
CloudShelter: Protecting Virtual Machines’ Memory Resource Availability in Clouds

Tianwei Zhang∗, Yuan Xu†‡, Yungang Bao†‡, Ruby B. Lee∗
∗Princeton University

{tianweiz, rblee}@princeton.edu
†State Key Laboratory of Computer Architecture, ICT, CAS

‡University of Chinese Academy of Science
{xuyuan, baoyg}@ict.ac.cn

Abstract—We present CloudShelter, an architecture to pro-
tect virtual machines’ memory availability from undesired
resource contention on the cloud servers. We introduce a
new micro-architectural metric: Memory Round Trip Time, to
quantify VMs’ memory QoS. Using this metric, (1) CloudShel-
ter defines new QoS options for customers when launching
VMs. These options can guarantee VMs’ memory QoS at
different levels even when they face intensive contention with
co-located VMs; (2) CloudShelter periodically monitors VMs’
memory QoS at runtime: once QoS violations against cus-
tomers’ demands are detected, CloudShelter places this VM into
an isolated environment to eliminate contention. CloudShelter
can reduce 30.1% performance interference from LLC/DRAM
contention and 81.6% interference from bus contention1.

I. INTRODUCTION

Public cloud providers consolidate VMs of different cus-

tomers to the same cloud servers. Although each VM gets

exclusive CPU contexts and memory spaces, they still share

the underlying physical resources. There can be significant

interference on these resources that degrades the VMs’ QoS.

Among these resources, I/O contention has been well

studied and solved by mature methods [1], [2]. However, the

severity and mitigation of memory contention are relatively

less studied. Customers can select memory sizes for their

VMs, but they can not control the cache/DRAM capacities

and bus bandwidth consumed by their VMs. Contention on

these memory resources can degrade the VMs’ performance

[3], [4]. What is more serious is that a malicious VM can

intentionally abuse the memory resources to cause signifi-

cant performance degradation to the victim VM [5]–[8]. It

is challenging to protect VMs’ performance from undesired

contention of different levels in the memory hierarchy.

We design CloudShelter, an architecture which provides

memory resource availability protection for customers on

demand. The key novelty in CloudShelter is the introduction

of a new metric, Memory Round Trip Time (MRTT), de-

signed to quantify the QoS of memory resources consumed

by customers’ VMs. This metric is based on the observation

that the memory system in a cloud server can be treated as a

1This work was supported in part by the National Key R&D Program of
China under grant No. 2016YFB 1000201, the National Science Foundation
under grant NSF CNS-1218817 and the National Science Foundation of
China under grant No. 61420106013.

networking system [9]. So we can apply the quantification of

QoS in networking to the memory system: the quality of the

memory service to a VM is defined as the average latency of

its memory accesses. MRTT can accurately reflect the VMs’

memory QoS and identify the type of resource contention

that affects the VMs’ performance. CloudShelter uses this

metric to protect VMs’ memory QoS in different aspects.

First, CloudShelter provides more comprehensive memory

resource options for customers when launching VMs. These

options enable customers to specify what levels of memory

QoS they desire for their computations. Second, Cloud-
Shelter provides runtime QoS protection by periodically

checking if a protected VM’s QoS is compromised due

to memory resource contention with co-located VMs. To

realize this, CloudShelter first measures this VM’s runtime

MRTT when it shares the memory resource with other VMs.

Then CloudShelter places this VM in a CONTENTION-FREE

ZONE (CFZ) and measures its baseline MRTT. This CFZ is

designed to eliminate co-located VMs’ memory interference

by partitioning storage resources and prioritizing scheduling

resources. By comparing the runtime and baseline MRTT
values, CloudShelter can quantify the effects of resource

contention on this VM. If the VM’s QoS is breached due to

contention on one specific memory resource, CloudShelter
keeps the protected VM in the CFZ until the resource

contention outside the CFZ is relieved.

We implement CloudShelter in the gem5 simulator [10].

Our evaluation shows that it can reduce 30.1% performance

overhead caused by LLC/DRAM contention, and 81.6% per-

formance penalty caused by bus contention. Our simulation

results from CloudSim [11] show that CloudShelter can also

maintain high resource utilization (average 91.9%).

In summary, the contributions of CloudShelter are:

• a metric to quantify VMs’ memory QoS;

• an architecture which enables customers to specify mem-

ory QoS requirements based on their demands, and

provides runtime memory QoS monitoring services;

• dynamic resource partitioning and prioritizing mecha-

nisms, to maintain VMs’ resource availability;

• QoS-aware protocols for VM scheduling and migration,

to achieve high resource availability and utilization.

2017 IEEE 35th International Conference on Computer Design

1063-6404/17 $31.00 © 2017 IEEE

DOI 10.1109/ICCD.2017.97

557

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:23 UTC from IEEE Xplore.  Restrictions apply. 



0 1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25
IP

C

time (ms)

solo

memory streaming

bus locking

(a) mcf

� � � � � � � 	 
 � ��
���

���

���

���

���

���

�
�

���������

����

����������������

� ����!"���

(b) omnetpp

� � � � � � � 	 
 � ��
����

����

����

����

����

����

����

����

����

�
�

���������

����

����������������

� ����!"���

(c) astar

� � � � � � � 	 
 � ��
���

���

���

���

��


���

���

�
�

���������

����

����������������

� ����!"���

(d) bzip2

Figure 1: Performance degradation due to memory contention.

II. RESOURCE CONTENTION

Memory resource contention among VMs is introduced

due to the sharing of the underlying memory system. Basi-

cally there are two types of resource contention [8]:

Storage-based contention: This type of contention exists

on storage-based resources (e.g., LLC, DRAM bank buffer).

When different VMs share the storage-based resources, one

VM’s data can be evicted from an upper-level component to

a lower-level component by other VMs, causing this VM to

take longer to fetch the data, thus degrading its performance.

Scheduling-based contention: Scheduling-based resources

(e.g., buses, DRAM controllers) arbitrate accesses to storage-

based resources. When one VM shares a scheduling-based

resource with other VMs, this resource can be temporarily

locked or overwhelmed by other VMs. Then this VM’s

memory request is delayed and its performance is degraded.

Figure 1 shows two cases of memory resource contention.

These experiments run on the gem5 in full system mode,

with the configurations in Table I in Sec. VI. Specifically

we boot 4 VMs on 4 separate cores, sharing the LLC and

DRAM. We choose one VM as the target VM, running one

of selected SPEC2006 benchmarks. The other three VMs act

as contending VMs, running the following programs:

• Memory streaming: this program allocates a large buffer

and accesses the data sequentially. It can generate con-

tention on LLC and DRAM (scheduler and bank buffers).

• Bus locking: this program issues atomic accesses to un-

aligned memory blocks, which generate locks in memory

buses and interference other VMs’ memory accesses2.

We measure the target VM’s Instructions Per Cycle (IPC)

every 0.1ms, for a period of 10ms at stable phases. Figure

1 shows benchmarks’ performance when the target VM

runs alone (labeled “solo”), runs with contending memory

streaming VMs (labeled “memory streaming”) and with

contending bus locking VMs (labeled “bus locking”). The

performance of the target VM are heavily affected by the

contending VMs: memory streaming programs can bring

10%-35% degradation to the target VM due to LLC/DRAM

contention. Bus locking programs can bring more than 80%

degradation to the target VM due to bus contention.

2The gem5 simulator does not support bus locking operations, so we
implement such feature in gem5 [12]

III. MEMORY QOS QUANTIFICATION

To mitigate undesired memory resource contention, it

is necessary to quantify the QoS of the memory system

in a server. We propose a novel metric to achieve this

goal. This metric is inspired by the observation that the

hierarchical memory system in a server can be viewed as

a networking system [9]: (1) In a memory system, each

core sends memory requests to or receives responses from

the underlying memory components, while in a networking

system, a client sends and receives network packets. (2) The

storage-based resources in a memory system act like network

servers storing the data. (3) The scheduling-based resources

in a memory system act like routers and physical links in a

networking system, arbitrating the data.

We can apply the concept of networking QoS to the

memory system. Network QoS can be quantified by various

metrics, e.g. error rates, bandwidth, latency. In a memory

system, error rate is not a good metric as it is not affected

by resource contention. Bandwidth is a performance metric

contributed by all the memory layers, so it cannot reveal

resource contention on each separate memory layer. We use

the memory response latency as the memory QoS metric.

It can correctly give one VM’s QoS status, and also the

severity of contention on each layer of memory resources.

A. Memory QoS Definition

We define Memory Round Trip Time (MRTT), as the
average response time from the time the CPU core sends
a request from a VM, to the time it receives the response.
Figure 4 shows the anatomy of a data memory access

transaction. When a core issues a memory request, there are

at least three cases, i.e., private cache hit, LLC hit and LLC

miss. The round trip time for the three cases are (t′9 − t0),

(t′′9 − t0) and (t9 − t0), respectively. MRTT is calculated as

the average round trip time for all the memory accesses. We

choose MRTT to evaluate memory QoS because it has the

following advantages:

Reflecting overall performance. MRTT can be used to

quantify a program’s performance. One program’s average

memory latency is negatively correlated with its IPC (Figure

2): if this program has higher latencies, the instructions it

completes in a unit time is reduced, so the IPC is decreased.

Identifying performance bottlenecks. In addition to the

overall MRTT, we can also probe different sub-components

558

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:23 UTC from IEEE Xplore.  Restrictions apply. 



���� ���� ���� ���� ���� ����
�

��

��

��

��

��

��

	�


��
��
��
�

���

���
�������


�
���
�����
���

����

(a) mcf

��� ��� ��� ��� ��� ���
�

��

��

��

��

��

��

	

�
��
��

�

���

����
�������

	�	�
��
��
��	��� ����

(b) omnetpp

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

3

6

9

12

15

18

21

24

m
rt

t 
(n

s
)

ipc

bus 

locking

memory 

streaming solo

(c) astar

0.0 0.3 0.6 0.9 1.2 1.5
0

4

8

12

16

20

m
rt

t 
(n

s
)

ipc

bus 

locking

memory 

streaming
solo

(d) bzip2

Figure 2: The relationship between the IPC and MRTT.

0

20

40

60

80

MRTTmemMRTTbusMRTTllcMRTT

M
R

T
T

 (
n

s)

 solo
 memory streaming
 bus locking

(a) mcf

0

20

40

60

80

100

120

MRTTmemMRTTbusMRTTllcMRTT

M
R

T
T

 (
n

s)
 solo
 memory streaming
 bus locking

(b) omnetpp

0

20

40

60

80

100

MRTTmemMRTTbusMRTTllcMRTT

M
R

T
T

 (
n

s)

 solo
 memory streaming
 bus locking

(c) astar

0

20

40

60

80

100

120

MRTTmemMRTTbusMRTTllcMRTT

M
R

T
T

 (
n

s)

 solo
 memory streaming
 bus locking

(d) bzip2

Figure 3: Measurements of each sub-component in MRTT

Figure 4: MRTT measurements

of MRTT to test if contention happens on some specific

resources. We define three MRTT sub-component metrics:

• To test if there is LLC contention, we measure MRTT llc,

defined as the average time from the moment the request

heads for the LLC, to the moment the corresponding

response returns from the LLC. This time is (t′′8 − t1)

for LLC hit and (t8 − t1) for LLC miss in Figure 4.

• To test if there is bus contention, we measure MRTT bus,

defined as the average time the data travels along the

target bus: this time is (t2 − t1 + t′′8 − t3) for LLC hit

and (t2 − t1 + t4 − t3 + t6 − t5 + t8 − t7) for LLC miss.

• To test if there is DRAM contention, we measure

MRTTmem, defined as the average time from the mo-

ment the request heads for DRAM, to the moment the

response returns from DRAM (t5 − t4).

Figure 3 shows MRTT and each sub-component metric.

When the target VM runs with memory streaming programs,

MRTT llc increases significantly due to LLC contention

(50%–300%). MRTTmem also has a slight increase due

to DRAM contention (7%–21%). When the target VM runs

with bus locking programs, MRTT bus is increased by 50

to 80 times. Note this interference can also make MRTT llc

longer, as MRTT bus is part of MRTT llc.

Detecting QoS violation due to memory contention. We

can use this metric to check if customers’ desired QoS is sat-

isfied. We introduce the Relative MRTT (MRTT(relative)),

defined as the ratio of the VM’s MRTT when it runs

with co-located VMs (MRTT(co)), to that when it runs

alone (MRTT(solo)). A high MRTT(relative) means that

the VM’s MRTT with co-located VMs is much longer than

the one when running alone. So resource contention will

compromise this VM’s QoS. On the other hand, when the

MRTT(relative) is close to 1, the resource contention has

no effect on the VM’s performance, thus this VM’s QoS

is maintained. MRTT(relative) sub-component metrics are

defined similarly.

B. Memory QoS Measurement

Hardware modifications are required to measure memory

QoS. To measure the overall MRTT online, a new attribute

is added in each entry of the Load/Store Unit in each CPU

core to record the timestamp the request departs from the

CPU. When the corresponding response reaches the CPU,

this access latency is calculated as the time interval between

the current time and the departure time. In each core, we

add a counter (mrtt) to record the total MRTT of each

request, and a counter (access) to record the total number

of requests, belonging to the VM running on this core. These

counters are programmable in the hypervisor to record the

values for each VM during any period of time. Thus MRTT
for this period can be calculated as mrtt/access.

Sub-components of MRTT can also be calculated simi-

larly. To measure MRTT llc and MRTTmem, a new at-

tribute is added to each entry in the Miss Status Handling

Register (MSHR) of private cache and Last Level Cache

respectively, to record the timestamp of each memory re-

quest sent to the LLC or DRAM. Then MRTT llc and

MRTTmem are calculated as the intervals between re-

sponse arrival time and request departure time. To measure

MRTT bus, a new 8-bit tag is attached to each memory

request. This tag is initialized as zero and increases by

559

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:23 UTC from IEEE Xplore.  Restrictions apply. 



one per bus cycle. When the request arrives at the next

component through the bus, the scheduling time in the bus

can be retrieved from the tag. Our evaluation in Sec. VI

shows that an 8-bit tag is long enough to represent the

bus latency without overflowing. Each memory component

implements several sets of mrtt and access counters,

one set for each core. When there is a context switch, the

hypervisor is responsible for resetting these counters.

To measure MRTT(relative), we need to measure MRTT
of this VM with and without resource contention, re-

spectively. MRTT(solo) ideally should be measured when

the target VM is not affected by other co-located VMs.

We introduce an isolated environment, CONTENTION-FREE

ZONE (CFZ), to eliminate contention on different memory

resources. MRTT(solo) can be calculated inside this CFZ,

as described next.

IV. CONTENTION-FREE ZONE

A CONTENTION-FREE ZONE (CFZ) is an isolated envi-

ronment by partitioning storage-based resources and priori-

tizing scheduling-based resources. It is created for baseline

QoS measurement without pausing or interrupting other

VMs so their performance will not be significantly affected.

A. Partitioning Storage-based Resources

The basic idea to eliminate storage-based contention is to

partition the resource and allocate one part to the target VM

exclusively. We show two cases: LLC and DRAM banks.

LLC: LLC is initially shared by all VMs on the same

processor socket. When the target VM asks for a CFZ,

CloudShelter partitions the LLC by ways into two parts:

one is allocated to the target VM. The size of this part

is determined by the customer’s demand. The other part

is allocated to the rest of the contending VMs. By doing

so there is no interference between the target VM and

contending VMs in the socket.

DRAM bank: CloudShelter adopts the Virtual Channel

Memory (VCM) [13] to eliminate DRAM bank contention.

Basically VCM implements a number of fast channel buffers

to hold data from different bank buffers in each channel. If

the target VM’s data is evicted out of the bank buffer by

other VMs, the data is still in one channel buffer and can be

accessed as fast as accessed from the bank buffer. When

the target VM needs a CFZ to protect its required QoS

(Sec. V-B), CloudShelter partitions these channel buffers

into two parts: one is allocated to the target VM. The number

of these buffers is determined by the customer’s demand.

The rest of the buffers are shared by other contending VMs.

This can eliminate the interference within the same bank.

B. Prioritizing Scheduling-based Resources

We show how CFZ can eliminate interference on two

scheduling resources: the bus and the DRAM controller.

Figure 5: CloudShelter architectural overview

Bus: A VM’s QoS can be compromised when the bus is fre-

quently locked or overwhelmed by accesses from contending

VMs. To solve this contention, we can set three priorities for

memory accesses going through the bus: high, middle and

low. Initially all the normal memory accesses have middle
priority and exotic accesses that require bus lock signals have

low priority. When a CFZ is created, CloudShelter gives its

memory access high priority. CloudShelter throttles down

the rate of middle-priority normal accesses and low-priority

exotic accesses by adjusting their frequency to ensure the

bus contention has negligible impact on the target VM.

DRAM controller: The DRAM controller may face con-

tention when it schedules memory requests of different VMs

to DRAM banks. CloudShelter adopts a priority queuing

mechanism that currently supports two priorities: high and

low. Initially, all queues are with the default low priority.

When a CFZ is required, CloudShelter gives its memory

requests high priority. So these memory requests will win

the contention against other VMs in the DRAM controller.

V. CLOUDSHELTER ARCHITECTURE

CloudShelter enables customers to specify QoS require-

ments for their VMs before launching. At VM runtime, it

periodically monitors the VM’s memory QoS. Once the QoS

is compromised, CloudShelter identifies the interference

source and reduces the contention to provide required QoS.

A. Architecture Overview

CloudShelter includes three main entities: the customer,

the Controller Server, and the Compute Server (Figure 5).

Customer : A customer specifies the configurations to the

Controller Server before launching VMs. CloudShelter in-

troduces a new launch option: the memory QoS level. The

customer can choose one of five memory QoS levels (n = 1, 2

, 3, 4 or ∞), indicating that the VM requires the availability

of at least 1, 1/2, 1/3, or 1/4 of the memory resources even

under contention with other VMs, or no memory QoS pro-

tection at all. Customers can select the memory QoS levels

based on how memory intensive their applications are, and

how important the availability of memory resources is to the

applications’ performance. Then CloudShelter monitors this

VM’s MRTT(relative): MRTT(co) is measured when this

VM runs with co-located VMs; MRTT(solo) is measured

560

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:23 UTC from IEEE Xplore.  Restrictions apply. 



when this VM runs in an isolated computing environment

with the size of memory storage resources equal to 1/n (of

the LLC capacity and channel buffers) and high scheduling

priority (in bus and DRAM controller). CloudShelter will

check if this MRTT(relative) is smaller than a pre-set

threshold (e.g., 150%). If so, this VM’s QoS is preserved

at Level n. Otherwise, the customer’s QoS requirement is

not satisfied and further protections will be taken (Sec. V-B).

Controller Server: The Controller Server is responsible

for taking requests from customers and allocating VMs

to Compute Servers. The Requirement Validation
Module selects qualified Compute Servers for customers’

VMs, which satisfy the VMs’ demanded physical resources

and the memory QoS level. Then the VM Deployment
Module is responsible for VM launching and migration.

Compute Server: A Compute Server is a physical machine

that hosts the VMs in question. The Monitor Module
is responsible for collecting and calculating MRTT and

its MRTT sub-component metrics for a given VM. The

Resource Management Module is the hardware ex-

tension which can eliminate the intensive interference on the

hardware memory resources. It manages different controls

for each shared memory resource in consideration. The QoS
Analyzer is an agent for querying and interpreting the

MRTT, checking and identifying contention bottleneck, and

triggering the resource controls to eliminate interference.

B. System Operations

VM Launch: When a customer launches new VMs, the

Controller Server schedules the VMs to qualified Compute

Servers. VM scheduling should achieve both resource and

QoS requirements for the customer, as well as high resource

utilization for the datacenter.

For resource requirements, we adopt the traditional

regular-subscription VM scheduling model [14]: the host

server must have more computing resources than the quota

required by all VMs hosted on it. For QoS requirements, the

host server must be able to create a free CFZ based on the

customer’s QoS demand, to monitor this VM’s QoS. This is

a new constraint when allocating VMs.

Algorithm 1 VM Launch
INPUT:

V
t /* A set of VMs to be scheduled at time t */

I /* A set of Compute Servers in the cloud system */
BEGIN:

while (Vt! = ∅) do
let v∗ be the VM in V

t that requires the most vCPUs
let I∗ be the set of servers capable to host v∗

let i∗ be the server in I
∗ that has the fewest empty CPUs

i∗.add(v∗)
V

t.remove(v∗)
end while

END

To enhance resource utilization, CloudShelter consoli-

dates as many VMs as possible on one server, to reduce

the number of active servers and energy consumption. We

adopt the Best Fit Decreasing approach [15] to solve this

approximately (Algorithm 1): when a set of launch requests

are fed into the Controller Server, the Controller Server

chooses the VM with the maximum vCPU and allocates it

to a qualified server with the fewest empty CPUs. It repeats

the above procedure until all the VMs are scheduled.

VM Monitoring: The QoS Analyzer periodically mon-

itors the VM’s MRTT(relative) during VM runtime (Algo-

rithm 2). First, CloudShelter checks if the Compute Server

is able to create a CFZ based on the customer’s demand for

this VM. If not, CloudShelter uses Algorithm 1 to find a new

qualified Compute Server and migrate the target VM to it.

CloudShelter measures the MRTT(co) when this VM shares

memory resource with other VMs. Then it creates a CFZ for

this VM (Sec. IV), and measures the MRTT(solo) inside

this zone. CloudShelter calculates the MRTT(relative) and

checks if it is larger than a threshold (e.g., 150%). If so,

CloudShelter can figure out the resources that incur QoS

violations, based on the MRTT sub-component metrics. Then

CloudShelter creates a long-term partial CFZ for this VM,

which eliminates contention on these contending resources.

Algorithm 2 VM Monitoring
INPUT:

v /* The VM to be monitored */
i /* The host server */

BEGIN:
if (v is in a CFZ) then

release the CFZ of v
end if
if (i is able to create a CFZ for v) then

measure MRTT(co) for v
create a CFZ for v
measure MRTT(solo) for v
release the CFZ of v.
if (v’s QoS is violated) then

identify the contention resources
create a partial CFZ for v to eliminate undesired contention

end if
else

i.remove(v)
call VM Launch to find a new qualified server i∗

call VM Monitoring
end if

END

VI. EVALUATION

A. Contention Detection and Mitigation

We evaluate the contention mitigation using CFZs.

Experiment settings: We used the gem5 simulator [9], [10]

to implement the new hardware of measuring MRTT and its

sub-component metrics for LLC, bus and DRAM, as well as

managing the controls of the memory resources for CFZs.

Table I shows the gem5 configurations in our evaluations.

Specifically, we simulate a four-core server. It runs a Linux

host OS with kernel 2.6.28.4. We use Busybox toolkit [16] to

run different virtual machines. Each VM runs an unmodified

Gentoo Linux with kernel 2.6.28.4. Each VM occupies a

separate core, running SPEC2006 benchmarks, or contention

generator programs (i.e., memory streaming or bus locking).

For each experiment, we first use gem5’s simpleTiming

mode to boot Linux, launch and warmup each workload,

561

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:23 UTC from IEEE Xplore.  Restrictions apply. 



make checkpoints and then switch to Out-of-Order mode.

All the results are collected in the Out-of-Order mode.

CPU 4 4-issue Out-of-Order X86 cores, 2GHz
L1I/core 64KB, 2-way, hit = 2 cycles
L1D/core 64KB, 2-way, hit = 2 cycles
Shared LLC 32MB, 16-way, hit = 20 cycles
DRAM 8GB 1 channel, 2 ranks/channel, 8 banks/rank
Disks 4-channel IDE controller, 8 disks

Table I: Simulation Configurations

Results: Figures 6 and 7 show the IPC and MRTT of the

target VM (running one of the 4 SPEC2006 benchmarks)

at different phases when co-locating with contending VMs.

Assume this target VM requires a QoS level of 2.

At the first 4 milliseconds, the contending VMs stay

idle, so there is no resource contention. CloudShelter mea-

sures the VM’s MRTT(co) outside of CFZs during 0–2ms

and places it in a CFZ (1/2 LLC, 1/2 channel buffers,

and high priority in bus and DRAM controller) to mea-

sure MRTT(solo) during 2–4ms. For some benchmarks,

MRTT(relative) is even smaller than 1. This is because

in the CFZ the target VM is allocated exclusive, but less

resources. So MRTT(solo) is larger than MRTT(co). This

MRTT(relative) value indicates that it is safe to place the

VM outside the CFZs.

At 4ms, the contending VMs start to execute memory

streaming or bus locking programs, generating contention

on different levels of memory resources. During 4–6ms,

the target VM is outside of CFZs, so its IPC becomes

smaller while the MRTT(co) becomes longer. During 6–

8ms CloudShelter places this VM in a CFZ and measures

the MRTT(so). The MRTT(relative) is larger than 150%.

So CloudShelter needs to protect these benchmarks from

memory contention.

After 8ms, CloudShelter starts to protect the customer’s

VM by placing it into a partial CFZ based on the contention

source. For memory streaming contention, CloudShelter
achieves LLC/DRAM bank partitioning and controller prior-

ization in the CFZ; for bus locking contention, CloudShelter
achieves bus priorization in the CFZ. Then the target VM’s

performance will not be affected by the contending VMs,

and its QoS requirements are guaranteed.

In the real world, CloudShelter can measure the

MRTT(relative) at a much larger granularity, e.g., every 10s.

In each measurement, CloudShelter only needs to place the

target VM inside the CFZ for 1ms, and then put it back.

This can reduce the performance overhead to this VM as

well as other co-located VMs. In our experiments, we place

the VM inside and outside of the CFZs every 2ms just for

evaluations, since the full-system Out-of-Order simulation

speed is extremely slow and it is unrealistic to simulate a

time period longer than 10s.

B. Performance Overhead

We measure the performance overhead of co-located VMs

and the whole server due to CFZ deployment.

Experiment settings: We use the same configurations from

Sec. VI-A: 4 VMs run on the same server, and execute the

same SPEC2006 benchmark. One VM requests for a CFZ.

We measure the average IPC of the other three VMs to test

the performance overhead of co-located VMs due to CFZ.

We also measure the system performance using the Har-

monic mean of Speedups metric (Hspeedup) [17]. A higher

Hspeedup indicates better overall system performance.

Results: We consider three cases: the target VM requests

for a partial CFZ (1) with 1/2 of storage-based resources; (2)

with 1/3 of storage-based resources; (3) with high priority in

the scheduling-based resources. Figure 8a shows the average

IPC of co-located VMs, normalized to the baseline case

without a CFZ. We observe that a CFZ has little performance

cost to the host VMs: the worst case is mcf under the CFZ

of 1/2 memory resources: the cost is around 5%.
Figure 8b shows the system’s Hspeedup normalized to the

baseline case without a CFZ. We observe that the existence

of CFZs does not bring performance penalty to the system.

C. QoS-Aware VM Scheduling
We evaluate the QoS-Aware VM scheduling algorithms

proposed in Sec. V-B.

Experiment settings: We use CloudSim [11] to simulate

VM scheduling policies. We simulate a cloud system with

100 servers. Each server has 16 physical cores, 64GB

DRAM and 5TB disk. We continuously launch VMs until

the cloud system is saturated. Each time we launch 10 VMs

with randomly selected configurations.
We consider three VM scheduling policies: (1)

Utilization-Aware: aiming to reduce the number of

active servers without considering the QoS requirements;

(2) Random: allocating VMs to random qualified servers

without considering the QoS requirements; (3) QoS-Aware:

aiming to improve the resource utilization while maintaining

VMs’ QoS requirement (Sec. V-B). We define the CPU
utilization as the percentage of physical CPUs occupied

by VMs to evaluate the system’s resource utilization. We

define the QoS violation metric as the percentage of VMs

requesting but failing to get CFZs.

Results: Figure 9a shows the case that 50% of the VMs

require QoS protections. For system utilization, Utilization-
Aware and QoS-Aware policies induce constant utilization,

and QoS-Aware policy has a smaller utilization due to

the consideration of QoS requirements. The utilization in

Random policy is linearly correlated with the number of

VMs. For QoS violation, QoS-Aware policy has zero viola-

tions, while the Utilization-Aware policy has very high QoS

violations. The QoS violations of the Random policy also

linearly depend on the number of VMs. We can see that

QoS-Aware policy can maintain a relatively high resource

utilization while satisfying all the QoS requirements.
We adjust the ratio of VMs requesting QoS protections.

Figure 9b shows the results when 30% of the VMs require

562

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:23 UTC from IEEE Xplore.  Restrictions apply. 



0.12

0.15

0.18

0.21

Time (ms)

IP
C

0 1 2 3 4 5 6 7 8 9 10
0
2
4
6
8

10

 

M
R

T
T

(n
s)

 memory 
streaming

(a) mcf

0.30

0.35

0.40

0.45

Time (ms)

IP
C

 memory 
streaming

0 1 2 3 4 5 6 7 8 9 10
0

2

4
 

M
R

T
T

(n
s)

(b) omnetpp

0.20

0.25

0.30

0.35

0.40

Time (ms)

IP
C

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

 

M
R

T
T

(n
s)

 memory 
streaming

(c) astar

0.8

1.0

1.2

Time (ms)

IP
C

 memory 
streaming

0 1 2 3 4 5 6 7 8 9 10
0.0

0.3

0.6

0.9

 

M
R

T
T

(n
s)

(d) bzip2

Figure 6: Elimination of memory streaming contention.

0.05

0.10

0.15

0.20

Time (ms)

IP
C

  bus
locking

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

 

M
R

T
T

(n
s)

(a) mcf

0.3

0.6

0.9

1.2

1.5

Time (ms)

IP
C

  bus
locking

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15
 

M
R

T
T

(n
s)

(b) omnetpp

0.1

0.2

0.3

0.4

Time (ms)

IP
C

  bus
locking

0 1 2 3 4 5 6 7 8 9 10
0
4
8

12
16
20

 

M
R

T
T

(n
s)

(c) astar

0.3

0.6

0.9

1.2

Time (ms)

IP
C

  bus
locking

0 1 2 3 4 5 6 7 8 9 10
0

4

8

12

 

M
R

T
T

(n
s)

(d) bzip2

Figure 7: Elimination of bus locking contention.

mcf omnetpp astar bzip2
0.00

0.25

0.50

0.75

1.00

1.25

re
la

ti
ve

 IP
C

 Partitioning(n=2)
 Partitioning(n=3)
 Prioritizing

(a) Co-located VMs’ performance

mcf omnetpp astar bzip2
0.00

0.25

0.50

0.75

1.00

1.25

N
o

rm
al

iz
ed

 H
sp

ee
d

u
p

 Partitioning(n=2)
 Partitioning(n=3)
 Prioritizing

(b) System’s performance

Figure 8: Performance impact on the host system

QoS protections. The utilization in QoS-Aware policy is as

high as Utilization-Aware, with zero QoS violations. Figure

9c shows the results when 70% of the VMs require QoS

protections. Utilization-Aware policy has a higher utilization

than QoS-Aware policy. But its QoS violation is also very

high. Considering the tradeoff between utilization and QoS

violation, QoS-Aware policy gives the best results.

VII. RELATED WORK

Memory Contention in Cloud Servers. Past work exhib-

ited the memory resource contention in multi-core cloud

servers. Tang et al. [3] presented memory resource con-

tention within one domain and between different domains

under different domain-to-core mappings. Lo et al. [4]

explored resource contention and interference between dif-

ferent latency-critical workloads and batch workloads.

A malicious VM can significantly degrade the perfor-

mance of other VMs running on the same server by inducing

contention on shared memory resources. Grunwald and

Ghiasi [5] studied the effect of trace cache contentions on

the victim in a Hyper-Threading enabled processor. Woo

and Lee [6] proposed memory DoS attacks by frequently

flushing L2 caches, saturating or locking internal buses.

Moscibroda et al. [7] studied contention attacks on the

schedulers of memory controllers. Zhang et al. [8] presented

a systematic study of memory contention attacks in virtu-

alized environment, and evaluated the attacks in real cloud.

CloudShelter can effectively protect VMs’ QoS from either

benign or malicious resource contention.

Eliminating Contention. One possible solution is to predict

the interference between different applications and then

schedule them to different servers to reduce contention (e.g.,
[18]–[20]). Some work proposed methods to monitor the

performance of a program or its resource usage, to detect

resource contention and schedule these domains wisely [21]–

[24]. An alternative is to partition hardware resources(e.g.,
LLC [25]–[27], DRAM [7], [28]). Different from the above

work, CloudShelter enables customers to specify the QoS

requirements on demand. Then through online monitoring,

it is able to figure out which resource contention to eliminate

and when to eliminate the contention, in order to preserve

customers’ desired QoS.

QoS Metrics and Measurements. Chou et al. [29] pro-

posed a new metric to show applications’ performance

under a Memory-Level Parallelism scheme. Another popular

metric is using Instructions Per Cycles (IPC) [20], [22].

However, IPC can only quantify the overall performance

of a VM, so it can be affected by other factors unrelated

to memory contention, like interrupts or CPU parallelism.

Besides, it cannot reveal which layers of resources are the

interference bottlenecks that compromise a VM’s QoS. Our

proposed MRTT can achieve this goal by measuring the

MRTT sub-component metrics.

To measure a VM’s performance without contention, one

way is to collect the VMs performance characteristics before

it is deployed in the cloud [18], [19]. This cannot provide

online interference evaluation. Another way is to measure

the target VM’s performance online while pausing all other

co-located VMs temporarily [20], [30]. This could bring

performance penalty to the co-located VMs. Different from

563

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:23 UTC from IEEE Xplore.  Restrictions apply. 



0 100 200 300 400
0%

20%

40%

60%

80%

100%

0 100 200 300 400

0%

5%

10%

15%

20%

25%

 

 

C
P

U
 u

ti
liz

at
io

n

# of VMs

 Utilization-Aware  Random  QoS-Aware

Q
o

S
 v

io
la

ti
o

n
 p

er
ce

ta
g

e
 

 

# of VMs

(a) 50% of VMs require QoS protections

0 100 200 300 400
0%

20%

40%

60%

80%

100%

0 100 200 300 400

0%

5%

10%

15%

20%

25%

 

 

C
P

U
 u

ti
liz

at
io

n

# of VMs

 Utilization-Aware  Random  QoS-Aware

Q
o

S
 v

io
la

ti
o

n
 p

er
ce

ta
g

e

 

# of VMs

(b) 30% of VMs require QoS protections

0 100 200 300 400
0%

20%

40%

60%

80%

100%

0 100 200 300 400

0%

5%

10%

15%

20%

25%

 

 

C
P

U
 u

ti
liz

at
io

n

# of VMs

 Utilization-Aware  Random  QoS-Aware

Q
o

S
 v

io
la

ti
o

n
 p

er
ce

ta
g

e
 

 

# of VMs

(c) 70% of VMs require QoS protections

Figure 9: Resource utilization and QoS violation.

the above work, CloudShelter provides online QoS mea-

surements by putting the target VM inside a CONTENTION-

FREE ZONE. This can eliminate co-located VMs’ interfer-

ence with reduced impact on their performance.

VIII. CONCLUSIONS

This paper presented CloudShelter, a new architectural

framework to provide QoS monitoring and protection ser-

vices to cloud customers. CloudShelter enables customers

to select different levels of memory QoS based on their

memory resource requirements. Then it dynamically moni-

tors VMs’ QoS status and resource contention. We proposed

a set of approaches to eliminate undesired performance in-

terference on storage-based and scheduling-based resources.

As for future directions, we will study the QoS quantification

of other resources (e.g., Network, SSD), and the methods to

detect and mitigate their contention.

REFERENCES

[1] B.-A. Yassour, M. Ben-Yehuda, and O. Wasserman, “Direct device
assignment for untrusted fully-virtualized virtual machines,” 2008.

[2] Y. Dong, Z. Yu, and G. Rose, “Sr-iov networking in xen: Architecture,
design and implementation,” in Conf. on I/O Virtualization, 2008.

[3] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa,
“The impact of memory subsystem resource sharing on datacenter
applications,” in ACM Intl. Symp. on Computer Architecture, 2011.

[4] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in ACM Intl. Symp.
on Computer Architecture, 2015.

[5] D. Grunwald and S. Ghiasi, “Microarchitectural denial of service:
Insuring microarchitectural fairness,” in IEEE Intl. Symp. on Microar-
chitecture, 2002.

[6] D. H. Woo and H.-H. S. Lee, “Analyzing performance vulnerability
due to resource denial-of-service attack on chip multiprocessors,” in
Workshop on Chip Multiprocessor Memory Systems and Intercon-
nects, 2007.

[7] T. Moscibroda and O. Mutlu, “Memory performance attacks: Denial
of memory service in multi-core systems,” in USENIX Security Symp.,
2007.

[8] T. Zhang, Y. Zhang, and R. B. Lee, “Dos attacks on your memory in
the cloud,” in ACM on Asia Conf. on Computer and Communications
Security, 2016.

[9] J. Ma, X. Sui, N. Sun, Y. Li, Z. Yu, B. Huang, T. Xu, Z. Yao, Y. Chen,
H. Wang, L. Zhang, and Y. Bao, “Supporting differentiated services in
computers via programmable architecture for resourcing-on-demand
(pard),” in ACM Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2015.

[10] “The gem5 simulator.” http://www.gem5.org/Main Page.
[11] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and

R. Buyya, “Cloudsim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms,” Softw. Pract. Exper., 2011.

[12] “Intel 64 and ia-32 architectures software developer’s manual,
volume 3: System programming guide.” http://www.intel.com/
content/www/us/en/communications/cache-allocation-technology-
white-paper.html.

[13] NEC, “64m-bit virtual channel sdram data sheet.” http://www.
datasheet5.com/download/UPD4565821G5-A80-9JF/236571, 1998.

[14] J. Xu and J. A. B. Fortes, “Multi-objective virtual machine placement
in virtualized data center environments,” in IEEE/ACM Intl. Conf.
on Green Computing and Communications & Intl. Conf. on Cyber,
Physical and Social Computing, 2010.

[15] D. S. Johnson, Near-optimal bin packing algorithms. PhD thesis,
Massachusetts Institute of Technology, 1973.

[16] “Busybox.” https://busybox.net/.
[17] K. Luo, J. Gummaraju, and M. Franklin, “Balancing thoughput and

fairness in smt processors,” in IEEE Intl. Symp. on Performance
Analysis of Systems and Software, 2001.

[18] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” in Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, 2013.

[19] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang, “Smite: Precise
qos prediction on real-system smt processors to improve utilization
in warehouse scale computers,” in IEEE Intl. Symp. on Microarchi-
tecture, 2014.

[20] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise
online qos management for increased utilization in warehouse scale
computers,” in ACM Intl. Symp. on Computer Architecture, 2013.

[21] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Managing
performance interference effects for qos-aware clouds,” in ACM
European Conf. on Computer Systems, 2010.

[22] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes,
“Cpi2: Cpu performance isolation for shared compute clusters,” in
ACM European Conf. on Computer Systems, 2013.

[23] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R. Bianchini,
“Deepdive: Transparently identifying and managing performance in-
terference in virtualized environments,” in USENIX Conf. on Annual
Technical Conference, 2013.

[24] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared
resource contention in multicore processors via scheduling,” in Intl.
Conf. on Architectural Support for Programming Languages and
Operating Systems, 2010.

[25] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to partition
shared caches,” in ACM/IEEE Intl. Symp. on Microarchitecture, 2006.

[26] S. Cho and L. Jin, “Managing distributed, shared l2 caches through
os-level page allocation,” in IEEE Intl. Symp. on Microarchitecture,
2006.

[27] “Improving real-time performance by utilizing cache allocation
technology.” http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html.

[28] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and
T. Moscibroda, “Reducing memory interference in multicore systems
via application-aware memory channel partitioning,” in IEEE Intl.
Symp. on Microarchitecture, 2011.

[29] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture optimizations
for exploiting memory-level parallelism,” in ACM Intl. Symp. on
Computer Architecture, 2004.

[30] A. Gupta, J. Sampson, and M. B. Taylor, “Quality time: A simple
online technique for quantifying multicore execution efficiency,” in
IEEE Intl. Symp. on Performance Analysis of Systems and Software,
2014.

564

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:23 UTC from IEEE Xplore.  Restrictions apply. 


