Position Paper: Consider Hardware-enhanced Defenses for
Rootkit Attacks

Guangyuan Hu
Princeton University
Princeton, NJ, USA
gh9@princeton.edu

ABSTRACT

Rootkits are malware that attempt to compromise the system’s
functionalities while hiding their existence. Various rootkits have
been proposed as well as different software defenses, but only very
few hardware defenses. We position hardware-enhanced rootkit
defenses as an interesting research opportunity for computer ar-
chitects, especially as many new hardware defenses for speculative
execution attacks are being actively considered. We first describe
different techniques used by rootkits and their prime targets in the
operating system. We then try to shed insights on what the main
challenges are in providing a rootkit defense, and how these may
be overcome. We show how a hypervisor-based defense can be
implemented, and provide a full prototype implementation in an
open-source cloud computing platform, OpenStack. We evaluate
the performance overhead of different defense mechanisms. Finally,
we point to some research opportunities for enhancing resilience
to rootkit-like attacks in the hardware architecture.

KEYWORDS
Rootkit, Kernel Integrity, Hardware-enhanced Security

ACM Reference Format:

Guangyuan Hu, Tianwei Zhang, and Ruby B. Lee. 2020. Position Paper:
Consider Hardware-enhanced Defenses for Rootkit Attacks. In Hardware
and Architectural Support for Security and Privacy (HASP °20), October 17,
2020, Virtual, Greece. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3458903.3458909

1 INTRODUCTION

Rootkits are serious attacks on operating systems, undermining sys-
tem integrity for the entire machine. Software defenses have been
proposed and implemented but so far, rootkit defenses have not re-
ceived much attention from the computer architecture community.
Our position is that it is an excellent time to take a look at building
in proactive hardware architectural or micro-architectural defenses
for rootkit-like attacks, especially as the computer architecture
community is re-thinking computer architecture definitions (some-
times referred to as ISA 2.0) for speculative execution attacks like
Spectre [30], Meltdown [32] and their many variants. We suggest

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HASP °20, October 17, 2020, Virtual, Greece

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8898-6/20/10...$15.00
https://doi.org/10.1145/3458903.3458909

Tianwei Zhang
Nanyang Technological University
Singapore
tianwei.zhang@ntu.edu.sg

Ruby B. Lee

Princeton University
Princeton, NJ, USA
rblee@princeton.edu

that not just performance optimization features like speculative
execution and hardware predictors can cause security vulnerabili-
ties, fundamental features like jump tables, interrupt handlers and
process execution lists can also cause security vulnerabilities, as in
these rootkit-type attacks. Hence, the purpose of this paper is to
describe rootkit attacks, understand how they work and their prime
targets, and show insights on what is needed in defense against
rootkits. This can lead to improved hardware architecture with
better built-in resilience to attacks, including rootkit-like attacks.

A kernel rootkit compromises the security of OS software and
data, while at the same time hiding the attacker’s malicious objects
like malware processes, files and network connections.

To perform a rootkit attack, an attacker needs to first conduct
privilege escalation, which has been widely reported [38]. For exam-
ple, the Common Vulnerabilities and Exposures (CVE) database [3]
keeps reporting OS bugs that enable an attacker to conduct privilege
escalation attacks to control the target system. After the attacker
attains superuser status (with OS root Privilege Level, PL=0), it can
modify some OS components or prevent OS software from func-
tioning correctly. A rootkit typically tries to achieve two goals: (1)
insert and execute arbitrary malicious code in the system’s code
path; (2) conceal the existence of malicious activities.

Cloud computing brings new challenges, as well as new oppor-
tunities, for rootkit detection and mitigation. In cloud computing,
rather than executing on dedicated bare-metal physical machines,
cloud customers rent computing and storage resources from public
cloud providers in the form of Virtual Machines (VMs). Since the
VMs run a standard operating system, the VMs have the same OS
vulnerabilities as the ones in traditional computer systems, and the
adversary can intrude into the system, and carry out privilege esca-
lation and rootkit attacks in the same ways. In addition, past work
[13, 48] showed that VM images in public clouds may contain new
malware and software vulnerabilities implemented by a malicious
(or compromised) image publisher.

However, cloud computing also gives new opportunities to defeat
rootkit attacks inside a Virtual Machine. The main idea is to place
rootkit detection and mitigation mechanisms in a lower protection
ring (more privileged) than the OS in a Virtual Machine, such as
the Virtual Machine Monitor (VMM, also called the hypervisor)
1, the privilege level of which (PL=-1) is higher than that of the
guest OS in a VM (PL=0). The virtualization layer, namely VMM,
is an ideal location for anti-rootkit defense mechanisms since it
cannot be attacked by less privileged attackers. Many tools have
been developed to enable a VMM to look inside a VM and monitor
its execution. These have been called Virtual Machine Introspec-
tion (VMI) techniques to detect vulnerabilities inside a VM (e.g.,

!We use hypervisor and VMM interchangeably in this paper.

https://doi.org/10.1145/3458903.3458909
https://doi.org/10.1145/3458903.3458909
https://doi.org/10.1145/3458903.3458909

HASP 20, October 17, 2020, Virtual, Greece

[25]). These tools have the hypervisor privilege to monitor the in-
ternal execution, states and data of the guest VM. They can produce
stronger defenses, as malware running in the guest OS in a VM
cannot interfere with the hypervisor layer.

Public cloud providers may still be using the traditional methods
where security tools are located inside the guest VM, such as Ama-
zon Web Services Inspector [1] and Microsoft Azure Anti-malware
[11]. Since these tools and defenses are in the guest OS with PL=0, if
the attacker already has this root privilege, they are much more vul-
nerable than the tools and defenses in the hypervisor. We describe a
hypervisor-based defense later in this paper, as well as a prototype
implementation in the OpenStack open-source cloud computing
software. However, since hypervisors have also been attacked [36]
and can introduce significant performance overhead, we believe
there is an opportunity for hardware support to improve both the
security and the performance of rootkit prevention, detection and
mitigation defenses.

The main contributions of this paper are:

e Description of common techniques and mechanisms of kernel
rootkits.

o Insights on what is needed for a rootkit defense, and the chal-
lenges that must be overcome.

o Prototype implementation of a rootkit defense at the VMM level,
leveraging a few VMI functions and integrated into the open-
source cloud platform, OpenStack, for easy deployability.

e Proposing new research opportunities for embedding resilience
to rootkit-type attacks in hardware architecture.

2 ROOTKIT MECHANISMS

We now describe some common techniques used by rootkits to
execute malicious codes and hide malicious objects. We analyze
a few real-world rootkits to demonstrate each type of technique.
Without loss of generality, the introduced attack mechanisms use
the Linux OS as the victim system.

2.1 Hijacking Jump Tables

Jump-tables are lists of entry points of code routines that serve as
addresses of kernel functions. These are widely used by OS kernels.
Typical examples of jump-tables are the System-call Table and the
Interrupt Descriptor Table. A System-call table stores an array of
function pointers, where each pointer corresponds to a system
call handler that user-space processes can use to invoke kernel
functions and services. An Interrupt Descriptor Table (IDT) is used
to transfer the execution of a program to special software routines
that handle external interrupts or to signal exceptions.

A rootkit hijacks the jump-table, modifies one or more function

pointers in the table to redirect them to its own handlers, which
conduct malicious actions, and then jump back to the desired system
call or interrupt handler. This trick is widely used in many kernel
rootkits. Below we demonstrate two examples:
Hijacking System-call Table. Xingyiquan [12] is a rootkit that
can establish a network backdoor socket for remote attackers. The
attacker can log into the victim system through a terminal and
gain OS root privilege (PL = 0), which gives the intruder an illegal
inheritance of privilege.

Guangyuan Hu, Tianwei Zhang, and Ruby B. Lee

Listing 1: The Xingyiquan rootkit hooks open system call

1 struct file sysmap = open("System.map-version");
long *syscall_addr = read_syscall_table(sysmap);

+ old_syscall_open = syscall_addr[__NR_open];
s syscall_addr[__NR_open] = new_syscall_open();

malicious_object_name = {"xingyi", "bind_shell",
"reverse_shell"...};
8 int new_syscall_open(char *object_name) {
if strstr(object_name, malicious_object_name)
10 return NULL;
1 return old_syscall_open(object_name)

2o}

To achieve stealthiness, the rootkit hides the malicious socket
process, executable files and the network socket by redirecting
the system call functions to malicious ones, and not returning
the information about these malicious processes, files or sockets.
For instance, the ps command is a user-level utility to display the
running processes. The command collects the status of processes
by searching the /proc directory in the Linux OS. There are many
folders residing in this directory with each of them containing
information about a certain process. While traversing the directory,
the command invokes the syscall open to read the status files
in these folders. In this case, the system call executed is actually
malicious, which returns fake results.

Listing 1 shows the malicious code of Xingyiquan altering the
open system call. The rootkit first reads the system map file which
contains the base address of the sys_call_table (lines 1 — 2).
Then the attacker gets the address of the open system call from the
system-call table, indexed by __NR_open and redirects the jump
address (lines 4 - 5) to its own open function (line 8). Inside the
attacker’s new_syscall_open, the rootkit checks if the object name
being looked up matches the name of malicious objects (line 9). If so,
the function returns NULL as non-existent (line 10). Otherwise, the
function calls the original system call to execute the correct code.
When the malicious backdoor program is running, the rootkit sets
’xingyi’, "bind_shell’, ‘reverse_shell’, etc., to be the keywords. The
malicious system calls hence hide the program’s files that contain
such keywords in their file names. The legal user will not be able
to find the attacker who has logged in through the covert socket.

Hijacking Interrupt Descriptor Table. HookIDT [9] is a rootkit
that inserts arbitrary malicious code in the interrupt handler. When
the victim system invokes the interrupt, the rootkit’s code will
be executed. Listing 2 shows the code of this rootkit. In the x86
architecture, the privileged software can get the base address of
the interrupt descriptor table (IDT) table using the SIDT instruction
(lines 1 - 4). The attacker may redirect any interrupt handler to
its own function (lines 6 — 7). In its own function, it can invoke
arbitrary code (line 10) and then return to the original interrupt
handler (line 11). As a result, the system will execute the malicious
code with the kernel privilege every time it handles the interrupt.
In its own function, it can invoke arbitrary code and then return to
the original interrupt handler.

2.2 Modifying Kernel Codes

Instead of changing the function pointers in the jump-tables, the
rootkit can also change the kernel functions. For instance, a rootkit

Position Paper: Consider Hardware-enhanced Defenses for Rootkit Attacks

Listing 2: The HooKkIDT rootkit inserts malicious code in the
interrupt

HASP 20, October 17, 2020, Virtual, Greece

Listing 3: The Cesare stealth-syscall to change open syscall
function to insert malicious code

1 unsigned char idtr[6];
unsigned long idt_addr;
5 __asm__ volatile ("sidt %@" : "=m" (idtr));

4 idt_addr = x((unsigned long *)&idtr[2]);

¢ old_idt_handler = idt_addr[handler_id];
7 idt_addr[handler_id] = new_idt_handler;

o void new_idt_handler(args){
10 malicious_function();
1 return old_idt_hanlder(args);

can hijack a system call or interrupt handler by changing the first
few bytes of its code to the jmp instruction, which will jump to the
rootkit’s malicious codes. The rootkit can thus run malicious codes
without modifying the jump-table. This technique can evade the
rootkit detectors that only check jump-table integrity.

Modifying system calls . The Cesare stealth-syscall rootkit [18]
modifies the syscall code to execute malicious functions. The method
is achieved by replacing the first 7 bytes of a syscall’s code with
a jump operation to its fake syscall function, as shown in Listing
3. The Cesare rootkit may also read the address of the system call
from the System.map file as shown in (lines 1 - 3). After making
a copy of the first 7 bytes in the original syscall code (line 5 - 6),
it replaces the bytes to jump with a movl instruction and a jmp
instruction (line 8 — 13). In its fake syscall, the rootkit is able to
execute a malicious function (line 16) and then restore the first
7 bytes of the syscall using the copy (line 17). The attacker then
returns the correct result from this restored syscall (line 18) as if
the system call is not compromised.

2.3 Direct Kernel Object Manipulation

A rootkit can also directly modify some other critical kernel objects,
in addition to jump tables and kernel routines. By doing so, the
rootkit can hide the existence of malicious processes or network
connections. For instance, the proc filesystem (procfs) is a special
filesystem in Linux that establishes communication between kernel
space and user space. It presents information about the OS kernel
and system to the user program. It also enables users to change
kernel parameters at runtime. However, a rootkit can tamper with
the proc filesystem, and cause the system to present wrong infor-
mation to the users, thus hiding malicious processes from victim
users.

Modifying Procfs system. The Adore rootkit [4] attacks Linux
and modern BSD systems. It is designed to hide files and processes
controlled by the attacker. The Adore rootkit changes the lookup
function, which is one of the file operations in the proc filesystem.
This function is an attribute of the file directory and is a part of
the open syscall implementation. The open syscall invokes this
function as the last step to decide whether the operation on a file
has been successful. With an altered lookup function, opening the
status file of a malicious process will return as not successful, which
indicates the process doesn’t exist so the user is unable to see the
hidden process.

1 struct file sysmap = open("System.map-version");
long *syscall_addr = read_syscall_table(sysmap);
s syscall_open = syscall_addr[__NR_open];

char old_syscall_code[7];
memncpy (old_syscall_code, syscall_open, 7);

s char pt[4];
memncpy (pt, (long)malicious_open, 4)
10 char new_syscall_code[7] =
i {"\xbd",pt[@],pt[1],pt[2],pt[3], // movl %pt, %ebp
12 "\xff","\xe5"}; // jmp %ebp
13 memncpy(syscall_open, new_syscall_code, 7);

15 int malicious_open(char *object_name) {

16 malicious_function();

17 memncpy (syscall_open, old_syscall_code, 7);
18 return syscall_open(object_name);

In Listing 4 we demonstrate how the Adore rootkit hides a pro-
cess given its id. The rootkit gets the operation list of the proc file
system which is an attribute of the file structure (lines 1 - 3). To
hide the specified process, the lookup function in the list is redi-
rected to a new one (lines 4 — 5). This new function checks if the
process to be looked up is the malicious one. If so, it returns NULL
(non-existent) (lines 8 — 9). Otherwise, it calls the correct function
(lines 10 - 11). Helped by this stealthy kernel module, the adversary
is able to hide its processes.

2.4 More Sophisticated Exploits

In addition to the basic rootkit attacks described above, there are
more sophisticated rootkit attacks. Shadow Walker [43] cheats the
integrity checking utilities of the system. Subvirt [29] installs itself
as a Virtual Machine Monitor (VMM) or hypervisor, and Blue Pill
[40] creates a hypervisor on-the-fly. Cloaker [21] exploited the
alternate exception vector in an older ARM processor to direct the
execution to a malicious payload.

2.5 Summary of Basic Attack Mechanisms

The success of rootkits to cheat the system functions comes from
the attacker’s ability to escalate his privilege level to the OS root
level and write to OS space, which is a severe breach of integrity.
Specifically, three types of entities are typically targeted by illegal
modifications: the jump tables storing the entry points of kernel
functions, the code of kernel functions and the data structures of
critical kernel objects.

For stealthiness, the rootkits hooking function pointers change
the pointer of a lookup or read function to the address of its wrapper
which calls the original function. The wrapper filters out the result
about the object to be hidden so that this object is not reported to the
user. The modification of function code can also hijack the control
flow by replacing the first instruction of the original function with
a jump instruction to the attacker’s wrapper. A data structure, e.g.
a doubly-linked list, could be hacked by the attacker who makes a
malicious node’s predecessor and successor point to each other so
that the node is hidden from a list traversal.

HASP 20, October 17, 2020, Virtual, Greece

Listing 4: The Adore rootkit hiding a process

1 int malicious_pid;
struct file *procfs = flipopen_open("/proc");
inode_operations *proc_op = procfs->inode_op;
. old_lookup = proc_op->lookup;
5 proc_op->lookup = new_lookup;

dentry *new_lookup(int pid){
if (pid == malicious_pid)
9 return NULL;
10 else
1 return old_lookup(pid);
}

3 THREAT MODEL

We consider the threat model where hostile applications or ser-
vices may be running inside the customers’ VMs, gaining the root
privilege of the guest OS, and the capability of compromising the
system integrity of the VM. For a software-based solution, we as-
sume that such hostile applications cannot tamper with the host
OS and hypervisor layer. We make this assumption because hostile
VMs only get guest VM’s root privilege (ring 0) while the hypervi-
sor has VMM privilege (ring -1). So the hostile VMs cannot subvert
the security functions provided by the hypervisor, which is trusted
in this threat model. While we discuss a hypervisor-based rootkit
defense solution in Sections 5-7, we point the architecture commu-
nity to consider hardware-enhanced solutions in the future, as the
hypervisor may also be compromised.

4 DEFENSES AGAINST ROOTKITS

We discuss three defense solutions against the kernel rootkits de-
scribed in Section 2.

4.1 Preventing Malicious Modifications

We can protect the integrity of important jump tables and system
data by making sure they remain unchanged. The most straightfor-
ward way is to restrict the attacker’s ability to write to the critical
kernel space. In a virtualized system, there are two levels of memory
translations: from guest virtual address to guest physical address
which is controlled by the guest OS, and from guest physical ad-
dress to host physical address, which is controlled by the hypervisor.
So we can restrict the rootkits’ permissions in one of the memory
translations, as described below:

OS-level prevention. We can use the OS feature "Write xor Ex-
ecute (WeX)", in which every page in the system’s address space
may be either writable or executable, but not both. This can prevent
rootkits from modifying critical codes and then executing them.
However, if the rootkits take control of the operating system, they can
easily disable such a protection feature by changing the protection
bits in the page table entries.

Hypervisor-level prevention. In hardware-assisted virtualiza-
tion, the hypervisor uses another page table (termed extended page
table (EPT) in Intel technology and rapid virtualization indexing
(RVI) in AMD) to translate the guest physical address to the host
physical address. Similar to the page table, an EPT entry also has
permission bits to indicate whether the entry is readable, writable
or executable. These bits provide a second layer of protection out-
side the bits of page table entries. The hypervisor can disable the

Guangyuan Hu, Tianwei Zhang, and Ruby B. Lee

Writable (W) bit in the EPT entries of the protected memory regions
of the guest VM, e.g., jump tables and critical code sections.

4.2 Detecting and Repairing Integrity Breach

For "defense in depth", we propose a second method which can
detect integrity breaches and then repair them, in real time.

Protect jump tables. As suggested in Section 2, the jump tables
to syscall or interrupt handler functions could be the first target of
the attacker. As the table contains just pointers and is not big, it is
reasonable to check the table entries one by one.

We can keep an intact copy of the jump tables from an OS system
map or a clean VM. (The head of the syscall table is obtained by
reading the system memory layout supplied with the Linux OS,
while the IDT base address comes from the interrupt descriptor
table register (IDTR).) With this copy containing unmodified values,
we detect potential rootkits by comparing the current jump table
with the original one. For real-time mitigation, the jump table could
be restored from the original copy which is saved during the boot-
up of the guest VM. This solution requires secure storage for the
pristine copy of the jump tables.

Protect system codes and data. Besides the jump tables, we
should also protect general system data and code. As the space
containing codes and data is much larger than that of jump tables,
a word-by-word verification is too expensive to implement. Instead,
we can compute cryptographic hashes of the memory region for
kernel routines and static data, and compare the hashes with pre-
calculated ones to verify integrity. If an integrity breach is found
by finding the two hashes different, the functions could be restored
from the untampered copy.

4.3 Cross-view Validation of Critical Objects

The first two methods prevent or detect rootkits’ actions to target
memory regions. We can use a cross-view validation method to
detect a rootkit trying to hide objects. Objects checked during the
cross-view validation include active processes and network sockets.

This cross-view validation can detect system integrity breaches
by comparing two lists of objects obtained from two different views.
The first, untrusted, view is to get the list using common user-
level utilities. We obtain a second, trusted, view by directly reading
kernel space using, for example, a trusted external VM monitoring
technique. If some objects only show up in the trusted view, they
are considered hidden from the user’s untrusted view.

Upon finding hidden objects, the protection mechanism regards
them as malicious objects, as regular applications do not hide their
existence deliberately. Then actions are taken to kill these objects
to prevent further malicious behavior.

5 CHALLENGES AND PRIMITIVES

We now discuss what primitives are needed for a hypervisor-based
defense of the VM kernel against rootkit attacks. A key challenge in
monitoring a VM is the semantic gap in addressing — the hypervisor
needs to access the VM’s memory without the OS context. A second
challenge is to capture certain dynamic events and trap to the
defense handlers without incurring performance overhead. A third
challenge is to provide real-time damage mitigation.

Position Paper: Consider Hardware-enhanced Defenses for Rootkit Attacks

5.1 Semantic Gap to Access Guest VM

Accessing guest VM’s memory. One basic functionality needed
for a defense is to access the memory of guest VMs. The challenge is
the semantic gap between the high-level data observed by the guest
OS and the low-level data observed by the hypervisor. A process
inside the guest OS accesses data via its virtual address, which will
be translated to the guest physical address by the guest OS, and
then the host physical address by the hypervisor. If the hypervisor
attempts to access data of a process in a guest VM at a specified
guest virtual address, it has to conduct the two levels of address
translation without the context of the guest OS. While painful, this
can be done as follows:

The hypervisor first obtains the base (guest physical) address

of the process’s page directory. If this process is a kernel process,
the kernel page directory is stored in a fixed known guest physical
address. If it is a user-space process, the hypervisor first gets the
process structure list stored in a fixed known guest physical address,
and iterates this list until it finds the given process. From this
structure, the hypervisor can get the address of this process’s page
directory. The hypervisor then translates the guest physical address
of the page directory into a host physical address, takes the guest
virtual address of the data and translates it to the data’s guest
physical address using the page table. The final step is to translate
the data’s guest physical address into a host physical address, and
access the data from the host physical page. If Address Space Layout
Randomization techniques are used in the VM, this can get much
more complicated.
Accessing guest VM registers. The hypervisor must also access a
VM’s (virtual) registers as it may need the value of registers like the
page table base address. Fortunately, hypervisors already maintain
a set of data structures (e.g., VMCS in Intel processors, VMCB in
AMD processors) to save and restore register values for each VM’s
virtual CPU during a VM context switch; so the hypervisor can
read or write any register values from its internal structure.

5.2 Dynamic Event Capturing

A defense should be able to capture the occurrence of some critical
functions (e.g, syscalls, APIs). When one such function occurs in-
side a VM, we want a VM exit to be invoked and the CPU trapped
into the hypervisor. We can solve this in two ways: (1) Insert a
debugging instruction INT 3 (@xCC) at the address of the moni-
tored function, or (2) Set the memory page containing this function
as Non-Executable (NX) in the Extended Page Table (EPT) entry.
When the VM executes this function, a software interrupt or an
EPT violation happens, respectively, and traps the processor to
the hypervisor to handle this dynamic event. The rootkit defense
handler can then confirm the detection of a rootkit and/or perform
mitigation. Then the dynamic event monitoring must be restarted.

5.3 Realtime Mitigation

Real-time mitigation of rootkits can prevent security breaches, and
it can be done if we allow the defense mechanism to change the
VM’s memory or execution paths. This in itself is dangerous, unless
the hypervisor is trusted, which is true in our threat model. We
recommend real-time mitigation with the following two procedures.

HASP 20, October 17, 2020, Virtual, Greece

Killing a process. When the defense detects that a malicious
process has been launched and running in the guest VM, we can
kill this active process immediately to prevent further damage.
The idea is to insert the process killing function (e.g., sys_kill in
Linux) in the VM’s code path, and set the function parameter as the
malicious process’s id. Then the VM will jump to the process killing
routine and return to the original code after killing the process.

Repairing compromised data. When the guest OS kernel is com-
promised by malware modifying critical data, the hypervisor can
restore the saved copy of modified data. For instance, malware
can change a kernel function pointer to its malicious handler. To
repair this, the hypervisor can replace the pointer with its original
value from an intact OS of the same version so that the malware’s
function will not be invoked.

6 PROTOTYPE IMPLEMENTATION

We implement a prototype rootkit defense solution integrated with
the open-source OpenStack cloud computing framework. The de-
fense contains 3 mechanisms: preventing modifications, detecting
and repairing integrity breaches and cross-view validation. The
implementation leverages the routines from the LibVMI library [8].

6.1 Preventing Malicious Modifications

We use the hypervisor to set the Non-Writable(NW) permission bit
for the critical codes and data, preventing them from being modi-
fied by rootkits. First, the guest virtual addresses of the sensitive
jump tables and code are obtained by looking up the kernel symbol
translation table in the system map provided by the VM owner. The
hypervisor translates these virtual addresses into guest physical
addresses. The hypervisor then sets the memory page containing
these critical objects as Non-Writable (NW) in the EPT entry and
listens for write violations. When a rootkit tries to modify these crit-
ical objects, an EPT violation occurs and the processor is trapped
into the hypervisor. A callback function is invoked in this case
which requires the hypervisor to suspend the VM and stop the
damage. The cloud server may inform customers of these violations
and perform mitigation methods afterward.

6.2 Detecting and Repairing Integrity Breach

The hypervisor can read the contents of jump-tables and critical
kernel codes, and compare them with “good” ones. For the System-
call Table, its base virtual address is denoted by the symbol sys_ca-
11_table in the system.map file which lists the memory layout
of a Linux OS. For IDT, its base virtual address is stored in the
register IDTR_BASE. From the base addresses, we can get the guest
virtual address of each jump-table entry. Then we use the address
translation scheme described above to translate them to the host
physical addresses. We read the data in each syscall table entry
from the corresponding host physical address, and compare it with
the one from an intact OS kernel of the same version. If one data
does not match the corresponding “good” one, we can suspect that
the rootkit has changed this handler to its own malicious function.
We then restore the original function address in the jump-table to
fix this integrity breach.

We also need to verify the integrity of kernel codes. In the sys-
tem.map file, the lower bound address of the kernel code memory

HASP 20, October 17, 2020, Virtual, Greece

region that stores the critical kernel functions is named _stext
and the upper bound address is named _etext. We calculate the
cryptographic hash value of the data inside this region [_stext,
_etext] and compare it with the one from an intact OS kernel of the
same version. Mismatched hash values indicate that certain kernel
functions inside this memory region have been compromised. We
can then restore the original correct codes within [_stext, _etext]
from an intact kernel to maintain the integrity of the kernel codes.

6.3 Cross-view Validation of Critical Objects

Detecting Hidden Objects. We use cross-view validation to de-
tect objects hidden by rootkits. The untrusted view is from the
user commands, and a trusted view is obtained by directly monitor-
ing the kernel space. We can detect hidden processes, and hidden
network sockets, by checking if the two views match.

To detect if the VM has hidden processes, the hypervisor needs
to get two views of process lists inside this VM. The trusted view
shows all the processes while the untrusted view might be tampered
with by the rootkits. The trusted view can be obtained from the OS
scheduler’s task list — if a process is not on this list, it will not be
scheduled for execution. We first obtain the virtual address of the
list head from the kernel symbol init_task. Then we iterate this
list, and read each process’s information from the task_struct
kernel structure, e.g., comm (process name); tasks (pointer to the
next process); mm (memory descriptor); pid (process id), etc. By
doing so, we can get all processes running in the OS. To get the
untrusted view of the process list, the hypervisor can issue a remote
ps aux command to the VM via SSH, which is a common way to
execute commands on a remote machine. Then the users’ view of
the process list will be transmitted to the hypervisor. By comparing
the two lists, we can identify any hidden process’s name and id.

To detect if the VM has hidden network sockets, the hypervisor
also needs to get the trusted view and an untrusted view of active
network sockets in this VM. For the trusted view, the Linux kernel
uses hashmaps to store the network sockets. The TCP hashmap is
denoted by the kernel symbol tcp_hashinfo and the UDP hashmap
is denoted by the symbol udp_table. We can get the virtual ad-
dresses of these hashmaps from these symbols, and iterate the table
to retrieve the trusted list of active sockets. For the untrusted view,
the hypervisor can issue a remote netstat command to the VM
via SSH, and retrieve the list of sockets from the user’s perspective.
Through comparing the two lists, we can find the hidden TCP or
UDP sockets.

We can use the method described in Section 5.3 to kill the hidden
processes. For hidden network sockets, we can also kill the pro-
cesses that establish the sockets to shut down the network sockets.

7 EVALUATION

7.1 Security Evaluation

Table 1 shows whether the rootkits discussed in Section 2 can be
detected by the defense mechanisms we describe for our proto-
type implementation. Whether the malicious functions invoked by
HookIDT and Stealth-Syscall rootkits can be captured depends on
what malicious objects the attacker tries to hide so we don’t make a
definite conclusion about their visibility to cross-view validation. A
combination of protection techniques can defeat all these rootkits.

Guangyuan Hu, Tianwei Zhang, and Ruby B. Lee

Table 1: Detection Results

Detecting

Description Preventing Integrity Cross-view
Modification Validation
Breach
Xingyiquan | Jump table hijacking (system call) v v v
HookIDT Jump table hijacking (interrupt hander) v v Depends
Stealth-Syscall | Kernel code modification v v Depends
Adore Direct kernel object manipulation v

7.2 Performance Evaluation

To evaluate the performance overhead of our methods, we use two
realistic cloud-based applications, the Hadoop distributed applica-
tion and an E-commerce website.

Hadoop Distributed Application. We use Hadoop to establish
a distributed file system (DFS) with a master node and two slave
nodes. The first benchmark is DFSIO, which produces massive file
accesses under the MapReduce framework. We test the platform’s
performance to write and read 10 1-GB files under different integrity
protections. The results of write and read operations are shown in
columns 2-3 in Table 2.

We compare four protection mechanisms, namely the unpro-
tected baseline, the protection by setting the no-write bit, the peri-
odic integrity check and the periodic cross-view validation. Specif-
ically, the last two methods can choose different periods for VM
checking. We test the performance when the period is 1 second, 0.1
second or 0.01 second. The results of DFSIO show that the VMM-
based protections add to the execution time. For both the reading
and writing tasks of DFSIO, the no-write protection hardly intro-
duces any overhead while the integrity check introduces overheads
of 0, 8% and 18% for writing and 0, 10% and 13% for reading when
using 1s, 100ms and 10ms respectively as the VM introspection
period. The periodic cross-view validation increases the execution
time of writing by 1%, 3% and 1% and reading by 2%, 1%, 6% when
doing introspection in the three frequencies.

Column 4 in Table 2 shows another Hadoop task running the
MapReduce Benchmark (MRBench). It generates many small jobs
to test the platform’s ability to handle lightweight threads which is
complementary to the big jobs we run in the DFSIO task. We loop
the small jobs 6 times and each run of a job involves 20 map and
20 reduce operations. We find the write protection and the intro-
spections done every 1s introduce almost zero overhead. A period
of 100ms brings 4% overhead for integrity check but it doesn’t in-
crease the execution time for cross-view validation. A fine-grained
monitoring repeated every 10ms increases the overhead to 18% for
integrity check and 11% for cross-view validation. The MRBench
gives a similar conclusion as the DSFIO task: doing integrity check
and cross-view validation at a period of 1s and 100 ms poses an
overhead smaller than 10% while a large overhead occurs if the
period is reduced to 10ms.

E-commerce Website. We also use Magento [10] to build an E-
commerce website. The platform incorporates a Pound load bal-
ancer, some Apache web servers, a Mysqgl database and a Mem-
cached server. The performance of the platform is measured when
requests are sent to the load balancer which is the interface to the
outside network. We use httperf tool [5] to establish connections
and send requests. Both the connection time and reply time are
recorded for requests sent in a minute at a rate of 30 and 40 requests
per second.

Position Paper: Consider Hardware-enhanced Defenses for Rootkit Attacks

HASP 20, October 17, 2020, Virtual, Greece

Table 2: Performance for our 3 rootkit defense mechanisms for two cloud applications: a Hadoop distributed app and an E-
commerce app. The numbers in parenthesis are the percentage overhead compared to the Baseline system in the first row

which has no defense mechanisms implemented.

Hadoop MapReduce E-Commerce Website
DFSIO write DFSIO read MRBen.ch Hitperf I.\/Iedia.n Hitperf Medi@
time(s) time(s) F:xecutlon Connection Time (ms) | Connection Time (ms)
time(s) (Rate = 30 reqs/s) (Rate = 40 reqs/s)
Baseline 144.81(0.0%) | 505.13(0.0%) | 69.66(0.0%) 36.5(0.0%) 51.5(0.0%)
1)Nowrite 146.95(1.48%) | 511.83(1.32%) | 69.57(-0.12%) || 34.5(-5.48%) 54.5(5.83%)
2a)Check 1000ms || 144.85(0.03%) | 504.91(-0.04%) | 69.74(0.12%) || 35.5(-2.74%) 46.5(-9.71%)

2b)Check 100ms

156.01(7.73%)

557.46(10.36%)

72.66(4.30%)

38.5(5.48%)

43.5(-15.53%)

2c)Check 10ms

170.77(17.92%)

572.26(13.29%)

82.21(18.02%)

38.5(5.48%)

54.5(5.83%)

3a)Cross 1000ms

146.56(1.21%)

514.16(1.79%)

69.43(-0.32%)

35.5(-2.74%)

48.5(-5.83%)

3b)Cross 100ms

148.66(2.65%)

511.01(1.16%)

69.70(0.05%)

38.5(5.48%)

56.5(9.71%)

3c)Cross 10ms

146.43(1.12%)

538.54(6.61%)

77.09(10.67%)

75.5(106.85%)

541.5(951.46%)

The median connection times to the server under different protec-
tion mechanisms are shown in columns 5-6 in Table 2. We observe
that the connection time oscillates around the baseline when the
platform uses write protection or introspects VMs at a period of
1s and 100ms. However, doing cross-view validation at a period of
10ms leads to very high overhead at about 107% and 951% for the
rate of 30 and 40 (reqs/sec), respectively. The instability of results
and slow connection times when using the cross-view method is
likely due to the fact that the network task is less computation and
memory intensive, so the network status and the pauses of VMs
when doing validation can contribute more to the performance
variance.

7.3 Observations and Discussion

While the protection mechanisms can effectively detect the tar-
get rootkits, the latency from the launch of attack to detection is
also a key factor for security. The write prevention defense has
zero detection latency in that any malicious modification to the
kernel will be immediately detected and reported. However, this
protection works at the page level and may lack enough flexibility.
The periodic introspection method, implemented by our prototype,
tries to enforce data integrity by using periodic monitoring of the
VM, with an assumption that a higher monitoring rate will bring
more trustworthiness. However, the problem remaining unsolved
is the transient attack where the attacker makes illegitimate mod-
ification to some sensitive data and restores them after making use
of them or before an integrity measurement starts, thus evading
the detection. This requires the periodic detection to be done in a
fine-grained manner. Our results show that a 10-ms period already
introduces non-negligible performance overhead, which motivates
hardware-assisted protection.

8 HARDWARE OPPORTUNITIES

The hypervisor-based rootkit defense solution we proposed above
is easily deployable and is more secure than the current OS-based
defenses [1][11]. Since the hypervisor is much smaller than a full-
function OS, it is harder to attack, with a smaller attack surface.
However, like all complex software, hypervisors have also been
attacked [36]. Hence, we suggest that hardware support can be used
to improve the security and the performance of rootkit defenses.

Many other hardware solutions are possible in addition to what we
introduce below.

Bridging the semantic gap. The semantic gap for addressing
content inside a VM in the guest OS context, from outside the
VM in the hardware context, becomes even more difficult for a
hardware-based solution than for a VMM-based solution. Some
architectural support that bridges this semantic gap is desired.

Maintaining an unforgeable view of critical objects. As cov-
ered in this paper, the user’s view of certain objects could be cheated,
e.g., when the view of the process list is obtained from the proc file
system. The view is considered untrusted as the list is not produced
by observing what is running (the active task list) in the hardware.
Hardware approaches can provide an unforgeable view of active
objects so that attackers cannot hide their malware and connections.
This unforgeable view should be available for the many different
types of critical objects in operating systems and hypervisors, not
just the processes, network connections, and files, that we have
discussed.

Faster dynamic monitoring. As suggested in Section 7.3, hard-
ware support can be added to enable faster monitoring of security-
critical data structures, jump tables, code regions, etc. Reducing the
overhead means the monitoring can operate at a higher frequency
and provide improved security. This may need to include automatic
re-enabling of dynamic monitoring after an event has been handled.
Unused or Duplicate Resources. We caution against duplicate
resources like an alternate interrupt vector table, which makes it
easy for an attacker to insert and execute malicious code, by merely
invoking this alternate jump table. This was in some older Arm
processors [2] and rarely used.

Better hardware access control. We recommend considering
hardware access control approaches over periodic monitoring ap-
proaches. Hardware access control mechanisms can prevent an
unauthorized access immediately, rather than leave a window of
opportunity for the attacker, as in the periodic monitoring approach.
As we discussed in Section 7.3, transient attacks exist.

We also recommend more flexible hardware access control than
just the simple No-Write bit or the WeX bit. This can go beyond
the simple access permissions specified in page table entries and
support more diversified rules implemented in hardware only. Since

HASP 20, October 17, 2020, Virtual, Greece

these policies are not implemented as page-table bits or fields, mal-
ware cannot modify them. As a simple example, a write-once policy
can allow the OS to initialize the jump tables in a clean state during
boot-up and prevent later modification. Hardware can support this
policy so that even if a rootkit is installed later with kernel privilege,
it cannot disable the policy to hijack the jump tables.

Future attacks and defenses. An interesting area for future re-
search is to consider future rootkit attacks using more sophisti-
cated techniques rather than the jump table style of dispatching
that we discussed in Section 2. For instance, ROP (return-oriented
programming) [26] and JOP (jump-oriented programming) [19]
have been leveraged to invoke malicious execution by jumping to
execute short sequences of existing legitimate code, rather than
having to insert malware code. Proactive defenses against these
more advanced attacks can also be considered as future research
opportunities.

9 PAST WORK

First, we reference the few hardware papers that address some
aspect of rootkit detection.

Vashist and Lee [46] proposed SHARK to address the impor-
tant process-hiding aspect of rootkits. They provide an excellent
introduction to rootkit attacks and defenses, before proposing a
hardware-OS solution to defeat the stealthiness of malware. SHARK
proposed a hardware-assigned process identifier (HPID) that the
OS must use; the solution is tightly integrated with the concept of
counter-mode encryption that is used to encrypt and decrypt parts
of the page tables, based on the HPID. Changing the PID would
mean not being able to decrypt page tables correctly, leading to
a crash. While a very early pioneering effort, it may be time to
look at other hardware solutions, given today’s commodity oper-
ating systems that are not likely to accept a hardware-generated
process identifier. Also, tying an entire solution to an encryption
scheme like counter-mode may not be ideal, and there are many
unaddressed complications. SHARK also did not address the hiding
of network connections and other critical kernel objects, nor the
non-stealthy aspects of rootkits, as addressed in this paper.

Some studies showed that hardware performance counters (HPCs)
can be leveraged to detect rootkit attacks. Numchecker [47] counted
different instructions during the execution of a test program inside
the trusted and untrusted OS’s, respectively, and detected rootkit
attacks using the deviation from trusted observations. Singh et al.
[42] discovered 16 most useful HPCs as features to build machine
learning based classifiers that can detect some real rootkits. Both
methods can only detect the control flow hijacking rootkits but not
the rootkits that perform direct kernel object manipulation.

Copilot [37] used a coprocessor to monitor the critical memory
region of a Linux kernel. However, attacks were found to evade or
cheat this hardware-based detection mechanism [41]. The issue of
the semantic gap also added difficulty in implementing Copilot.

Commercial microprocessors have implemented secure enclaves,
e.g., the Intel SGX extensions [33], to protect code and data at
the application level, but not at the OS level. There have been
proposals [14, 45] to make better use of this type of hardware
support. Such past work typically considered the OS as a potential
attacker, rather than a victim, as in kernel rootkit attacks.

Guangyuan Hu, Tianwei Zhang, and Ruby B. Lee

We now also reference some of the many software defenses, as
they can inform the design of new hardware defenses.

To address the stealth aspect of rootkits, many software mecha-
nisms have been proposed to create a trusted list of kernel objects
for cross-view validation. RootkitRevealer [20] detected hidden
files in the Windows OS. Blacklight detected both hidden files and
processes [16]. Klister [6] detected hidden processes by reading
the kernel scheduler. These defenses execute at the same privilege
level as the rootkits so a race condition exists between the rootkit
trying to perform something malicious and the defense detecting
the rootkit.

Much past work on Virtual Machine Introspection (VMI) exists.
This was first proposed by Garfinkel and Rosenblum [25] and may
give good ideas for hardware defenses. Payne et al. [34] designed
XenAccess, a monitoring library for VMI on Xen. Quynh and Take-
fuji [39] designed XenKIMONO to detect kernel-level rootkits in
Xen-based servers. Jones et al. [28] introduced Lycosid to detect
hidden malicious processes. Payne et al. [35] designed Lares, to
realize the event notification technique by placing hooks inside
the introspected VM. Dinaburg et al. [22] designed Ether, which
conducts the malware analysis using VMI. Lengyel et al. [31] built
DRAKVUEF, a dynamic malware analysis system for Windows OS
which achieved fidelity and stealth using VMI, and scalability using
VM cloning. Now some tools (e.g., LibVMI [8], Libbdvmi [7], HVI
[15]) are well developed to achieve the VMI techniques needed.

To overcome the semantic gap between the guest OS and the hy-
pervisor, Jiang et al. [27] cast the guest VM’s view of the OS into the
hypervisor to systematically reconstruct internal semantic views
of a VM from the outside in a non-intrusive manner. Srinivasan et
al. [44] designed a process out-grafting method, which migrated
a suspect process from inside the monitored VM to a secure VM
which runs the security monitoring tool. This can achieve isolation
and removes the semantic gap. Dolan-Gavitt et al. [23] designed
Virtuoso to automatically convert in-guest programs into out-of-
guest programs that reproduced the same behaviors. Fu et al. [24]
designed VM-Space Traveler, which automatically identified the
critical data of the monitored VM and redirected the data from the
monitored VM to a secure VM for monitoring. Carbone [17] in-
serted function calls into the introspected VM from the hypervisor
to obtain OS information, thus bridging the semantic gap.

10 CONCLUSIONS

This paper introduces the techniques leveraged by rootkits to com-
promise kernel integrity and the defenses against these. We iden-
tify the key system targets of rootkit attacks. We show the main
challenges a rootkit defense external to the Virtual Machine (VM)
must overcome, and show how we do this for a hypervisor-based
(i.e., VMM-based) defense against Linux rootkits, using Virtual Ma-
chine Introspection (VMI) techniques. Our evaluation indicates that
although VMI services incur little performance overhead when
monitoring is done at a low frequency, the cost increases visibly
when we pursue finer-grained protection. This suggests hardware
support to reduce overhead and also improve security.

We prototype a complete hypervisor-based defense for rootkits
to illustrate what needs to be done, and how some of the challenges
can be overcome in practice in a real OpenStack implementation.

Position Paper: Consider Hardware-enhanced Defenses for Rootkit Attacks

This enables computer architects to understand innovative tech-
niques that have been used, and evaluate what is best achieved in
software versus hardware. Since rootkits attack system-level soft-
ware, a hypervisor-based defense is good for attacks on a virtual
machine’s operating system, but if the hypervisor is also attacked,
then a hardware-based defense seems appropriate. We suggest that
more secure and higher performance rootkit defenses could be
achieved with hardware support, and suggest this as a promising
new opportunity for hardware security research.

ACKNOWLEDGMENTS

This work is supported in part by NSF SaTC #1814190, SRC Hard-
ware Security Task 2844.002 and a Qualcomm Faculty Award for
Prof. Lee. We also thank the reviewers for their comments.

REFERENCES

[1] [n.d.]. Amazon Inspector. https://aws.amazon.com/inspector/.

[2] [nd]. ARMO926E]J-S Technical Reference Manual: Control Register
cl. https://developer.arm.com/documentation/ddi0198/e/programmer-s-
model/register-descriptions/control-register-c1.

[3] [n.d.]. Common Vulnerabilities and Exposures. https://cve.mitre.org/.

[4] [n.d.]. Explorations with adore-ng. http://ab-rtfm.blogspot.com/2007/07/
explorations-with-adore-ng.html.

[5] [n.d.]. The httperf HTTP load generator. https://github.com/httperf/httperf.

] [n.d.]. Klister - Windows Kernel Level Rootkit Detector. https://securiteam.com/
tools/5gp0315ffw/.

] [n.d.]. Libbdvmi. https://github.com/razvan-cojocaru/libbdvmi.
[8] [n.d.]. LibVML

] [n.d.]. Linux Hook IDT. https://github.com/majdi/deadlands/tree/master/srcs/
linux/module/HOOK/IDT.

[10] [n.d.]. Magento Commerce. http://www.magento.com/.

[11] [n.d.]. Microsoft Antimalware for Azure Cloud Services and Virtual Machines.
https://docs.microsoft.com/en-us/azure/security/azure-security-antimalware.

[12] [n.d.]. xingyiquan - simple linux kernel rootkit for kernel 3.x and kernel
2.6.x. https://swOrdm4n.wordpress.com/2014/11/03/xingyiquan-simple-linux-
kernel-rootkit- for-kernel-3-x-and-kernel-2- 6-x/.

[13] Marco Balduzzi, Jonas Zaddach, Davide Balzarotti, Engin Kirda, and Sergio
Loureiro. 2012. A Security Analysis of Amazon’s Elastic Compute Cloud Service.
In ACM Symposium on Applied Computing.

[14] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding applications
from an untrusted cloud with haven. ACM Transactions on Computer Systems
(TOCS) 33, 3 (2015), 1-26.

[15] Bitdefender. [n.d.]. Hypervisor Introspection. http://www.bitdefender.com/
business/hypervisor-introspection.html.

[16] Jamie Butler and Peter Silberman. 2006. Raide: Rootkit analysis identification
elimination. Black Hat USA 47 (2006).

[17] Martim Carbone, Matthew Conover, Bruce Montague, and Wenke Lee. 2012.

Secure and Robust Monitoring of Virtual Machines Through Guest-assisted

Introspection. In Intl. Conf. on Research in Attacks, Intrusions, and Defenses.

Silvio Cesare. [n.d.]. Syscall Redirection Without Modifying the Syscall Table.

http://www.ouah.org/stealth-syscall.txt.

[19] Ping Chen, Xiao Xing, Bing Mao, and Li Xie. 2010. Return-Oriented Rootkit

without Returns (on the x86). In Information and Communications Security, Miguel

Soriano, Sihan Qing, and Javier Lopez (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 340-354.

Bryce Cogswell and Mark Russinovich. 2006. Rootkitrevealer v1. 71. Rootkit

detection tool by Microsoft (2006).

[21] F.M.David, E. M. Chan,J. C. Carlyle, and R. H. Campbell. 2008. Cloaker: Hardware

Supported Rootkit Concealment. In 2008 IEEE Symposium on Security and Privacy

(sp 2008). 296-310.

Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. 2008. Ether: Mal-

ware Analysis via Hardware Virtualization Extensions. In ACM Conf. on Computer

and Communications Security.

Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke

Lee. 2011. Virtuoso: Narrowing the Semantic Gap in Virtual Machine Introspec-

tion. In IEEE Symp. on Security and Privacy.

[24] Yangchun Fu and Zhiqiang Lin. 2012. Space Traveling Across VM: Automatically

Bridging the Semantic Gap in Virtual Machine Introspection via Online Kernel

Data Redirection. In IEEE Symp. on Security and Privacy.

Tal Garfinkel and Mendel Rosenblum. 2003. A Virtual Machine Introspection

Based Architecture for Intrusion Detection.. In Network and Distribution Security

[18

[20

[22

~
&

[25

[26

[27

[28

&~
2,

[30

(31

'w
&,

[33

(34]

(35]

[37

[38

[39

[40

(41

[42

[43

[44]

[45

=
&

HASP 20, October 17, 2020, Virtual, Greece

Symposium.

Ralf Hund, Thorsten Holz, and Felix C Freiling. 2009. Return-oriented rootkits:
Bypassing kernel code integrity protection mechanisms. In USENIX security
symposium. 383-398.

Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. 2007. Stealthy Malware Detection
Through Vmm-based "Out-of-the-box" Semantic View Reconstruction. In ACM
Conf. on Computer and Communications Security.

Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2008.
VMM-based Hidden Process Detection and Identification Using Lycosid. In ACM
International Conference on Virtual Execution Environments.

Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen Wang,
and Jay Lorch. 2006. SubVirt: Implementing malware with virtual machines. In
Proceedings of the 2006 IEEE Symposium on Security and Privacy (proceedings
of the 2006 ieee symposium on security and privacy ed.). Institute of Electrical
and Electronics Engineers, Inc., 314-327. https://www.microsoft.com/en-us/
research/publication/subvirt-implementing- malware- with- virtual-machines/
Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2019.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1-19.

Tamas K. Lengyel, Steve Maresca, Bryan D. Payne, George D. Webster, Sebastian
Vogl, and Aggelos Kiayias. 2014. Scalability, Fidelity and Stealth in the DRAKVUF
Dynamic Malware Analysis System. In Annual Computer Security Applications
Conference.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, An-
ders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User Space.
In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association,
Baltimore, MD, 973-990. https://www.usenix.org/conference/usenixsecurity18/
presentation/lipp

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday Savagaonkar. 2013. Innovative Instructions and
Software Model for Isolated Execution. In Proceedings of the ACM International
Workshop on Hardware and Architectural Support for Security and Privacy.

B. D. Payne, M. Carbone, and W. Lee. 2007. Secure and Flexible Monitoring of
Virtual Machines. In Annual Computer Security Applications Conference.

B. D. Payne, M. Carbone, M. Sharif, and W. Lee. 2008. Lares: An Architecture for
Secure Active Monitoring Using Virtualization. In IEEE Symp. on Security and
Privacy.

Diego Perez-Botero, Jakub Szefer, and Ruby B. Lee. 2013. Characterizing Hyper-
visor Vulnerabilities in Cloud Computing Servers. In International Workshop on
Security in Cloud Computing.

Nick L Petroni Jr, Timothy Fraser, Jesus Molina, and William A Arbaugh. 2004.
Copilot-a Coprocessor-based Kernel Runtime Integrity Monitor.. In USENIX
security symposium. San Diego, USA, 179-194.

Niels Provos, Markus Friedl, and Peter Honeyman. 2003. Preventing Privilege
Escalation.. In USENIX Security Symposium.

Nguyen Anh Quynh and Yoshiyasu Takefuji. 2007. Towards a Tamper-resistant
Kernel Rootkit Detector. In ACM Symposium on Applied Computing.

Joanna Rutkowska. 2006. Introducing blue pill. The official blog of the invisi-
blethings. org 22 (2006), 23.

Joanna Rutkowska. 2007. Beyond the CPU: Defeating hardware based RAM
acquisition. Proceedings of BlackHat DC 2007 (2007).

Baljit Singh, Dmitry Evtyushkin, Jesse Elwell, Ryan Riley, and Iliano Cervesato.
2017. On the Detection of Kernel-Level Rootkits Using Hardware Performance
Counters. In Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security (Abu Dhabi, United Arab Emirates) (ASIA CCS ’17).
Association for Computing Machinery, New York, NY, USA, 483-493. https:
//doi.org/10.1145/3052973.3052999

Sherri Sparks and Jamie Butler. 2005. Shadow walker: Raising the bar for rootkit
detection. Black Hat Japan 11, 63 (2005), 504-533.

Deepa Srinivasan, Zhi Wang, Xuxian Jiang, and Dongyan Xu. 2011. Process Out-
grafting: An Efficient "out-of-VM" Approach for Fine-grained Process Execution
Monitoring. In ACM Conf. on Computer and Communications Security.
Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-sgx: A practical
library {OS} for unmodified applications on {SGX}. In 2017 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 17). 645-658.

V. R. Vasisht and H. S. Lee. 2008. SHARK: Architectural support for autonomic
protection against stealth by rootkit exploits. In 2008 41st IEEE/ACM International
Symposium on Microarchitecture. 106—116.

X. Wang and R. Karri. 2013. NumChecker: Detecting kernel control-flow
modifying rootkits by using Hardware Performance Counters. In 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC). 1-7.

Su Zhang, Xinwen Zhang, and Xinming Ou. 2014. After We Knew It: Empirical
Study and Modeling of Cost-effectiveness of Exploiting Prevalent Known Vulner-
abilities Across IaaS Cloud. In ACM Symposium on Information, Computer and
Communications Security.

https://aws.amazon.com/inspector/
https://developer.arm.com/documentation/ddi0198/e/programmer-s-model/register-descriptions/control-register-c1
https://developer.arm.com/documentation/ddi0198/e/programmer-s-model/register-descriptions/control-register-c1
https://cve.mitre.org/
http://ab-rtfm.blogspot.com/2007/07/explorations-with-adore-ng.html
http://ab-rtfm.blogspot.com/2007/07/explorations-with-adore-ng.html
https://github.com/httperf/httperf
https://securiteam.com/tools/5gp0315ffw/
https://securiteam.com/tools/5gp0315ffw/
https://github.com/razvan-cojocaru/libbdvmi
https://github.com/majdi/deadlands/tree/master/srcs/linux/module/HOOK/IDT
https://github.com/majdi/deadlands/tree/master/srcs/linux/module/HOOK/IDT
http://www.magento.com/
https://docs.microsoft.com/en-us/azure/security/azure-security-antimalware
https://sw0rdm4n.wordpress.com/2014/11/03/xingyiquan-simple-linux-kernel-rootkit-for-kernel-3-x-and-kernel-2-6-x/
https://sw0rdm4n.wordpress.com/2014/11/03/xingyiquan-simple-linux-kernel-rootkit-for-kernel-3-x-and-kernel-2-6-x/
http://www.bitdefender.com/business/hypervisor-introspection.html
http://www.bitdefender.com/business/hypervisor-introspection.html
http://www.ouah.org/stealth-syscall.txt
https://www.microsoft.com/en-us/research/publication/subvirt-implementing-malware-with-virtual-machines/
https://www.microsoft.com/en-us/research/publication/subvirt-implementing-malware-with-virtual-machines/
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1145/3052973.3052999
https://doi.org/10.1145/3052973.3052999

	Abstract
	1 Introduction
	2 Rootkit Mechanisms
	2.1 Hijacking Jump Tables
	2.2 Modifying Kernel Codes
	2.3 Direct Kernel Object Manipulation
	2.4 More Sophisticated Exploits
	2.5 Summary of Basic Attack Mechanisms

	3 Threat Model
	4 Defenses against Rootkits
	4.1 Preventing Malicious Modifications
	4.2 Detecting and Repairing Integrity Breach
	4.3 Cross-view Validation of Critical Objects

	5 Challenges and Primitives
	5.1 Semantic Gap to Access Guest VM
	5.2 Dynamic Event Capturing
	5.3 Realtime Mitigation

	6 Prototype Implementation
	6.1 Preventing Malicious Modifications
	6.2 Detecting and Repairing Integrity Breach
	6.3 Cross-view Validation of Critical Objects

	7 Evaluation
	7.1 Security Evaluation
	7.2 Performance Evaluation
	7.3 Observations and Discussion

	8 Hardware Opportunities
	9 Past Work
	10 Conclusions
	Acknowledgments
	References

