU frequency of on-
board computer. As a consequence, the velocity control and CPU frequency
scaling will be added to our utility model in the future work.

– Fault Tolerance. When the computations in the robotic application deploy
in both local robot and remote server, the mission failure will occur more
frequently due to the unstable wireless communication and robot’s mobility.
For example, the network will be disconnected while the robot moves far
away from the wireless access point. So, how to make RobotCenter robust
to adapt for various real-world conditions is a big challenge.

– Security and Privacy. The computation offloading and data sharing in the
cloud also raises a range of privacy and security concerns [24,25,38,43]. For
example, robots may be hacked to send images or video data from private
homes or corporate trade secrets to the cloud. Besides, an adversary can
also take over a robot to disrupt functionality or cause damage. As a result,
RobotCenter should also ensure a secure and private environment for end
users.

6 Conclusion

In this paper, we proposed RobotCenter, rethink and reconstruct a novel
cloud robotics system in a composable perspective. We described the challenges
of designing a cloud robotics system in three levels: runtime management, data
management and programming abstraction. We then provided the solutions to
address each of these challenges.

We implemented a prototype of the design above three components and use
an example of AGV/UAV cooperative transport application to illustrate the
feasibility of RobotCenter. In the experiment, we reduced the total energy
consumption and mission completion time up to 41.2% and 51.5%, respectively.
We believe that the goals we outlined in this paper have a wide range of tech-
nical value for software systems and robotic communities. The RobotCenter
software stack represents a promising direction for future research of robotics
systems.
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