
Design, Implementation and Verification
of Cloud Architecture for Monitoring
a Virtual Machine’s Security Health

Tianwei Zhang and Ruby B. Lee, Fellow, IEEE

Abstract—Cloud customers need assurances regarding the security of their virtual machines (VMs), operating within an Infrastructure

as a Service (IaaS) cloud system. This is complicated by the customer not knowing where his VM is executing, and on the semantic

gap between what the customer wants to know versus what can be measured in the cloud. We presentCloudMonatt, an architecture for

monitoring a VM’s security health. We show a full prototype based on the OpenStack open source cloud software. We also verify

CloudMonatt to show that there are no security vulnerabilities that could allow an attacker to subvert its protection. As such, we conduct

a systematic security verification of CloudMonatt. We model and verify the network protocols within the distributed system, as well as

interactions of hardware/software modules inside the cloud server. Our results show that CloudMonatt is capable of delivering this

monitoring and attestation service to customers in an unforgeable and reliable manner.

Index Terms—Cloud computing, virtual machine, security health, attestation, security verification, openstack
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1 INTRODUCTION

IN an IaaS cloud, a customer requests to launch a VM in
the cloud system. During the VM’s lifetime, the customer

would like to know if his VM has good security health.
Security Health of a VM is defined as an indication of the

likelihood that the VM satisfies the security properties the
customer requested for his leased VM. It depends on a vari-
ety of factors in the complicated cloud environment. First, a
VM can get infected with malware or OS rootkits at run-
time. Such inside-VM vulnerabilities can take complete con-
trol of the VM and significantly compromise its security
state. Second, cloud management software usually have
large code base sizes. This inevitably introduces bugs and
gives adversaries opportunities to conduct privilege escala-
tion attacks and gain hypervisor or host OS privilege [1].
Then the adversaries have full control of the whole server, as
well as the capability of compromising any VM’s security
health on this server. Third, cloud systems usually adopt the
“multi-tenancy” feature, where different customers share
the same cloud server, as co-tenants or co-resident VMs. Past
work have shown that the “bad neighbor” VMs are able to
steal critical information through side-channel attacks [2],
[3], thus compromising the VM’s confidentiality health, or steal
computing resources through Resource-Freeing attacks [4]
or Memory DoS attacks [5], thus compromising the victim
VM’s availability health. We call the threats from the host OS

and co-located VMs outside-VM vulnerabilities, which are
hard for customers to defeat. Hence, a VM’s security health
depends on not only the activities inside the VM, but also the
VM’s interactions with its environment.

Monitoring the VMs’ security health poses a series of
challenges in a cloud system. First, the customer’s limited
privileges prevent him from collecting comprehensive secu-
rity measurements to monitor his VM’s security health.
He only has access to the VM, but not to the host server.
For inside-VM vulnerabilities, once the VM’s OS is compro-
mised by the attacker, the customer may not get correct
measurements. For outside-VM vulnerabilities, the customer
cannot collect information about the co-resident VMs, the
hypervisor, etc. Second, the customer’s desired security
requirements are expressed in terms of high-level security
properties of the VM he leased, but the security measure-
ments are often low level measurements of the physical
server, the hypervisor and other entities related to this VM.
This creates a semantic gap between what the customers
want to monitor and the type of measurements that can be
collected. Third, the VMs go through different lifecycle
stages and may migrate to different host servers. A seamless
monitoring mechanism throughout the VMs’ lifetime is
therefore highly desirable. Fourth, there are numerous enti-
ties between the customers and the point of VM operations.
It is important to collect, filter and process the attestation
information securely to attest, i.e., pass on to the customer
in an unforgeable way, only the requested information.

To address these challenges, Zhang and Lee proposed a
flexible architecture, CloudMonatt, to monitor and attest the
security health of customers’ VMs within a cloud system [6].
CloudMonatt is built upon the property-based attestation
model, and provides several novel features. First, it provides
a framework for monitoring different aspects of security
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health. Second, it shows how to interpret and map actual
measurements collected to security properties that can be
understood by the customer. These bridge the semantic gap
between requested VM properties and the platform meas-
urements for security health. Third, attestations can be done
at runtime and for VM migrations, not just at boot up and
VM launch time. Fourth, CloudMonatt provides remediation
responses based on themonitored results.

This paper is an extension over the CloudMonattwork [6].
First we describe the design (Section 3) and implementation
(Section 4) of CloudMonatt [6]. Then we demonstrate the
security verification of this architecture. Given that Cloud-
Monatt is designed to monitor and report VMs’ security
health, it is important and necessary to systematically check
that it works correctly as expected, with no vulnerabilities
that could be exploited by attackers to subvert its security.
A distributed cloud system like CloudMonatt involves a
variety of cloud servers, and hardware, software and net-
work components. This requires us to consider the external
communication protocols between servers, as well as the
internal interactions inside each server.

We adopt the methodology from [7] to demonstrate how
to practically verify a distributed cloud system. Specifically,
we break down the whole verification task into two parts,
the external network verification and the internal server ver-
ification. We model components as state machines, propose
the security invariants for checking, and use a protocol
checking tool, ProVerif [8] to model the network protocols
and system operations, and verify the invariants. The verifi-
cation results not only raise our confidence in our CloudMo-
natt design, but also provide suggestions for further
strengthening its reliability and trustworthiness.

Key contributions in this paper are:

� Design and implementation in OpenStack, of a flexi-
ble architecture to monitor the security health of
VMs over the VMs’ lifecycle, with automatic remedi-
ation response to failing security health indicated by
negative attestation results.

� A systematic security verification of this secure cloud
architecture. We break the verification task of the dis-
tributed architecture into external and internal verifi-
cation, propose security invariants for each task, and
repurpose existing tools to verify these invariants.

Section 2 reviews the background and related work.
Section 3 describes the CloudMonatt architecture and its oper-
ations. Section 4 gives the details of our prototype implemen-
tation. Section 5 shows our proposed security evaluation. We
conclude in Section 6.

2 BACKGROUND AND RELATED WORK

2.1 Remote Attestation

Remote attestation is defined as “the procedure of making
claims about the security conditions of a targeted system based on
the evidence supplied by that system” [9]. It often involves three
entities: an attester is the targeted system which provides
the evidence; a verifier is an entity which requests a report
for a given attester; an appraiser is an entity which makes
decisions by evaluating the security conditions based on the
attester’s evidence. We review two types of attestations.

Binary attestation. Proposed by the Trusted Computing
Group (TCG) [10], binary attestation was a breakthrough
development which helped enable attestation of the plat-
form integrity of a remote server. The attester calculates
binary hash values of the platform configurations, and
sends them to the verifier. The verifier, who typically also
plays the role of the appraiser, compares these values
with reference or “good” configurations, and determines
whether the state of the attester is acceptable.

Many systems enabledwith remote attestations have been
designed, based on the Trusted Computing Group’s binary
attestation [10]. Sailer et al. [11] proposed the Integrity Mea-
surement Architecture (IMA), to measure the integrity of
executables from BIOS to application level. Jaeger et al. [12]
extended IMA to Policy Reduced Integrity Measurement
Architecture (PRIMA), which can measure the Mandatory
Access Control (MAC) Policy defined for controlling infor-
mation flows across user processes. Shi et al. [13] proposed
the architecture of Binding Instructions aNd Data (BIND) to
realize fine-grained attestation on the integrity of code in dis-
tributed systems. Seshadri et al. [14] proposed the Pioneer
system, which can attest the integrity of code executions on
legacy computing systems. Garfinkel et al. [15] designed
Terra, an architecture with a trusted virtual machinemonitor
(TVMM) to provide a secure computing environment by iso-
lating critical application code in different VMs.

Binary attestation has certain shortcomings [16], [17].
First, binary measurements sent to the verifier provide con-
figuration and implementation details of the attester, which
is a privacy issue and may lead to fingerprinting attacks.
Second, the verifier (who is also the appraiser) must be
aware of the correct configurations of the target platform.
Third, the target platforms may get updated leading to a
change in configurations, and thus requiring the verifier to
be notified about it each time.

Property-based attestation. To address the above shortcom-
ings, property-based attestation was proposed [16], which
attests security properties, functions and behaviors of sys-
tems. In property-based attestation, the verifier and the
appraiser are separate entities. The appraiser is a trusted
third party, who is trusted by the attester and the verifier.
The appraiser has full knowledge of the attester. Its job is to
transform the attester’s measurements into properties and
vice versa, and determine if the attester satisfies a set of given
properties. A common solution for realizing an appraiser’s
interpretation mechanism is delegation-based attestation
[16], [18]. In this approach, the appraiser can issue a property
certificate, proving that a given configuration fulfills a specific
property demanded by the verifier. Other approaches like
proxy-based [19] are also proposed and implemented.

A variety of methods deriving from property-based attes-
tation are explored, to attest different security properties.
Haldar et al. [20] proposed semantic attestation, which
monitors programs’ high-level dynamic behaviors and
properties. Alam et al. [21] proposed model-based behav-
ioral attestation to attest the behaviors of security policies
associated with the platforms. Sirer et al. [22] proposed logi-
cal attestation, which translates the programs’ high-level
attributable properties to logical expressions for verification.

Compared with binary attestation, the advantages of
property-based attestation are as follows: properties do not
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reveal the configuration and implementation details, and
thus do not violate the privacy of the attester; properties do
not change as often as the target platform’s configurations;
properties are easier to understand and express. However,
the specification and interpretation of properties to be
attested remain as challenging, open problems [17]. They
make it very difficult for computer architects to convert the
concept of property-based attestation into real architectures.

2.2 Attestation in Cloud Computing

Attestation of VM security health in the cloud environment
is more complex. In IaaS, the verifier is the customer who
launches a VM in the cloud and the attester is the VM. The
health of the target VM depends on not only the applica-
tions and OS within the VM, but also its interactions with
the host environment. In addition, since a VM experiences
different activities during its lifecycle, it is important to con-
sider attestation throughout the VM’s life.

Virtual machine introspection. Past work on inside-VM
threats proposed virtual machine introspection techniques
[23], [24], [25], [26], [27], [28]. The hypervisor monitors the
VM and detects the existence of malicious entities inside the
VM, while being isolated, and thus protected, from the VM.

However, these methods detect abnormal behaviors
inside the VM, but do not consider the threats from co-
resident VMs or other outside-VM entities. Also, how to use
these techniques in the cloud system and allow the remote
customer to use these monitoring services are problems
which have not been addressed. In [6], we show how virtual
machine introspection can be seamlessly deployed in our
CloudMonatt architecture to monitor a VM’s integrity.

Direct attestation. Direct attestation allows the customers
to talk to the VMs directly. One example is the virtual
Trusted Platform Module (vTPM) [29], [30], [31], [32], [33].
Since a physical TPM cannot be directly used by the VMs
within virtualized environments, vTPMs are designed to
provide the same usage model and services to the VMs.
Then attestation can be carried out directly between the cus-
tomers and virtual machines by the vTPM instances. These
instances can be realized by implementing TPM emulators
in the hypervisor or host OS, by modifying the hardware
TPM to enable TPM virtualization [29], or by combining
both software and hardware TPMs [30]. To overcome binary
attestation’s shortcomings, Sadeghi et al. [31] proposed vir-
tual property-based attestation, in which the vTPM instan-
ces are assigned the tasks of security property management
and interpretations.

The virtual TPM solution raises some problems for VM
monitoring: it cannot attest the security conditions of the
VM’s environments. Furthermore, themonitoring tool resides
in the guest OS, so it needs modification of the guest OS, and
commodity OSes are also highly susceptible to attacks.

Centralized attestation. To overcome the above problems,
the concept of centralized attestation is introduced in the cloud
system to manage the attestation procedure. Schiffman et al.
[34] implemented a centralized “cloud verifier” that can pro-
vide the integrity attestations for customers’ VM applications.
Customers issue the authorization for the VM to access appli-
cations onlywhen the integrity attestation passes. Santos et al.
[35] designed a centralized monitor to check the platform’s
configurations and map them to security attributes. This

enables customers’ VMs to be allocated on the platforms with
specified attributes. Then Attribute-Based Encryption is
exploited to seal and unseal data between customers and
cloud servers to ensure they are not compromised. However,
the abovework are still based on binary attestation for platform
integrity and configuration checking, and do not consider
other security properties like confidentiality or availability,
nor the VMs’ interactions (intended or unintended) with the
outside-VM environment.

In contrast, this paper uses centralized property-based attes-
tation to monitor both inside-VM and outside-VM health.
We introduce a centralized Attestation Server which con-
ducts security monitoring management, property transla-
tion and interpretation. On each cloud server we introduce
a Monitor Module integrated with many monitoring tools
to monitor VMs for different properties. These new designs
can achieve a comprehensive property-based attestation and
monitoring of VMs’ health in clouds. We enable attestation
not only on boot up and VM initiation, but also during VM
runtime and migration. We also propose a novel ongoing
periodic attestation for a VM’s security health, and auto-
mated remediation responses for negative attestation
results. Concrete examples of monitoring VMs’ different
security properties can be found in our past work [6].

2.3 Attestation Protocols

Remote attestation needs the support of cryptographic pro-
tocols. For binary attestation, the most basic protocol is the
standard signature scheme which was originally adopted by
TCG (TPM specification v1.2) [10], [11]. Manufacturers burn
a private key into the micro-processor chip, and then the
TPM generates the attestation key-pairs, signs the public
key, and sends it to the privacy certificate authority for a cer-
tificate. The TPM specification v1.2 also includes the Direct
Anonymous Attestation functionality [36], which can pre-
serve the anonymity of the attested platforms from the veri-
fier using the group signature scheme. Then TCG released
TPM specification v2.0 [37], [38], which included multiple
cryptographic functionalities and flexibly selective crypto-
graphic algorithms, e.g., anonymous signatures, pseudonym
signatures, and conventional signatures. Stumpf et al. [39]
enhanced the TCG-based attestation protocol by integrating
Diffie-Hellman key exchange protocol to defeat masquerad-
ing attacks.

For property-based attestation, Chen et al. [18] designed a
provable and efficient protocol with a delegation solution.
This protocol holds the security features of unforgeability
(i.e., the signature can only be produced by the valid
TPM) and unlinkability (i.e., the verifier cannot deduce
the specific configuration of the platform). It also supports
the revocation of invalid certifications. Chen et al. [40]
proposed another property-based attestation protocol
based on the ring signature scheme. This protocol can
preserve the platform’s privacy and avoid the involve-
ment of a trusted third party to certify properties, which
will be done by the attested platform. Different from past
work, the protocol in CloudMonatt involves four entities
in a cloud system. We design new protocols to provide
unforgeability for attestation reports, and anonymity
for attested platforms. Anonymity will be discussed in
Section 3.4.2.
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3 CLOUDMONATT ARCHITECTURE

In this sectionwe describeCloudMonatt, a flexible distributed
cloud architecture that can monitor the security health of a
customer’s VM in the cloud, detect the vulnerabilities inside
the VM, from the platform it is running on or from co-resi-
dent VMs, and take prompt remediation actions when the
VM’s security health is appraised as inadequate. Section 3.1
describes the main architectural components. Section 3.2
describes the threat model, referring to these components.
Section 3.3 demonstrates the definition of VM security health
and security property interpretation. Section 3.4 describes
the protocols to guarantee the attestation unforgeability.

3.1 Architecture Overview

Fig. 1a shows an overview of the CloudMonatt architecture.
This includes four entities: 1) Cloud Customer, 2) Cloud
Controller, 3) Attestation Server and 4) Cloud Server.

3.1.1 Cloud Customer

The customer is the request initiator and end-verifier in the
system. He places a request for leasing VMs with specific
resource requirements and security requests to the Cloud
Controller. He can issue any number of security attestation
requests during his VM’s lifetime. CloudMonatt allows cus-
tomers to invoke the monitoring and attestation requests at
any time during the VM’s lifecycle.

3.1.2 Cloud Controller

The Cloud Controller acts as the cloud manager, responsible
for takingVM requests and servicing them for each customer.
The Policy Validation Module in the Controller selects
qualified servers for customers’ requested VMs. These serv-
ers need to both satisfy the VMs’ demanded physical resour-
ces, as well as support the requested security properties and
their property monitoring services. The Deployment Mod-

ule allocates each VMon the selected server.
During the VMs’ lifecycle, the customers may request the

Cloud Controller to monitor the security properties associ-
ated with their VMs. The Cloud Controller will entrust the
Attestation Server to collect the monitored security meas-
urements from the correct VMs, and send a report back to
it. It then sends the results back to the customers to keep
them informed of their VMs’ security health.

When these results reveal potential vulnerabilities for the
VMs, the Response Module in the Controller carries out
appropriate remediation responses. When an inside-VM
vulnerability is detected, the Controller can shut down the
VM to protect it from attacks. If the security health of the
current server is questionable, the Controller can temporar-
ily suspend the VM and then resume it when the server has
returned to the desired security health. The Controller can
also migrate the VM to another cloud server that satisfies
the VM’s security requirements.

3.1.3 Attestation Server

The Attestation Server acts as the attestation requester and
appraiser, and consists of two essential modules. 1) The
Property Interpretation Module is responsible for
validating measurements, interpreting properties and mak-
ing attestation decisions. It needs a certificate from a pri-

vacy Certificate Authority (pCA) to authenticate
cloud servers. The privacy Certificate Authority

may be a separate trusted server already used by the cloud
provider for standard certification of public-key certificates
that bind a public key to a given machine. 2) The Property
Certification Module is responsible for issuing an attes-
tation certificate for the properties monitored. There can be
different Attestation Servers for different clusters of cloud
servers, enabling scalability of the CloudMonatt architecture.

We introduce the Attestation Server for security monitor-
ing while the Cloud Controller is responsible for manage-
ment. This job split achieves better scalability, since different
attestation servers can be added to handle different clusters
of cloud servers. It consolidates property interpretation in the
attestation servers, rather than replicating this in each cloud
server, or burdening the Cloud Controller. This also achieves
better “separation of duties” security, since the Cloud Con-
troller need only focus on cloud management while the
Attestation Server focuses on security. It also improves per-
formance by preventing a bottleneck at the Cloud Controller
if it had to handle management as well as myriad attestation
requests and security property interpretations.

3.1.4 Cloud Server

The Cloud Server is the computer that runs the Virtual
Machine (VM) in question. It is the attester in the system. It
provides different measurements for different security

Fig. 1. CloudMonatt architecture.
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properties. Fig. 1b shows the structure of a cloud server
with a Type-I hypervisor (e.g., Xen [41]). This has the hyper-
visor sitting on bare metal, and a privileged VM called the
host VM (or Dom0) running over the hypervisor. Not all the
cloud servers in the cloud provider’s data center have to be
trusted (almost all existing ones are not), only those servers
on which security monitoring is necessary need to be
secure. To support CloudMonatt’s goals, a cloud server must
include a Monitor Module and a Trust Module.

The Monitor Module contains different types of moni-
tors to provide comprehensive and rich security measure-
ments. These monitors can be software modules or existing
hardware mechanisms like performance counters or the
TPM chip. For example, the Performance Monitor Unit
(present ubiquitously in Intel x86 [42] and ARM processors
[43]) has numerous Hardware Performance Counters to col-
lect runtime measurements of the VMs’ activities. An Integ-
rity Measurement Unit (which could use a TPM [10] chip)
can be used to measure accumulated hashes of the system’s
code and static data configuration. In the hypervisor, a Vir-
tual Machine Introspection tool (e.g., LibVMI [44]) can be
used to collect the information inside the specified VM, and
the VMM profile tool (e.g., xentrace [45]) can be used to col-
lect dynamic information about each VM’s activities.

We define a new hardware Trust Module in Fig. 1b.
This Trust Module is responsible for server authentication
using the Identity Key, crypto operations using the
Crypto Engine, Key Generation and Random Number

Generation (RNG) blocks, and secure measurement stor-
age using the Trust Evidence Registers. By using new
hardware registers to store the security health measure-
ments (trust evidence), we do not need to include the main
DRAM memory in our Trusted Computing Base, although
trusted RAM can also be used instead of Trust Evidence

Registers in the Trust Module.
Fig. 1b also shows the functional steps taken by the Mon-

itor Module and the Trust Module. The Cloud Server
includes an Attestation Client in the host VM that �1
takes requests from the Attestation Server to collect a set of
measurements. It invokes the Monitor Module �2 to collect
the measurements and the Trust Module �3 to generate a
new attestation key for this attestation session. This new
attestation key is signed by the Trust Module’s private
identity key. The required measurements of suspicious
events or evidence of trustworthy operation are �4 collected
from the Monitor Module and �5 stored into new Trust

Evidence Registers. The Trust Module then �6
invokes its Crypto Engine to sign these measurements
and �7 forwards the data to the Attestation Client

which�8 sends it to the Attestation Server.

3.2 Threat Model

The threat model is that of hostile VMs running in the
cloud on the same cloud server, or hostile applications or
services running inside a VM, that try to breach the confi-
dentiality or integrity of a victim VM’s data or code. They
may also try to breach its availability, in spite of the cloud
provider having allocated the VM its requested resources.
The cloud provider is assumed to be trusted (with its repu-
tation at stake), but may have vulnerabilities in the system.
We assume that the Cloud Controller and the Attestation

Server are trusted - they are correctly implemented, with
secure bootup and are protected during runtime. However
the Cloud Servers need not be trusted, except for the
Trust Module and Monitor Module in each server.
Note that the Cloud Controller and Attestation Server can
be redundancy protected for reliability and security, and
are only a small percent of all the servers in the cloud’s
data center. Also, not all the thousands of cloud servers
need to be CloudMonatt-secure servers.

We focus on two types of adversary’s capabilities: (1) An
adversary, who tries to exploit vulnerabilities in the custom-
ers’ VMs, either from inside the VM, or from another mali-
cious VM co-resident on the same server. (2) An active
adversary who has full control of the network between dif-
ferent servers, as in the standard Dolev-Yao threat model
[46]. The adversary is able to eavesdrop as well as falsify the
attestation messages, trying to make the customer receive a
forged attestation report without detecting anything suspi-
cious. With regard to this second adversary, CloudMonatt
needs secure monitoring and attestation protocols which
we define in Section 3.4.

3.3 Security Health Monitoring

Different indicators of different aspects of security health
can be monitored. In our context, these different aspects of
security are the security properties requested by the cus-
tomer. These security properties can be monitored by the
various monitors in the server’s Monitor Module and col-
lected by the Trust Evidence Registers in the server’s Trust

Module. The CloudMonatt architecture is flexible and allows
the integration of an arbitrary number of security properties
and monitoring mechanisms, including logging, auditing
and provenance mechanisms.

To monitor and attest a security property, three require-
ments must be satisfied: (1) the Attestation Server can trans-
late the security property, requested for attestation by the
customer, to the measurements to request from the target
cloud server; (2) the target cloud server implements a Mon-

itor Module that can collect these measurements, and a
Trust Module with a Crypto Engine that can securely hash
and sign the measurements and send them back to the
Attestation Server. (3) the Property Interpretation

Module in the Attestation Server is able to verify the meas-
urements and auxiliary information, and interpret if the
security property is satisfied.

Property Mapping and Interpretation. The Attestation
Server has a mapping of security property P to measure-
ments M. This gives a list of measurements M that can indi-
cate the security health with respect to the specified
property P. The Attestation Server can also behave as the
property interpreter and decision maker: when it receives
the actual measurements M0 from the server and VM, it can
judge if the customers’ requested security properties are
being enforced.

Case Study. We give an example of detecting confidential-
ity vulnerabilities via covert channels to show an interesting
use of CloudMonatt’s Trust Evidence Registers. The detection
method is similar to that proposed in [47]. The real purpose
of this example is to showhowCloudMonatt can useTrust Evi-
dence Registers to collect security measurements, e.g., to build
an empirical probability distribution for attack detection.
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Although VMs are isolated from each other by the hyper-
visor, it may still be possible to leak confidential data via a
cross-VM covert channel at VM runtime. A covert channel
exists when a colluding insider (e.g., a program inside the
victimVM) can use amediumnot normally used for commu-
nications to leak secret information to an unauthorized party
in another VM.WhenVMs on the same server share physical
resources, the contention for these shared resources can be
exploited to encode and transmit information, e.g., in the
form of timing features. Such characteristics can be different
cache operations (hit or miss), memory bus activities (locked
or unlocked bus), or DRAM controller states (bandwidth sat-
urated or not). Fig. 2a shows the covert channel information
observed by the receiver VMs, using each of the Last Level
Cache (LLC), bus and DRAM as the covert channel commu-
nicationmedium, transmitting alternatively “0”s and “1”s.

A key idea to detect these covert channels is that programs
involved in covert channel communications give unique patterns
of the events happening on these hardware [47]. If a customer
requests covert channel protection and periodic attestation
of this, CloudMonatt can use hardware performance coun-
ters to monitor the attested VM’s memory bandwidth every
0.1 ms. After a certain monitoring period, CloudMonatt

calculates the frequency distribution histogram for the
memory bandwidth used. Specifically, it divides the entire
range of observed bandwidth values into 20 bins with equal
size, and then counts how many bandwidth values fall into
each bin. Then CloudMonatt uses 20 Trust Evidence Registers
to store the number of values in each bin to represent the
memory bandwidth distribution. These 20 values are sent
as the security health measurements for detecting these
LLC, bus or DRAM covert channels. We use 20 bins in our
experiment, but a different number can be used to save
space or increase accuracy.

When the Attestation Server receives the 20 values, the
Property Interpretation Module calculates the proba-
bility distribution (Fig. 2b) of the memory bandwidth. If a
covert channel exists, the distribution graph gives two peaks:
each peak representing the activity of transmitting a “0” or a
“1”, respectively. The Attestation Server can use machine
learning techniques to conduct pattern recognition of covert
channels. More sophisticated detection methods can be inte-
grated intoCloudMonatt to detect other types of attacks.

3.4 Monitoring and Attestation Protocols

In a distributed architecture where communication is over
untrusted networks, the protocols are an essential part of the
security architecture: they establish trust between the cus-
tomer and the cloud provider, and between different com-
puters in the cloud system. In CloudMonatt, an attestation
protocol must be unforgeable in spite of the network attacker
and the other attackers in the untrusted servers. This requires
secure communications among the four entities in Fig. 1a,
and unforgeable signatures of the measurements and the
attestation report from the place of collection (in the Cloud
Server) through the Attestation Server, Cloud Controller and
finally to the customer. We first describe the main attestation
protocol. Details of the cryptographic keys involved, the
secure communications and storagewill be clarified later.

Fig. 3 shows the attestation protocol in CloudMonatt.

1) The customer initially sends to the Cloud Controller
the attestation requests including the VM identifier
Vid, the desired security property P and a nonce N1.

Fig. 2. Frequency distribution detection of three covert channels.

Fig. 3. Attestation protocol and key management in CloudMonatt. We use the notation ½M�K for a private key operation with keyK, fMgK for a public
key operation with keyK, and ðMÞK for a symmetric key operation with symmetric keyK.Ni represents a Nonce between two communication parties.
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The nonce is an arbitrary number used only once in
this session. It is used to prevent replay attacks over
the channel between the customer and the Cloud
Controller.

2) The Cloud Controller knows the mapping of all VMs
to their assigned cloud servers. It discovers the host
server of VM Vid; I, and sends to the Attestation
Server the request, which includes Vid; I;P and
another nonceN2.

3) Given the property P, the Attestation Server identi-
fies the required monitoring measurements rM.
Then it sends Vid; rM and its nonce N3 to the cloud
server Iwhere the VM is running.

4) In the Cloud Server, the Monitor Module collects
the required measurements M and stores them into
the Trust Evidence Registers. Then the Trust

Module calculates the quote Q3 as the hash value of
(Vid; rM;M and nonce N3) (We borrow the term
”Quote” from TPM notation, to represent a cumula-
tive hash measurement), and sends to the Attestation
Server a signature of Vid; rM;M;N3 andQ3.

5) The Attestation Server verifies the signature and
checks the integrity of the measurements by calculat-
ing the hash value and comparing it with the quote
Q3. Then it interprets the measurementsM and prop-
erty P and generates the attestation report R. The
Attestation Server calculates the quoteQ2 as the hash
value of (Vid; I;P;R andN2), and sends to the Cloud
Controller a signature ofVid; I;P;R;N2 andQ2.

6) The Cloud Controller verifies the signature and
checks the integrity of the report R via the hash value
Q2. Then it generates the quote Q1 by hashing
Vid;P;R and N1, signs these values and sends the
signature to the customer.

7) The customer verifies the signature and hash value. If
they are correct, the customer gets the correct reportR.

3.4.1 Secure Storage and Communications

For secure storage, the Trust Module provides Trust

Evidence Registers for saving attestation measure-
ments, which are only accessible to the Trust Module and
Monitor Module. Accesses to the databases in the Cloud
Controller and the Attestation Server are also protected to
ensure data confidentiality and integrity.

For secure communications over networks, the CloudMo-
natt architecture expects the customer, Cloud Controller,
Attestation Server and secure Cloud Servers to implement
the SSL protocol. Our contribution is defining the contents of
the SSL messages, and the keys and signatures required for
unforgeable attestation reports andCloud Server anonymity.

3.4.2 Key Management

We now describe the keys used in Fig. 3. The Cloud Con-
troller, Attestation Server and each secure Cloud Server
must have one long-term public-private key-pair that
uniquely identifies it within the cloud system. This is mini-
mally what is required for SSL support, and is already pres-
ent in all cloud servers. Hence, each secure cloud server
owns a pair of public-private identity keys, fVKs;SKsg.
The private key, SKs, can be burned into the Trust Module

when manufactured, or more preferably, securely inserted

into a non-volatile and tamper-proof register in the Trust

Module when the server is first deployed in the cloud data
center. This private identity key is never released outside of
the Trust Module. The public key, VKs, can be used to
authenticate the cloud server. A cloud server mainly uses
this identity key-pair to generate a temporary key pair for
each attestation request.

A new session-specific key-pair, fAVKs;ASKsg, is cre-
ated by the Trust Modulewhenever an attestation report is
needed, so as not to reveal the location of a VM. The public
attestation key AVKs is signed by the Cloud Server’s SKs

and sent to the pCA for certification. The pCA verifies the
signature viaVKs and issues the certificate forAVKs for that
server. This certificate enables the Attestation Server to
authenticate the server ”anonymously” for this attestation.

For secure communications between the servers, SSL first
authenticates sender and receiver using their public-private
key-pairs, then generates symmetric session keys for
encrypting the messages passed between each pair of serv-
ers. Hence, Fig. 3 shows the communications between the
customer and the Controller protected with a symmetric
key Kx, between the Controller and the Attestation Server
with a symmetric key Ky, and between the Attestation
Server and Cloud Server with a symmetric key Kz.
Note that the symmetric key encryption between the Cloud
Controller and the Attestation Server also protects the loca-
tion, I, of the VM, Vid, enhancing anonymity.

4 IMPLEMENTATION

We implemented our property-based cloud attestation on
the OpenStack open source cloud computing software [48].
We integrated the OpenAttestation software (oat) [49] for
host remote attestation protocols. We integrated the TPM-
emulator [50] and leveraged it to emulate the functions of
the Trust Module in the hardware. We make CloudMonatt
open-source and available online.1 Fig. 4 displays our proto-
type implementation.

4.1 Cloud Controller

The Cloud Controller is implemented by modifying Open-
Stack. OpenStack is composed of different services.Wemodi-
fied services including horizon, which is implemented as
OpenStack’s dashboard andprovides aweb-based user inter-
face to customers, and nova, which is used to manage com-
puting services in cloud servers.

We modify four OpenStack modules to implement the
CloudController: (1) horizon: we extend the VM launch inter-
face with the monitoring and attestation options: when
launching VMs, the customers can specify which properties
they want for their VMs. We also enable the customers to
start or disable the security health monitoring during the
VMs’ lifetime. (2) nova api: we modify this module to pass
newVM launch options, monitoring requests from horizon to
nova, as well as attestation results from nova to horizon. (3)
nova database: wemodify the controller’s database to enable it
to store the customers’ specifications about the security prop-
erties required for their VMs, from nova api. We also add new
tables in the database, which record each servers’monitoring
and attestation capabilities: i.e., what properties they support

1. https://github.com/eepalms/CloudMonatt.git
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for monitoring. (4) nova scheduler: we modify this to imple-
ment the Policy Validation Module and Deployment

Module of the Cloud Controller. It is responsible for choos-
ing the host for the VM during initial allocation and migra-
tion. We add a new filter: property_filter, to select qualified
servers to host VMs based on their customers’ security prop-
erties, monitoring and attestation requirements.

We add two new modules in the controller: (1) nova
attest_service: this module manages the attestation services.
It connects nova database (for retrieving security properties),
oat api (for issuing attestations and receiving results) and
nova response (for triggering the responses). (2) nova response:
this implements the Response Module, responsible for
providing some responses if the attestation fails.

4.2 Attestation Server

The attestation server and client are realized by OpenAttes-
tation. Three of the four main modules remain unchanged:
oat database stores information about the cloud servers and
measurements; oat appraiser is responsible for triggering
attestations and reporting the measurements; oat PrivacyCA
provides public-key certificates for the cloud servers.

We modify oat api by extending the APIs with more
parameters, i.e., security properties and VM id. We add a
newmodule oat interpreter: this essential newmodule imple-
ments the Property Interpretation and Certification Mod-
ules of the Attestation Server. It can interpret the security
health of the VM and make attestation decisions, based on
the information of the cloud server from the nova database
and the security measurements from the oat database.

4.3 Cloud Servers

In each cloud server, nova compute is the client side of Open-
Stack nova. We modify oat client, the client side of OpenAt-
testation, to receive attestation requests. We modify the
TPM emulator to provide secure storage and crypto func-
tions. We add two new modules: Monitor Kernel can start
the security measurements and store the values into the
TPM emulator, and Monitor tools can integrate different
software VMI tools, VMM Profile tools or other logging or
provenance tools, into the server to perform the monitoring
and take measurements.

5 SECURITY VERIFICATION

We conduct a security verification of CloudMonatt. We aim to
address two questions: (1) can CloudMonatt provide

unforgeable VM health reports to customers and the
cloud provider? (2) What are the minimal security
requirements (i.e., software/hardware modules that need
to be trusted) that can guarantee the security and cor-
rectness of CloudMonatt?

5.1 Verification Methodology

To verify a system’s protocols and operations, we first spec-
ify the verification goals and invariants based on the sys-
tem’s functionality. Then we build models for the system,
and identify the trusted and untrusted subjects in the sys-
tem. We implement the models and verification invariants
in a cryptography verification tool and run this tool to test if
the invariants pass for every possible path through the sys-
tem models from the initial state to the end state. If an
invariant fails in some cases, we try to find the vulnerabil-
ities and construct the corresponding attacks. We describe
these steps for verifying CloudMonatt in detail below.

Analyzing verification goals. CloudMonatt has two basic
functionalities: (1) reporting VMs’ potential security threats
to the cloud provider so it can take the corresponding coun-
termeasure to mitigate the threats; (2) notifying the custom-
ers of their VMs’ security health. So CloudMonatt must
ensure that the cloud provider and customers can receive
the correct and unforgeable monitoring reports. These are
the two verification goals of CloudMonatt.

Fig. 5 shows the structure of verification goals and their
dependent conditions. The two red blocks (at the top and
left) show the two main goals we want to verify: (1) the goal
that the customers can receive the correct reports depends
on three conditions: the Cloud Controller can receive the
correct reports, process them correctly and transmit them
securely to the customers. (2) The goal that the Cloud Con-
troller can receive the correct reports also depends on three
conditions: the Attestation Server can receive the correct
measurements, process them (i.e., generate correct reports)
correctly, and transmit the reports to the Cloud Controller
securely. In addition to the above two main goals, the con-
dition that the Attestation Server can receive the correct
measurements depends on two conditions: the cloud server
collects correct measurements, and such measurements can
be transmitted to the Attestation Server securely. The
trustworthiness of each server depends on two conditions:
the critical software and hardware modules function cor-
rectly, and messages are exchanged securely between these
modules.

Fig. 4. Implementation of CloudMonatt architecture on OpenStack platform.
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In order to verify the main goals in a scalable way, we
break the verification task into two steps, adapting and
extending the methodology from [7]. The first step is external
verification, which aims to verify the main verification goals
(red blocks in Fig. 5). In this step, we treat each server as a
blackbox (dashed boxes in Fig. 5). For each server we only
consider the black block as a precondition and assume it is
already satisfied, while ignoring other basic preconditions
(grey blocks) inside the boxes. Under such preconditions
and other basic preconditions outside of the blackboxes, we
verify if the main goals are held. The second step is internal
verification in which we consider the activities inside each
server. In this step, the precondition we assume in the previ-
ous step becomes the postcondition that we want to verify.
We want to check if such postcondition is held, i.e., the pre-
condition we make in the previous step is correct, under the
basic preconditions inside the dashed box.

Modeling systems. To verify the above goals of CloudMo-
natt, we need to translate the system protocols and the
underlying architectures into representative yet tractable
models. We adopt the symbolic modeling method [51],
where the cryptographic primitives are represented by
function symbols and perfect cryptography is assumed.
Specifically, we first specify subjects involved in this verifi-
cation procedure. A subject can be a customer or a server in
the distributed system, or a hardware/software module
inside a server. For external verification, since we treat each
server as a blackbox, we model each server and the cus-
tomer as a subject. For internal verification, we need to con-
sider the internal activities inside the server, so we model
each software and hardware module involved in the system
operation as a subject. Each subject has a set of states with
inputs and outputs based on the system operation. The tran-
sitions between different states are also defined by the archi-
tecture designs and protocols.

Among all the subjects, there is an initiator subject that
starts the system protocol and a finisher subject that ends

the protocol. (The initiator and finisher could be the same
subject). This initiator subject has a “Start” state while the
finisher subject has a “Done” state. The verification proce-
dure starts at the initiator’s “Start” state. At each state in
each subject, it takes actions corresponding to the transition
rules. It will exhaustively explore all possible rules and
states to find all the possible paths from the initiator’s
“Start” state to the finisher’s “Done” state. Then we judge if
the verification goals are satisfied in all of these paths. The
system is verified to be secure if there are paths from initiator’s
“Start” state to finisher’s “Done” state, and all the verification
goals are satisfied in all of these paths.

Specifying security invariants. Invariants are conditions
that need to hold true for there to be no violation of the veri-
fication goals or postconditions. The invariants can be speci-
fied from the goals or postconditions that we want to verify.
For CloudMonatt, the goals of external verification are to
ensure the customer and the Cloud Controller receive the
correct reports. So the invariants are that the reports received
by the customer and the Cloud Controller are always the ones
matching the security property and VM id they specify. The post-
conditions for internal verification are to ensure that the serv-
ers process the data correctly. So the invariants are that the
output (e.g., measurements, report) sent from the server are
always the ones correctly mapped to the input sent to the server.

Identifying preconditions. Preconditions refer to the basic
requirements that are needed to keep the security invariants
true within the system protocols or operations. Basically it
specifies the necessary subjects (e.g., network links connect-
ing different servers, software or hardware modules inside
the server) that should be trusted. For external verification,
the preconditions are the assumptions we make about each
server. For internal verification, the preconditions are the sub-
jects that should be included in the Trusted Computing
Base. The verification results can help us identify the mini-
mal TCB for CloudMonatt, i.e., the necessary and critical soft-
ware/hardware modules or servers that should be well
protected to guarantee the correctness of CloudMonatt.

In the next two sections, we conduct the external verifica-
tion and internal verification separately. We use ProVerif [8]
to model the system and verify the security invariants.
ProVerif is a software tool for checking security properties
in cryptographic protocols. It supports a variety of crypto-
graphic primitives, e.g., symmetric and asymmetric cryp-
tography, digital signatures, hash functions, etc. If a
security property is proven unsatisfied, ProVerif can recon-
struct the attacker execution trace that falsifies the property.
We show how to use ProVerif to check the system interac-
tions, in addition to network protocols.

5.2 External Verification

Modeling.We model each server involved in this distributed
system as an interacting state machine, as shown in Fig. 6.
Each subject is made up of some states. The customer is the
initiator as well as the finisher subject. The whole process
starts from the customer side, who sends to the Cloud Con-
troller the attestation request including the VM identifier
Vid and the desired security properties P. Then the Cloud
Controller discovers the host cloud server, and forwards the
request to the Attestation Server, with the server identifier I.
The Attestation Server identifies the necessary monitoring

Fig. 5. The structure of verification goals of CloudMonatt. Red blocks are
the main goals of external verification. Black blocks are the preconditions
of external verification, as well as the postconditions of internal verifica-
tion. Grey blocks are the basic preconditions.
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measurements and sends the measurement request rM to
the host cloud server. The cloud server collects the required
measurements, calculates the hash value,Q, of the measure-
ments requested and then sends these values back to the
Attestation Server, after which the cloud server reaches the
“Done” state. The Attestation Server checks the signature,
the hash value and the nonce: if this check fails, the Attes-
tation Server goes to “Abort” state. Otherwise it interprets
the measurements and the property, and generates the
attestation report R, as explained in Section 3.4. Then the
Attestation Server signs the report, transmits it to the Cloud
Controller, and goes to state “Done”. After receiving the
report, the Cloud Controller checks the signature, the hash
value and the nonce. If anything is incorrect, the Cloud Con-
troller goes to state “Abort”. Otherwise it hashes and signs
the report, and ends at state “Done” after sending the report
to the customer. If the customer finds the encrypted signa-
ture of the report is correct, it goes to state “Done”. Other-
wise, it goes to state “Abort”.

Security invariants. As we discussed in Section 5.1, the
external verification is to check if the customer and cloud
provider can receive the correct attestation reports. We
identify several specific security invariants for this task in
our modeled state machines:

�1 The Cloud Controller is able to reach state “Done”.
When it is at state “Done”, the attestation report R it
receives is indeed the one for VM Vid with property P,
specified by the customer.

�2 The customer is able to reach state “Done”. When he is
at state “Done”, the attestation report R he receives is
indeed the one for VM Vid with property P, specified
by the customer.

Invariant �1 is to ensure the Cloud Controller gets the
correct attestation reports. Invariant �2 is to ensure the cus-
tomer gets the correct attestation reports.

Preconditions. We make several preconditions about
each server and check if the above security invariants can
be satisfied under these preconditions. These precondi-
tions indicate the subjects that should be included in the
TCB. Verifying the sufficiency and necessity of these

preconditions can help us find the minimal TCB for
CloudMonatt.

(C1) The cloud server is trusted.

(C2) The Attestation Server is trusted.

(C3) The Cloud Controller is trusted
Here a “trusted” server means it will strictly follow the

operations indicated in our protocol. For instance, a trusted
cloud server will collect and sign correct measurements; a
trusted Attestation Server will process the measurements
and generate the reports correctly; a trusted Cloud Control-
ler will process the VM health reports correctly. In addition,
a trusted server will keep its secrets from attackers.

Implementation. We model the authentication and com-
munication protocols of external verification in ProVerif. Spe-
cifically, we declare each subject (the customer, the Cloud
Controller, the Attestation Server and the cloud server) as a
process. Inside the process we model the operations of state
machines shown in Fig. 6. Each process keeps some secrets
(e.g., cryptographic keys, attestation reports or measure-
ments). If the subject is trusted, then the attacker cannot get
these secrets, and we use the keyword private to denote
these variables. Otherwise the variables are declared as
public and the attacker can obtain the values.

To model the network activities in this system, we declare
a channel between each pair of subjects, to represent the
untrusted communication channel. These channels are
under full control of the network-level adversaries, who can
eavesdrop ormodifymessages transmitted in the channels.

We also use the cryptographic primitives from ProVerif to
model the public key infrastructure for digital certificate,
authentication and key exchange. Then we model all the
steps in Fig. 6 for an unbounded number of attestation ses-
sions, i.e., the customer keeps sending attestation requests
to the cloud system and receiving the reports. ProVerif can
check if the adversary can compromise the integrity of the
report in any attestation session, and display the attack exe-
cution trace if a vulnerability is found.

We can use ProVerif’s reachability proof functionality to
verify if the Cloud Controller and customer are each able to
reach state “Done”. ProVerif allows us to define an event E

Fig. 6. The external protocol in CloudMonatt. Kx;Ky and Kz are symmetric keys between the customer and the Cloud Controller, between the Cloud
Controller and the Attestation Server, and between the Attestation Server and the cloud server, respectively. SKc;SKa and ASKs are the private sign-
ing keys of the Cloud Controller, the Attestation Server and the cloud server, respectively. N1;N2 and N3 are the nonces used by the customer, the
Cloud Controller and the Attestation Server, respectively.
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inside a process at one state, which specifies some condi-
tions. Then we can check if this event will happen when
the protocol proceeds using the query statement: “query
event(E)”. ProVerif can enumerate all the possible execution
traces and check if this event is reachable in some cases. If so,
this query statement returns true as well as the trace that
reaches the event. Otherwise the statement returns false. So
we can use the statement “query event(Done)” to check if
the customer and Cloud Controller can receive the report.

ProVerif does not provide direct functionalities to prove
integrity. However, we can also use its reachability proof
functionality to verify the integrity property of a message.
Specifically, to verify the integrity of the attestation report in
invariant �1, we check if the report received by the Cloud
Controller, R0 is the correct one, R, determined by the VM
identifier Vid, the security property P and the VM’s
state measurement M, when the Cloud Controller reaches
state “Done”. Then we establish an event: “ðR0 6¼ RÞ” at state
“Done” to denote the integrity breach. We use the statement
“query eventðR0 6¼ R)” to verify the integrity. If this state-
ment is false, it means the attacker has nomeans to change the
message R without being observed by the Cloud Controller.
Then the integrity of R holds. Similarly, to verify invariant�2,
we check if the report R0 received by the customer at state
“Done”, is the correct one R, by checking if the statement
“ðR0 6¼ RÞ” at state “Done”is false.

Results. Proverif shows that state “Done” is reachable for
both the Customer and Cloud Controller. Then we verify if
the security invariants �1 and �2 are satisfied under the pre-
conditions (C1) – (C3). First, ProVerif confirms that precon-
ditions (C1) – (C3) are sufficient to guarantee that the
customer and the Cloud Controller can receive the correct
attestation reports. Note that as we put trust on the Cloud
Controller, the Attestation Server and the cloud server, we
do not need to consider the server-level adversaries. Even
though the network-level adversaries can take control of all
the network channels between each server, they cannot
compromise the integrity of the messages without being
observed, since all the messages are hashed and signed
before being sent to the network.

Second, we check if preconditions (C1) – (C3) are neces-
sary to keep the invariants correct. ProVerif shows that it is
necessary to place the subjects of (C1), (C2) and (C3) in the
TCB. Missing any precondition can lead to violations of

some invariants: if the cloud server is not trusted, then the
server-level adversary can counterfeit wrong measure-
ments, causing the Attestation Server to make wrong attes-
tation decisions, and pass them to the Cloud Controller and
the customer. So invariants �1 and�2 are not satisfied. If the
Attestation Server is not trusted, then it can generate wrong
attestation reports for the customer and the Cloud Control-
ler. So invariants �1 and �2 are not satisfied. If the Cloud
Controller is untrusted, it can modify the reports before
sending to the customer. So invariant�2 is not satisfied.

In the next section, we perform internal verification of the
trusted servers, to show which component in each of the
servers should be trusted, in order to satisfy the precondi-
tions we assume in this section.

5.3 Internal Verification

From Section 5.2 we know that to satisfy the external verifica-
tion goals, we need to assume the correctness of the precon-
ditions in each server, i.e., trusting the data processing in the
Cloud Controller, the Attestation Server and the cloud
server. However, we do not need to place the entire server
into the TCB. On the one hand, trusting each component in
one server is not a necessary condition to satisfy the precon-
dition we assume for this server. Also, including all the com-
ponents of the server into the TCB would require stronger
security protection for the entire server, which is expensive
and difficult to achieve. On the other hand, it is impossible to
trust every component in the server, especially for the cloud
server which hosts the guest VMs rented to the customers.
CloudMonatt cannot ensure that the guest VMs are trusted.
As such, we conduct the internal verification to identify which
components inside the server need to be trusted, to satisfy
the preconditions in the external verification.

5.3.1 Cloud Server

First, we verify the system interactions on the cloud server.
Modeling. We abstract the key components inside a cloud

server, and model them as state machines, as shown in
Fig. 7. We also include the Attestation Server to interact
with the cloud server. The Attestation Server is the initiator
and finisher subject in the internal protocol interaction. The
whole process starts when the Attestation Server sends the
measurement request to the cloud server. The Attes-

tation Client processes the request and passes it to the

Fig. 7. Internal protocol (interactions) in the cloud server.
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Monitor Module. The Monitor Kernel inside the Moni-
tor Module figures out the corresponding monitor tool
and invokes it to collect the correct measurements. Then it
stores the measurements together with other related infor-
mation in the Trust Evidence Registers. Then the
Crypto Engine in the Trust Module retrieves the meas-
urements, calculates the quote (see Section 3.4) and signs it
using the Attestation Key. Then the signature is
encrypted by the Attestation Client and sent to the
Attestation Server. After this, all the subjects inside the
cloud server reach the state “Done”. The Attestation Server
will check the hash and signature. It goes to state “Done” if
the check succeeds and state “Abort” if the check fails.

Security invariants. the invariant for internal verification is
to check if the cloud server collects the correct measure-
ments and sends them to the Attestation Server. So we
translate this invariant to the statement below:

�1 The Attestation Server is able to reach state “Done”.
When it is at state “Done”, the measurements M it
receives are indeed the ones for VM Vid with request
rM, which were sent to the cloud server.

Preconditions. We identify a set of possible preconditions
to satisfy the above invariant. We classify these precondi-
tions as different modules and inter-module communica-
tions. We check the necessity and sufficiency of these
preconditions for guaranteeing the integrity of measure-
ments taken from the cloud server.

1) Attestation Client:

(C1.1) this module is trusted.
2) Monitor Module:

(C2.1) the Monitor Kernel is trusted.

(C2.2) the Monitor Tools are trusted.

(C2.3) the channel between the Monitor Kernel and
the Monitor Tools is trusted.

3) Trust Module:

(C3.1) the Crypto Engine is trusted.

(C3.2) the Trust Evidence Registers are trusted.

(C3.3) the Attestation Key is securely stored.

(C3.4) the channel between the Attestation Key and
the Crypto Engine is trusted.

(C3.5) The channel between the Crypto Engine and
the Trust Evidence Registers is trusted.

4) Inter-module communication:

(C4.1) the channel between the Monitor Kernel and
the Attestation Client is trusted.

(C4.2) The channel between the Crypto Engine and
the Attestation Client is trusted.

(C4.3) The channel between the Monitor Kernel and
the Trust Evidence Registers is trusted.

Implementation. ProVerif does not provide functionalities
for modeling and verification of architecture-level interac-
tions. However, we can model the server system as a net-
work system, and verify the server in a similar way as the
network protocol verification. Specifically, we can model a
software or hardware component as a process. Each compo-
nent keeps some variables and operates as a state machine.
If one component is in the TCB, then its variables will be
declared as private. Otherwise its variables are public to

attackers. If the attacker has the privilege to control the com-
munication between two components, then we declare a
public channel for these two components. Otherwise, if
two modules are linked by one channel that is trusted, then
we combine the two processes into one process so that the
two modules can exchange messages directly without being
compromised by third party attackers.

We model all the steps in Fig. 7 for an unbounded number
of sessions, i.e., theAttestation Server keeps sendingmeasure-
ment requests to the cloud server and receiving the results.
ProVerif enumerates all the possible states during the infinite
sessions and checks if the security invariant ismaintained.

Results. ProVerif shows that state “Done” is reachable for
the Attestation Server. Then, we consider and verify the suf-
ficiency and necessity of the above preconditions that satisfy
the security invariants. We use the same reachability func-
tionality of ProVerify (described earlier) to verify the integ-
rity property under different preconditions.

For precondition (C1.1), ProVerif shows that the integrity
property is still satisfied, and the adversary cannot tamper
with the messages, even if he takes control of the Attes-

tation Client. If the adversary changes Vid or rM before
they are sent to the Monitor Module, the Monitor Mod-

ule will collect the wrong measurements M. However, the
Trust Module will also sign the modified Vid or rM. The
Attestation Server will notice this modification and go to
state “Abort”. So (C1.1) is not a necessary condition and can
be removed from the TCB.

For (C2.1), (C2.2) and (C2.3), ProVerif shows that without
any of the three preconditions, the integrity checking of
measurements will fail. ProVerif also shows attack execution
traces if one precondition ismissing. For instance, if theMon-
itor Kernel is untrusted, it can send a different Vid or rM
to the Monitor Tools to collect wrong measurementsM. If
the Monitor tools are untrusted, even if they receive the
correct measurement request, they can give wrong measure-
ment data. If the communication channel is open to the
adversary, he can easily modify the measurement requests
or results without being noticed by the other trusted subjects.
So (C2.1), (C2.2) and (C2.3) are necessary conditions to pro-
tect themeasurements’ integrity, andmust be kept.

ProVerif shows preconditions (C3.1) – (C3.5) are also nec-
essary to guarantee the integrity of measurements. It also
shows the attack execution traces without these conditions. If
the attacker compromises the Crypto Engine, the Attes-

tation Key or their communication channel, it can generate
a fake signature over any measurements using the signing
key ASKS , while the Attestation Server will never detect this
integrity breach. If the Trust Evidence Registers or
their connectionwith the Crypto Engine are compromised,
then a server-level adversary can easily tamperwith the secu-
rity measurements stored in the untrusted Trust Evidence

Registers or transmitted in the untrusted channel, without
being detected by theAttestation Server.

Precondition (C4.1) is not necessary, with the same reason
as precondition (C1.1). Precondition (C4.2) is not necessary.
The adversary cannot compromise the message integrity
since the message in this channel is signed. Precondition
(C4.3) is necessary. If this channel is not trusted, the adver-
sary can modify the measurements, M, then the Trust

Modulewill store and sign thewrongmeasurements.
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Based on the above results, the necessary conditions to
guarantee the measurements’ integrity are: (1) the Monitor
Module is trusted (i.e., the Monitor Kernel, the Monitor
Tools, and their communications); (2) the Trust Module is
trusted (i.e., the Crypto Engine, the Attestation Key,
the Trust Evidence Registers, and their communica-
tions); (3) the communication channel between the Monitor
Module and the Trust Module is trusted. ProVerif shows
that it is also sufficient for the cloud server to maintain the
property of measurements’ integrity if only these subjects
are included in the TCB of a cloud server. In particular, ProV-
erif shows that the Attestation Client and its communi-
cations need not be trusted.

5.3.2 Attestation Server

We use the same method to verify the Attestation Server.
Modeling. Fig. 8 shows the state machines of the Attes-

tation Server. The Attestation Server has two modules: the
Property Interpretation Module and the Property

Certification Module. The Property Interpreta-

tion Module is used to invoke the attestation. The Prop-

erty Certification Module is used to provide the
measurements certification for one security property.

Security invariants. The invariant for verification of the
Attestation Server is to check if the Attestation Server gener-
ates the correct attestation report and sends it to the Cloud
Controller:

�1 The Cloud Controller is able to reach state “Done”.
When it is at state “Done”, the report R it receives
is indeed the one for VM Vid with property P,
whichwere sent to the Attestation Server.

Preconditions. We identify a set of preconditions for the
Attestation Server:

(C1) The Property Interpretation Module is trusted.

(C2) The Property Certification Module is trusted.

(C3) The channel between the Property Certifica-

tion Module and Property Interpretation

Module is trusted.
Implementation. We use ProVerif to verify the Attestation

Server in a similar way as the cloud server.
Results. We find that both of the two modules and their

communications should be placed into the TCB of CloudMo-
natt. If the Property Certification Module is incorrect,

it will give wrong property certifications. If the Property

Interpretation Module is compromised, it can invoke
the wrong attestation requests or send wrong attestation
reports. Untrusted channels between these modules will
bring the same attack effects.

5.3.3 Cloud Controller

Modeling. In the Cloud Controller, we consider the interac-
tions between three modules: the Policy Validation

Module, Deployment Module and Response Module.
The state machines of these three modules are displayed in
Fig. 9. We consider two events: the customer launches the
VM, and issues runtime attestation requests.

Security invariants. The invariant for verification of the
Cloud Controller is to check if the Cloud Controller can
send the correct attestation report to the cloud customer.

�1 The customer is able to reach state “Done”. When he is at
state “Done”, the report R he receives is indeed the one
for VM Vidwith property P, specified by him.
Preconditions. The preconditions for the Cloud Controller

are related to the three modules involved:

(C1) The Policy Validation Module is trusted.

(C2) The Deployment Module is trusted.

(C3) The Response Module is trusted.

(C4) The channel between the Policy Validation

Module and Deployment Module is trusted.

(C5) The channel between the Policy Validation

Module and Response Module is trusted.
Implementation. The verification of the above models is

similar to the cloud server and the Attestation Server.
Results. To guarantee the integrity of attestation reports,

the Policy Validation Module must be trusted. If this
module is compromised, then the whole monitoring service
will be compromised. For the Deployment Module and
the Response Module and their communication channels
with the Policy Validation Module, they are not neces-
sary to protect the integrity of attestation reports. However,
they are used to control VMs. So they should also be trusted
to guarantee that the cloud system functions correctly.

5.4 Verification Evaluation

We measure the verification effort for the above cases.
Table 1 shows what is being modeled, followed by the

Fig. 8. Internal protocol (interactions) in the Attestation Server
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lines of code and the run time (in seconds). The lines of
code include some comments which are very helpful for
understanding the verification. The verification process is
iterative, where the ProVerif files may be updated many
times, thus comments are crucial to understand the devel-
opment of the verification strategy. The code has not been
optimized for minimal size, nevertheless, the size is very
small and runtime is very short for all the ProVerif verifi-
cation. The run time for verification is also very small:
due to the breakdown into internal and external verifica-
tion, we can verify complex architectures within a very
short time. The most effort-consuming step is the design
and writing of the verification models, but the actual veri-
fication is very fast.

5.5 Verification Implication

The external and internal verification results can help us
verify and enhance the security of CloudMonatt. We identify
the components that are required in CloudMonatt’s TCB.
Then we can use existing software-hardware solutions to
protect these components.

5.5.1 Cloud Server Protection

Verification results show that the Monitor Module and
Trust Module of a cloud server should be included in the
TCB. Normally, third party customers only get guest VM
privilege (ring 0) while the Monitor Module and Trust

Module have hypervisor privilege (ring -1). So a normal
tenant has no capability to subvert the security functions
provided by these two modules. To enhance the protection
of CloudMonatt and defeat attacks (e.g., privilege escala-
tion) caused by the vulnerabilities of the original

virtualized system other than CloudMonatt, we can exploit
some secure architectures. On the one hand, we can build
CloudMonatt cloud servers upon security-aware systems
which are designed and verified to eliminate potential vul-
nerabilities [52], [53], [54], [55]. On the other hand, we can
use Bastion-like [56], [57] features for further protection of
trusted software modules in a commodity hypervisor by
creating secure enclaves for these modules. Alternatively,
if the Trust Module is implemented in hardware, since
some hardware extensions are designed for the Trust

Module, it can be placed into a separate chip. This
achieves hardware isolation between the Trust Module

and the CPU cores.
In addition, the Monitor Module and the Trust Mod-

ule should be correctly designed and implemented. A cor-
rect Monitor Module indicates that the integrity of the
measurements is guaranteed, i.e., adversaries cannot
tamper with VMs’ measurements collected by the Monitor
Module before they are written into the Trust Module.
A correct Trust Module indicates that the integrity of the
measurements is guaranteed, i.e., adversaries cannot
tamper with the measurements when they are stored in
the Trust Evidence Registers. It also indicates that
the confidentiality and integrity of the cryptographic keys
are guaranteed so adversaries cannot steal or compromise
the keys. So it is necessary to verify the functional correct-
ness of these software/hardware modules. We can verify a
hardware module (e.g., Trust Module) in two steps. We
first do a functional verification, i.e., check if the hardware
design has any bugs or flaws. We can use some tools to
achieve this functional verification, e.g., SpyGlass [58] from
Synopsys, HAL [59] from Cadence, etc. Then we do a secu-
rity verification, i.e., check if the confidentiality and integ-
rity of critical data are protected. We can use Gate-Level
Information Flow Tracking (GLIFT) [60], [61], [62], [63] to
formally verify these policies in the hardware design. Simi-
larly, we can verify a software module (e.g., Monitor Mod-

ule) in two steps. We first check if there are software bugs
and vulnerabilities (e.g., buffer overflow, memory leaks) in
the implementation. There are state-of-the-art tools to
achieve this, e.g., Static Code Analyzer from HP Fortify Soft-
ware [64], CodeSonar from GrammaTech [65], Secure Pro-
gramming Lint [66], etc. Then we can use Information Flow
Tracking [67], [68], [69] to verify if the security policies are
enforced in the module.

Fig. 9. Internal protocol (interactions) in the Cloud Controller.

TABLE 1
Verification Evaluation Results

Model Int. or Ext. Lines of Code Run-time

External Ext. 262 0.2
Cloud Server Int. 123 0.1
Attestation Server Int. 205 0.2
Cloud Controller Int. 187 0.1

First column shows what is being modeled, second column shows if it is inter-
nal interaction (Int.) or external protocol (Ext), third column shows the lines
of code, and last column shows the run time (in seconds).
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5.5.2 Cloud Controller and Attestation Server

Protection

In the CloudController and theAttestation Server, all the crit-
ical modules should bewell protected. Although it is difficult
to remove all the security vulnerabilities in these central serv-
ers, there are multiple ways to enhance the security of these
servers and reduce the attack surface, considering there are
just a small number of such servers in the cloud system.

First, we can harden the privileged software in these
servers. For instance, we can exploit formally verified oper-
ating systems [52], [54] as the host OS in the server. Besides,
since these servers do not need to host guest VMs, we can
remove the hypervisor layer from these servers. This can
reduce the code base and potential vulnerabilities.

Second, we can provide isolation on these servers so
even if the server has vulnerabilities, attackers have no
means to intrude into the server and exploit them. We can
disable scheduling guest VMs on these servers. This elimi-
nates the possibility that an attacker launches VMs on
these servers, conducts privilege escalation attacks to host
privilege and then compromises the software entities in
the host OS. We can establish firewalls on these servers to
prevent untrusted entities from accessing these servers.
These are common security measures adopted by public
cloud providers. For module-level isolation, we can use
Bastion or Intel SGX to protect these software modules, as
for the cloud server.

Third, we can protect the execution of cloud manage-
ment services. One common method is to use Mandatory
Access Control to control management and attestation serv-
ices, and confine interactions among different modules [70],
[71]. This can prevent adversaries from compromising the
critical modules in these servers. Another method is to mon-
itor the runtime behaviors (e.g., syscall traces) of cloud
activities and establish training models for these services.
When an adversary compromises a service and injects mali-
cious behaviors, the runtime behavior will deviate from the
correct one and we can detect the compromised service [72].

6 CONCLUSIONS

CloudMonatt is an architecture that enables secure moni-
toring and attestation of security features provided by a
cloud server for the customer’s VMs. We first describe the
design of CloudMonatt and show its key advances over
prior work: (1) it is flexible and provides a rich set of secu-
rity properties for VM attestation; (2) it bridges the seman-
tic gap between the security properties a customer wants
to request and the measurements collected from a cloud
server; (3) it enables initialization as well as runtime attes-
tation during the lifetime of the VM; (4) it defines a novel
periodic attestation capability during VM runtime; (5) it
provides automated responses to bad attestation results to
prevent potential, or further, security breaches; (6) it is
protected by secure attestation protocols with a set of cryp-
tographic keys that must be present or established; and (7)
it is readily deployable. We leverage existing cloud mecha-
nisms and well-honed security mechanisms where possi-
ble, identifying the minimal changes needed for a cloud
system to implement our CloudMonatt architecture on the
OpenStack cloud software.

Then, we conduct security verification of CloudMonatt to
validate the security and correctness of this security-aware
cloud architecture. To achieve scalable verification of this
distributed system, we split the verification task into an
external part (considering the network protocols between
each server) and an internal part (considering the interac-
tions and operations inside the server). We identify the
security invariants and preconditions, model and verify
each part using a cryptographic checking tool, ProVerif. This
security verification not only raises our confidence in the
design, but also helps us understand which modules/serv-
ers are critical and guides us to further enhance the security
of CloudMonatt. Future work could be designing new secu-
rity mechanisms or leveraging existing secure architectures
to realize the security preconditions we identified. Also,
additional security properties can be defined and translated
into server measurements that can be taken, and integrated
into the CloudMonatt framework.
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