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Abstract—Denial of service (DOS) attacks are a serious
threat to network security. These attacks are often sourced
from virtual machines in the cloud, rather than from the
attacker’s own machine, to achieve anonymity and higher
network bandwidth. Past research focused on analyzing traffic
on the destination (victim’s) side with predefined thresholds.
These approaches have significant disadvantages. They are only
passive defenses after the attack, they cannot use the outbound
statistical features of attacks, and it is hard to trace back to
the attacker with these approaches.

In this paper, we propose a DOS attack detection system
on the source side in the cloud, based on machine learning
techniques. This system leverages statistical information from
both the cloud server’s hypervisor and the virtual machines, to
prevent network packages from being sent out to the outside
network. We evaluate nine machine learning algorithms and
carefully compare their performance. Our experimental results
show that more than 99.7% of four kinds of DOS attacks
are successfully detected. Our approach does not degrade
performance and can be easily extended to broader DOS
attacks.

Keywords-DDOS attack, Machine Learning, Cloud Comput-
ing, Virtual Machine Monitor, Cloud Provider

I. INTRODUCTION

There are many attacks on network infrastructures today.

These include attacks on the availability of the network, and

on the confidentiality and integrity of the network packets

and their sources and destinations. Distributed Denial of

Service (DDoS) attacks are attacks targeting the availability

of networks, hosts and services from multiple attack source

machines. These are some of the most dangerous attacks,

especially as they are very easily launched, can cause

catastrophic loss of service and are difficult to trace back to

the true attackers. In this paper, we focus on the network-

based DDoS attacks sourced from virtual machines in the

cloud.

A. DOS Attacks and DDOS Attacks

Denial of service attacks (DOS) prevent the legitimate

users from accessing network and other resources. DOS

attacks can be traced back to the 1980s. There are two main

categories of DOS attacks: network/transport-level attacks

and application level attacks [1]. Network level DOS attacks

disable legitimate users’ connectivity by exhausting network

resources. Application level DOS attacks disable service by

exhausting server resources. Reported by McAfee Lab [2],

DoS attacks account for more than one-third of all current

network attacks in the world. These attacks can disable

accesses to a single webpage, or to very large servers, e.g.

email, DNS or http servers.

Some DOS defense approaches require the client to solve

a challenge as a proof-of-work in advance. In distributed

denial of service (DDoS) attacks, instead of using an at-

tacker’s single machine, a bunch of (remotely) controlled

computers are used to attack the victim. Attackers intrude

into the innocent victim computers (also called secondary
victims, bots or zombies), take charge of them and use them

as botnets to attack the primary victim. Botnets also make

it very difficult to trace back to the attacker. Attackers can

even rent virtual machines in commodity clouds, potentially

with a fake credit card, to start DDoS attacks. DDoS attacks

can be categorized into three main types: volumetric DDoS

attacks, application layer DDoS attacks and state-exhausting

DDoS attacks. Volumetric attacks are the most common

DDoS attacks. They are more than 65% of the total DDoS

attacks, reported by Arbor [3]. TCP flood attacks, UDP flood

attacks and DNS spoofing attacks are examples of this kind

of attacks. Application level attacks inject into queries or

request malicious resources, e.g. very large images, which

exhaust the server resources. Distinct from volumetric at-

tacks, these attacks appear innocent. Malicious packages

cannot be distinguished unless the contents are disclosed.

The last type of DDoS attacks are state-exhausting attacks,

e.g. ping-of-death, which are 20% of all DDoS attacks,

reported by Arbor [3].

In preparation for launching DDoS attacks, other attacks

may be used to intrude into a secondary victim machine to

install bot code. These include password guessing attacks.

Among these attacks, the majority are dictionary based

attacks and personal information based attacks. Dictionary

based attacks try commonly used passwords in a password

dictionary. These attacks may take a long time and are not

easily successful. However, if the attacker can get personal

information about the victim, he may only need to try some

targeted passwords, e.g. combinations of name or birth date

of the victim. In this paper, we also consider detection of
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such brute-force password guessing attacks.

B. DDoS Attacks from the Cloud

Cloud computing has been flourishing over the years.

Compared to physical machines, virtual machines are lower

in price and more flexible in ubiquitous, on-demand compu-

tational ability. Users rent virtual machines in the cloud and

run their jobs on them. Some jobs are very computationally

complex, and thus are hard to achieve on personal comput-

ers. Portable devices, e.g., mobile phones and laptops, also

put their heavy-computing work in the cloud, in order to

save power and computing time [4].

In addition to physical bots, DDoS attacks are also

launched on commodity cloud platforms. Attackers rent

many virtual machines and use them as VM bots to attack

the outside world [5]. Because of the virtual machines’

computational ability and untraceability, attackers tend to

rent them to launch their attacks instead of using their own

physical machines. Attacks can be launched from commod-

ity cloud platforms (or education domains). These attacks

significantly degrade the reputation of the cloud provider

(or education domain) and can cause huge financial losses.

A DDoS attack on Oct 21st, 2016 brought down the Internet

connection for most of the east coast USA [6]. Earlier, one

of the largest and most sophisticated DDoS attacks targeted

the American banks, including Bank of America, JP Morgan

Chase, Wells Fargo and PNC Bank, from mid September,

2016.

C. DDoS defenses

Based on where the defense is deployed, DDoS defense

mechanisms are classified into two main categories: destina-

tion side defenses and source side defenses. In destination

side defense systems, the detection and responses to DDoS

attacks are done at the victim’s side. These systems [7] [8]

[9] can observe received packages and cut off the connection

once an attack is detected. Also, some of them are able

to trace back the attacker using carefully designed proto-

cols or router information, e.g., IP traceback using router

information [10], management information based traceback

[11], or packet marking based tracing [12]. Packet dropping

based on the level of congestion [13] is an automatic way

of mitigating these DDoS attacks.

However, destination mechanisms have a few significant

drawbacks. First, they are passive defenses. Attacks can only

be detected after they get to the destination. By that time,

network infrastructures have already been under extreme

pressure by attack packages. Second, the only response on

the destination side toward the detected attacks is cutting

off the connection. This cannot preclude the attack from

attacking other victims. Third, detecting on the destination

side cannot leverage the joint information of multiple virtual

machines sourcing the attack.

In contrast, source side detection can overcome these dis-

advantages with the help of cloud providers. D-WARD [14],

[15] is a system comparing inbound and outbound traffic on

the source side to detect DDoS attacks. MUlti-Level Tree

for Online Packet Statistics (MULTOPS) [16] detects and

filters DDoS flooding attacks with the assumption that the

rate of inbound traffic is proportional to outbound traffic

during normal operations. MANAnet’s reverse firewall [17]

is a reverse firewall that prevents attack packages from going

out.

D. Our Contributions

In this paper, we propose a machine learning based

source side DDoS attack detection system. Our main

contributions are:

• We propose a new DDoS attack detection system on

the source side, in order to detect attacks and mitigate

the impact of the attacks from the source side in the

cloud.

• We analyze statistical features of different kinds of

attacks in our framework, including the most prevalent

DDoS attacks: flooding attacks, spoofing attacks

and brute-force attacks. This makes our system very

scalable.

• We implement a proof-of-concept prototype and test it

in real cloud settings. It achieves up to 99.7% accuracy

in detecting four types of DDoS attacks.

• We evaluate and compare nine machine learning ap-

proaches in our system. We also compare supervised

algorithms and unsupervised algorithms.

This paper is structured as follows: Section II defines

the threat model, trusted computing base and the attacker’s

capabilities. Section III describes the attacks and their

feature selection and extraction. Section IV shows the

implementation of our system. We also show experimental

results and analyze them. Section V concludes this work

and proposes directions for future work.

II. THREAT MODEL

A. Attacker’s Capability and Trusted Computing Base

The attacker’s goal is to breach the availability of services

for legitimate users. These include DNS services, HTTP

services and FTP services. Attacks that target confidentiality

and integrity of data are not included in our threat model.

In our threat model, attackers are able to rent virtual

machines in the cloud, or compromise virtual machines.

They can take full control of these virtual machines and

use them as bots to launch attacks. Attackers can use any
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number of virtual machines as desired, with their identity

carefully hidden. Attackers are not able to physically access

the virtual machines, because typically servers (and virtual

machines) are located in data centers and can only be

remotely accessed.

The cloud provider is trusted in our threat model. The

cloud provider, as well as the defense system, can monitor

the behaviors of virtual machines and Virtual Machine

Monitors (VMM). The VMM is also trusted and can provide

statistical information about the virtual machines’ states and

connections.

All network packages, except a few in the beginning of

the connections, are encrypted. The defense system can only

access the metadata of network packages, e.g. IP addresses

and control signals, but not their internal contents. The de-

fense system can also get statistical information about each

virtual machine, e.g. how many packages go inbound and

outbound. However, the system cannot access the contents

of the packages in order to protect legitimate users’ privacy.

B. Attack Categories

The design of the system focuses on general DDoS

attacks in the cloud. We test our design on four very

common network attacks: SSH brute-force attacks, ICMP

flooding attacks, DNS reflection attacks and TCP SYN

attacks. These are very common and representative

mechanisms used in DDoS attacks. Our design can be

easily extended to other types of DDoS attacks by simply

changing the monitored statistical features.

III. ATTACKS: FEATURE SELECTION AND EXTRACTION

A. Overview of Architecture

Before considering the feature selection and extraction,

we first show the architecture of our system in Figure 1. The

VMM monitors the status of the virtual machines and gath-

ers statistical network traffic information. The VMM inputs

the gathered information to a machine learning engine. The

machine learning engine feeds back whether a suspicious

action is detected. If the suspicious behavior is only detected

on a single VM, terminating this VM is a reasonable way to

mitigate the attack. If the suspicious behaviors are detected

among multiple VMs, it is highly possible that a distributed

DoS attack is ongoing. Therefore, cutting off the network

connections of the suspicious servers can be done to defend

against the attack.

The machine learning engine has two modules: the pre-

trained module and the online learning module. The pre-

trained module is trained in advance to determine whether

the virtual machine’s actions are suspicious. On the other

hand, the online learning module is trained in the back-

ground to update the pre-trained module. The online learning

module takes monitored data as training samples to modify

the parameters in the pre-trained module. We choose four

representative DDoS attacks to defend against in this paper.

Figure 1. Architecture of proposed system

B. SSH Brute-force Attack Feature

The SSH brute-force attack, makes remote brute-force

guesses of passwords of legitimate users. It targets taking

control remotely of a victim’s computer, typically in advance

of launching other DDoS attacks. Conventional approaches

of mitigating this attack include blocking the user for a while

after a predetermined time of failed trials, and disconnecting

the channel after three wrong password trials. These two

approaches have obvious drawbacks. Blocking user accounts

can be misused by attackers to limit the legitimate usage

of the machines, itself causing a DoS attack. Also, this

protection feature is not provided by official SSH but by

third-party firewalls or applications, which may not be

trusted. Disconnecting the session after three failed logins

is provided by SSH, however, nothing prevents the attacker

from connecting again.

We find that the rate of Diffie-Hellman key exchange

packages is a good indicator for detecting SSH brute-force

attacks. Each time in the SSH establishing stage, a pair of

Diffie-Hellman keys is generated and exchanged between

the two parties and used to encrypt the following sessions.

As mentioned above, three times of authentication failure

results in disconnection of the SSH channel. A different pair

of Diffie-Hellman keys has to be generated again before

the subsequent logins. During an attack, the total number

and rate of Dillie-Hellman key exchange packages could be

much higher than usual, illustrated in Figure 2. Therefore,

we use the number of Dillie-Hellman key exchange packages

in a preset interval as a feature to distinguish if there are

suspicious SSH brute-force attacks.

Using Diffie-Hellman key exchange packages has many

advantages. First, they are the only non-encrypted pack-

ages during the session. All the following packages are

encrypted with the exchanged keys. Second, Diffie-Hellman

key exchanges only happen at the beginning of a session.
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This is critical for increasing the Signal-to-Noise Ratio

(SNR) in machine learning algorithms. Third, this feature

is very distinguishable. As long as the keys have been

exchanged and the session has not been closed, no Diffie-

Hellman packages will be sent again. Therefore, too many

key exchanges during a short period are very suspicious, as

shown in Figure 2.

Figure 2. SSH Diffie-Hellman Key Exchange features

C. DNS Reflection Attack Feature

DNS (Domain Name Server) is an essential part of

network infrastructures and is responsible for translating do-

main names to IP addresses. DDoS DNS attacks, especially

reflection based attacks, have been big threats for domain

name service and network security.

We demonstrate how DNS reflection attacks work in

Figure 3. During a DNS reflection attack, the attacker sends

out a large amount of DNS requests to DNS servers with

the request packages’ source IP spoofed as the victim’s.

These DNS requests ask for heavy-load responses, such as

”Give me all your DNS records” or ”Give me IP addresses

of multiple domain names”. These responses overwhelm

the victim and exhaust its resources.

Figure 3. Monitoring ratio of inbound to outbound DNS packages to
detect DNS reflection attacks

For DNS reflection attacks, our insight is to monitor

inbound and outbound traffic. For normal DNS requests,

inbound traffic is approximately proportional to outbound

traffic. It is not likely that a huge amount of requests are

sent out, but no responses come back. However, during a

DNS reflection attack, as the source IP address is spoofed

to redirect the response to the victim, no response is returned

to the requester. This results in more request packages than

response packages. Therefore, we use the inbound/outbound

DNS packages ratio to detect this attack. This feature is

low-overhead because all we need are two counters in the

hypervisor for each virtual machine. Figure 4 verifies our

insight of using this feature. As shown in this figure, two

attacks can obviously be observed. Both of the attacks have a

low inbound/outbound ratio of nearly zero, i.e. only requests

but no responses. During non-attack periods, this ratio is

very close to 1, i.e. every request tends to have a response.

Figure 4. Inbound/outbound DNS packages ratio with or without DNS
reflection attacks

D. ICMP Flood Features

The Internet Control Message Protocol (ICMP) is de-

signed to transmit control information, such as error indica-

tors. It is one of the main protocols in the Internet Protocol

(IP) suite. ICMP is different from the UDP and the TCP

protocols in that ICMP is not used to transfer data. An ICMP

flood is an attack where the attacker sends a huge amount

of ICMP packages and overwhelms the victim.

Unlike SSH or DNS, there are not many ICMP packages

under normal situations. Therefore, we directly use the

ICMP package rate as an indicator of an ICMP flood attack.

Usually, there are very few ICMP packages, thus a large

number of ICMP packages during a short time period is very

suspicious. In addition to the number of ICMP packages

from a single virtual machine, we can get more accurate

results by jointly analyzing multiple virtual machines’ ICMP

status.

E. TCP SYN Attack Features

The TCP SYN attack is a stateful protocol attack. It lever-

ages a special feature of TCP protocols: three handshakes for

establishing a new connection. First, the client sends SYN
x to the server to ask for starting the connection. Then, the

server replies with an ACK x and SYN y to indicate that the

server receives the request and is ready for synchronizing.
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Then the client sends an ACK y package to the server to

acknowledge that he has received the reply package from

the server and is ready for synchronized communications.

The server allocates its resources for the connection (CPU,

memories, ports, etc) as it sends out the ACK x/SYN y
package. However if the client does not reply with ACK y,

these resources will be kept for a long period until timeout.

In the SYN attack, the attacker asks for connection but does

not reply with ACK y in the third step. Alternatively, the

IP address of the attacker is spoofed so the server sends

ACK x/SYN y to the spoofed IP address, which does not

respond with ACK y since it never sent the SYN request, or

it may even be a non-existent machine. In any case, resources

are allocated for unfinished handshakes on the server side.

Before timeout, these resources cannot be allocated for other

legitimate SYN requests. The server’s network resources are

quickly exhausted if malicious SYN requests are far more

than legitimate ones. Figure 5 shows normal handshakes

(left) and a SYN attack (right).

Figure 5. Normal TCP handshakes (left) and SYN attacks (right)

One noticeable feature of the TCP SYN attack is the

ratio of TCP packages with ACK tags and SYN tags.

During normal periods, packages with ACK tags are much

more than packages with SYN tags (at least 100X in our

experiments). That is because SYN tags are mainly used

only in the session establishment phase, however, ACK

packages are also used in data transmission packages.

Therefore, it is very abnormal if the SYN/ACK ratio

reaches a high ratio. Figure 6 shows the SYN/ACK ratio

during a SYN attack. It confirms our intuition that this ratio

can be used as a SYN attack indicator.

F. Algorithm for DDoS Attack Detection

Algorithm 1 shows the algorithm we propose for our

DDoS detection system. n is the number of statistical

features, k is the number of servers, li is the number of

VMs on server i. Concatinate all Fij vectors on all servers

of interest to generate a long feature vector F and send it to

the machine learning engine. This engine uses a pre-trained

Figure 6. SYN/ACK ratio during attacks (high points) and normal time
(low points)

Select monitored features f1, f2...fn

for Server Si, i = 1, 2...k do
for VMij on server Si, j = 1, 2...li do

VMMi reports monitored statistical features Fij of VMij

where Fij = {f1
ij , f

2
ij ...f

n
ij}

end
end

Algorithm 1: Algorithm for feature generation and classi-

fication

machine learning module, M0, to detect if there are any

DDoS attacks.

The system can also have an online learning

mechanism. For example, other machine learning modules,

M1,M2...Mr, in the background can be classifying the

feature vector F as well. If a predefined number k of

these modules classify this feature vector F as a benign

or malicious vector, F (with its output label of not-attack
or attack, respectively) is used to update the main testing

module M0.

IV. IMPLEMENTATION AND EVALUATION

A. Cloud Platform

We implement a prototype of our detection system under

real cloud settings. The cloud has six servers (S0...S5) and

each server runs multiple virtual machines. Three of the

servers work on an Intel Xeon CPU E5-2690 CPU with

64 GB memory. The other three are equipped with Intel

Xeon CPU E3-1230 V2 CPU with 32 GB memory. All cloud

servers and virtual machines launched on them are running

Ubuntu 14.04. Each virtual machine launched on the server

runs on one 3.2GHz virtual machine using the OpenStack

cloud infrastructure.

We do two experiments to test our defense mechanisms. In

the first experiment, we launch four different kinds of DDoS

attacks (SSH brute-force, DNS reflection, ICMP flooding

and TCP SYN attacks) on virtual machines from S0. The
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Table I
DETECTION RESULTS OF DIFFERENT MACHINE LEARNING ALGORITHMS

Method Accuracy(%) FP(%) FN(%) Precision(%) Recall(%) F1- Score
LR 94.36 0.00 7.85 100.0 92.15 0.9591

SVM Linear Kernel 93.85 1.41 7.92 99.41 92.08 0.9560
SVM RBF Kernel 93.90 2.46 7.51 98.96 92.49 0.9562
SVM Poly Kernel 94.07 3.38 7.23 98.58 92.77 0.9559

Decision Tree 94.24 1.73 7.04 99.29 92.96 0.9602
Naive Bayes 94.92 0.00 7.07 100.00 92.93 0.9293

Random Forest 94.96 0.81 6.60 99.67 93.40 0.9643
K-means (Unsupervised) 64.05 22.93 41.07 86.75 58.93 0.7019

Gaussian EM 63.26 95.88 13.39 69.56 86.61 0.7715

Table II
JOINT DETECTION RESULTS OF THREE VIRTUAL MACHINES

Method Accuracy(%) FP(%) FN(%) Precision(%) Recall(%) F1- Score
LR 97.77 0.37 3.82 99.68 96.18 0.9790

SVM Linear Kernel 99.73 0.068 0.44 99.94 99.56 0.9975
SVM RBF Kernel 98.15 3.78 0.24 96.93 99.76 0.9832
SVM Poly Kernel 99.13 0.40 1.27 99.66 98.73 0.9920

Decision Tree 99.07 0.061 0.0167 99.95 98.33 0.9913
Naive Bayes 98.47 3.07 0.27 97.51 99.73 0.9861

Random Forest 99.53 0.00 0.09 100.0 99.12 0.9956
K-means (Unsupervised) 87.76 0.44 22.05 99.54 77.95 0.8743

Gaussian EM 66.53 13.17 50.37 81.94 49.63 0.6182

victim is a virtual machine on another server S1 running

web service. We deploy our defense system on the server

which launches virtual machines running the attacks. Virtual

machines on the other servers (except S0 and S1) request

web service, simulating the legitimate users. In the second

experiment, the attacks source from three virtual machines

on S0, S2 and S3 to simulate distributed DoS attacks. The

victim is the same virtual machine on S1. The defense

systems are deployed on S0, S2 and S3. Our experiments

are safe since they run behind a VPN router, so the attack

packages never escape to the outside Internet.

B. Data Collection and Machine Learning Algorithms

In our experiments, we collect network packages coming

in and going out of the attacker virtual machine(s) for 9

hours. Four kinds of attacks are programmed to randomly

start and end. Some of them may be started simultaneously.

Our goal is detecting attacks, no matter which category

an attack falls into. We evaluate both supervised learn-

ing and unsupervised learning algorithms. For supervised

classification, we evaluate Linear Regression (LR), SVM

(with linear, RBF or polynomial kernels), Decision Tree,

Naive Bayes and Random Forest algorithms. We also test

unsupervised learning algorithms, k-means and Gaussian-

Mixture Model for Expectation-Maximization (GMM-EM).

The time interval for collecting statistical features is 60

seconds. Table I shows the results of monitoring a single

virtual machine with a pretrained learning module. Table II

shows the results of simultaneously monitoring three virtual

machines on three servers.

C. Detection Results

We split our gathered data into training samples (80%) and

testing samples (20%), and use cross-validation to evaluate

our performance. We also apply multi-dimensional analysis

on these results. We use several performance metrics. Ac-

curacy indicates the overall correct detection over testing

samples. False Positive (FP) and False Negative (FN) indi-

cate false alarms and misses, respectively. Precision shows

what portion of alarms are true alarms. Recall shows the

portion of attacks that are detected. F1 score is a frequently

used criterion to balance FP and FN. The higher F1 score

indicates the better performance for an algorithm. We show

all results in Table I and Table II. The definition of Precision,

Recall and F1 score are:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2
Precision ∗Recall

Precision+Recall

In the single host server monitoring experiment (Table I),

supervised algorithms all achieve over 93% accuracy and

over 0.95 F1 scores (except Naive Bayes with F1=0.9293).

Among them, Random Forest performs the best, with

94.96% accuracy and 0.9643 F1-score. Also, Random For-

rest achieves the highest recall, which means that it detects

the most attacks among all algorithms being compared.

Naive Bayes achieves zero FP rate and relatively low FN.

The last two rows show k-means and Gaussian EM algo-

rithms, which do not perform as well as the others because
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they are unsupervised learning algorithms, i.e., they learn

from unlabeled samples. To improve the performance of

these unsupervised learning algorithms, we can 1) use joint

data from multiple VMs for training, and 2) retrain the

model more frequently because unlabeled data are easier

to get than labeled data. Although there are concerns about

unsupervised learning, unsupervised learning algorithms can

be integrated into our system’s online updating mechanism,

by first clustering clean samples for online learning.

In the multiple hosts monitoring experiment (Table II),

all machine learning algorithms get better results than in the

single host monitoring experiment. We achieve the highest

0.9975 F1-Score and 99.73% accuracy using SVM with a

linear kernel. Four algorithms (SVM with Linear and Poly

kernels, Decision Tree and Random Forest) achieve accuracy

greater than 99%. K-means improves by 23% in this experi-

ment. Gaussian EM algorithm only improves by 3%, which

indicates that the data do not follow a Multivariate-Normal

distribution. These results demonstrate that our design is

feasible in real cloud settings.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a DDoS attack detection system

based on machine learning to prevent attacks on the source

side in the cloud. We extract statistical features of four DDoS

attacks and launch real attacks in lab settings for evaluation.

Our proposed system is able to detect attacks with high

accuracy (99.7%) and low false positives (< 0.07%). By

detecting DDoS attacks at the source virtual machines in the

cloud, we can ”nip the attacks in the bud” and also protect

the cloud provider’s reputation.

We give some directions for future work:

• Combine different machine learning algorithms for

better performance, especially unsupervised learning

performance.

• Investigate more DDoS attacks and integrate their

features into the current system.
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