
CloudMonatt: an Architecture for Security Health Monitoring and Attestation of
Virtual Machines in Cloud Computing

Tianwei Zhang Ruby B. Lee
Princeton University

{tianweiz, rblee}@princeton.edu

Abstract
Cloud customers need guarantees regarding the security of

their virtual machines (VMs). operating within an Infrastruc

ture as a Service (laaS) cloud system. This is complicated by

the customer not knowing where his VM is executing. and on

the semantic gap between what the customer wants to know

versus what can be measured in the cloud. We present an

architecture for monitoring a VM's security health, with the

ability to attest this to the customer in an un forgeable manner.

We show a concrete implementation of property-based attesta

tion and a full prototype based on the OpenStack open source

cloud software.

1. Introduction

Cloud customers are concerned about the security of the vir

tual machines (VMs) they lease. Recently, researchers have

suggested a "security on demand" service model for cloud

computing, where secure computing platforms are dynami

cally provisioned to cloud customers according to their specific

security needs [24]. This also enables cloud providers to de

ploy new secure servers, which may have different security

features that customers want, while still running unsecured

virtual machines on their existing machines. The availabil

ity of secure computing platforms is a necessary but not a

sufficient solution to convince cloud customers to move their

sensitive data and code to the cloud. Cloud customers need

further assurance to convince them that the security measures

are indeed deployed, and are working correctly. In this paper

we present an end-to-end architecture for both monitoring and

attestation of a VM's security properties in an laaS cloud.

In an laaS cloud, a customer requests to launch a VM in the

cloud system. The cloud provider places the VM in a virtual

ized cloud server, and allocates a specified amount of physical

resources (CPU, memory, disk, etc.) to this VM. The customer

is granted remote access to this VM. During the VM's life

time, the customer would like to know if his VM has good

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

ISCA'15, June 13-17, 2015, Portland, OR USA

Copyright 2015 ACM 978-1-4503-3402-0/15/06 ... $15.00
http://dx.doi.org/1O.1145/2749469.2750422

362

security health. A healthy VM satisfies the security properties

the customer requested for his leased VM. For example, if the

customer stores sensitive data in the cloud server's storage,

a healthy VM enforces confidentiality protection of the data

from other VMs, or from physical attackers. For another cus

tomer with time-critical service needs, a healthy VM means

that resources that have been contracted for in the Service

Level Agreement (SLA) are always available to the VM.

In cloud computing, different customers share the same

cloud server, as co-tenants or co-resident VMs. These VMs

may belong to competitors, spies, or malicious attackers. The

security heath of a VM should take into account the other

co-resident VMs, not just the attacks from within his VM (e.g.,

malware, guest OS root kits, etc.). We call this outside-VM

and inside-VM vulnerabilities, respectively. Past work have

shown that the "bad neighbor" VMs are able to steal criti

cal information through side-channel attacks [31, 46], thus

compromising the VM's confidentiality health. Resource con

tentions between different VMs on the same server motivate

malicious VMs to perform the Resource-Freeing Attack [40],

thus compromising the victim VM's availability health. Large

cloud management software, including the hypervisor, will

also have bugs [29], which can be exploited to compromise a

VM's security health. Hence, a VM's security health depends

on not only the activities inside the VM, but also the VM's

interactions with the environment.

Monitoring the VMs' security health poses a series of chal

lenges in a cloud system. First, the customer's limited priv

ileges prevent him from collecting comprehensive security

measurements to monitor his VM's health securely. He only

has access to the VM, but not to the host server. For inside

VM vulnerabilities, once the VM's OS is compromised by the

attacker, the customer may not get correct measurements. For

outside-VM vulnerabilities, the customer cannot collect infor

mation about the co-resident VMs, hypervisor, etc. Second,

the customer's desired security requirements are expressed in

terms of a VM, but the security measurements usually involve

the physical server, the hypervisor and other entities related to

this VM. This creates a semantic gap between what the cus

tomers want to monitor and the type of measurements that can

be collected. Third, the VMs go through different lifecycle

stages and may migrate to different host servers. A seam

less monitoring mechanism throughout the VMs' lifetime is

therefore highly desirable. Fourth, there are numerous entities

between the customers and the point of VM operations. It is

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:09 UTC from IEEE Xplore. Restrictions apply.

important to collect, filter and process the attestation infor

mation securely to attest, i.e., pass on to the customer in an

unforgeable way, only the requested information.

In this paper, we design a flexible architecture called Cloud

Monatt, to monitor the security health of customers' VMs

within a cloud system. CloudMonatt is built upon the property

based attestation model, and provides several novel features.

First, it provides a framework for monitoring different aspects

of security health. Second, it shows how to interpret and map

actual measurements collected to security properties that can

be understood by the customer. These bridge the semantic gap

between requested VM properties and the platform measure

ments for security health. Third, to the best of our knowledge,

this is the first concrete realization of property-based attes

tation for a VM. Previous work discuss the desirability of

property-based attestation, versus binary attestation, but did

not give any implementations. Fourth, attestations can be done

at runtime and for VM migrations, not just at boot up and

VM launch time. Fifth, CloudMonatt provides remediation

response strategies based on the monitored results.

Key contributions in this paper are:

• Definition of "security health" of a VM for several different

security properties.

• Design of a flexible architecture to monitor the security

health of VMs on cloud servers over the VMs' lifecycle.

• Concrete examples to show how to bridge the semantic gap

between security properties and measurements.

• Providing different security monitoring and attestation ac

tivities during aVM's lifecycle.

• Providing automatic remediation responses to failing secu

rity health indicated by negative attestation results.

• Full prototype of the architecture with property-based attes

tation in a cloud infrastructure.

Section 2 reviews the background and related work. Sec

tion 3 describes the CloudMonatt architecture and its essential

monitoring and attestation protocols. Section 4 gives con

crete examples of security property measurements and their

interpretation. Section 5 shows the security monitoring at dif

ferent VM stages, and the corresponding remediation response

strategies. Section 6 gives the details of our prototype im

plementation. Section 7 shows the performance and security

evaluations. We conclude in Section 8.

2. Background and Related Work

Different techniques have been proposed for security monitor

ing and attestation of VMs. We describe some past work in

Virtual Machine Introspection (VMI) and Remote Attestation.

2.1. Virtual Machine Introspection

Past work on inside-VM threats proposed Virtual Machine

Introspection techniques. This can provide the service of VM

health monitoring at the hypervisor level. Since the hypervisor

monitor is outside the VM, it is able to detect the existence

363

of malicious or untrusted entities inside the VM, while being

isolated, and thus protected, from the VM.

Since the introduction of the VMI technique and the

Livewire intrusion detection system [19], many VMI-based

architectures have been designed to monitor the inside-VM

health, e.g., VMwatcher [25], Ether [13], Lares [28], virtuoso

[14], VMST [17], etc. These architectures detect abnormal

behaviors inside the VM, but do not consider the threats from

co-resident VMs or other outside-VM entities. For instance,

a VMI tool may be able to detect confidentiality breaches

caused by malicious programs residing in the target VM, but it

cannot detect information leakage via cross-VM side channels

(as we do, in a concrete example in Section 4). Also, how

to use these techniques in the cloud system and allow the re

mote customer to use these monitoring services are problems

which have not been addressed. We address these problems

and show how VMI technologies can be seamlessly deployed

in our CloudMonatt architecture.

2.2. Remote Attestation

Remote attestation has been defined to enable remote cus

tomers to test the integrity of a targeted system based on the

integrity hash measurements supplied by that system.

TPM-based attestation, proposed by the Trusted Comput

ing Group (TCG) [20, 21], can verify the platform integrity

of a remote server. The targeted server uses the Trusted Plat

form Module (TPM) to calculate the binary hash values of

the platform configurations and send them to the customer.

The customer compares these values with reference configu

rations, possibly via a trusted third party appraiser [33], and

determines whether the state of the platform is in the unmodi

fied (good) state. Many systems enabled with remote binary

attestation have been designed (e.g., Intel's TXT [1], IMA

[33], PRIMA [23], BIND [38], Pioneer [37], TVMM [18],

etc.). In the context of virtualization platforms, the virtual

Trusted Platform Module (vTPM)[8, 16,35,41] was designed

to provide the same usage model and services to the VMs as

the hardware TPM. Then, remote attestation can be carried

out directly between the customers and their virtual machines

by the vTPM instances.

vTPM-based attestation raises some problems for VM mon

itoring: it cannot monitor the security conditions of the VM's

environment. Furthermore, the monitoring tool resides in

the guest OS, so it needs modification of the guest OS, and

commodity OSes are also highly susceptible to attacks.

To overcome the above problems, the concept of centralized

attestation is introduced in the cloud system to manage the

attestation procedure. In [36], Schiffman et al. implemented

a centralized "cloud verifier" that can provide the integrity

attestations for customers' VM applications. Customers issue

the authorization for the VM to access applications only when

the integrity attestation passes. In [34], Santos et al. designed

a centralized monitor to check the platform's configurations

and map them to security attributes. This enables customers'

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:09 UTC from IEEE Xplore. Restrictions apply.

VMs to be allocated on the platforms with specified attributes.

Then Attribute-Based Encryption is exploited to seal and un

seal data between customers and cloud servers to ensure they

are not compromised. However, [36] and [34] are still based

on TPM-based attestation for platform integrity and configu

ration checking, and do not consider other security properties

like confidentiality or availability, nor the VMs' interactions

(intended or unintended) with the outside-VM environment.

Property-based attestation [32, 30, 12] was proposed, in

concept, to attest different properties, functions and behaviors

of systems. A trusted third party is introduced to transform

the platform's security measurements into properties and vice

versa, and determine if the platform's condition satisfies a

given set of properties. However, the specification and inter

pretation of properties to be attested remain as challenging,

open problems [27]. They make it very difficult for computer

architects to convert the concept of property-based attestation

into real architectures. We solve some of these problems in

this paper with concrete examples of how to monitor host ma

chines or VMs to see if different security properties are being

enforced or violated, thus providing perhaps the first concrete

realization of property-based attestation in cloud computing.

Unlike past work on attestation which focus on binary attes

tation of platform integrity, we focus on an infrastructure for

property-based attestation of arbitrary security properties, not

just integrity. We show concrete examples of the violation of

different security properties, like degraded availability and loss

of confidentiality through covert channels. We enable attes

tation not only on boot up and VM initiation, but also during

VM runtime and migration. We also propose a novel ongoing

periodic attestation for a VM's security health, and automated

remediation responses for negative attestation results.

3. CloudMonatt Architecture

3.1. Goals of the Architecture

The goals of the CloudMonatt architecture are:

1. To provide a flexible distributed cloud architecture that can

detect and monitor the security health of the customers'

VM in the cloud, e.g., by detecting its vulnerabilities, the

vulnerabilities of the platform it is running on, or the vul

nerabilities due to co-resident VMs;

2. To provide a secure protocol to request and receive security

property monitoring measurements from the cloud's secure

servers, and produce an unforgeable attestation report; and

3. To interpret security health measurements, determine if a

requested security property is held for the VM, and enable

different remediation responses when the VM's security

health is appraised as inadequate.

In this section, we describe the main architecture for achiev

ing goals (1) and (2), which are independent of the specific

security properties a server can implement within the Cloud

Monatt architecture. Section 3.2 describes the main archi

tectural components. Section 3.3 describes the threat model,

364

referring to these components. Section 3.4 describes the moni

toring and attestation protocols. Goal (3) depends on the spe

cific security property being monitored, and Section 4 gives

several concrete examples of property interpretations.

3.2. Architecture Overview

Figure 1 shows an overview of the CloudMonatt architecture.

This includes four entities: 1) Cloud Customer, 2) Cloud

Controller, 3) Attestation Server and 4) Cloud Server.

3.2.1. Cloud Customer: The customer is the initiator and

end-verifier in the system. He places a request for leasing

VMs with specific resource requirements and security requests

to the Cloud Controller. He can issue any number of security

attestation requests during his VM's lifetime. Table 1 shows

the attestation and monitoring APIs provided to the customers.

CloudMonatt allows customers to invoke the monitoring and

attestation requests at any time during the VM's lifecycle. It

also gives the customers two modes of operation: one-time

attestation and periodic attestation.

One-time attestation: the customer can request the attes

tation at any time. Then the Attestation Server performs the

required attestation and sends back the results.

Periodic attestation: the customer can ask for periodic at

testations with specified constant or random frequency. The

cloud server supplies the measurements, and the Attestation

Server accumulates and interprets the measurements periodi

cally. The customer receives fresh results periodically and can

stop the process at any time.

3.2.2. Cloud Controller: The Cloud Controller acts as the

cloud manager, responsible for taking VM requests and ser

vicing them for each customer. The Policy Validation Module

in the Controller selects qualified servers for customers' re

quested VMs. These servers need to both satisfy the VMs'

demanded physical resources, as well as support the requested

security properties and their property monitoring services. The

Deployment Module allocates each VM on the selected server.

During the VMs' lifecycle, the customers may request the

Cloud Controller to monitor the security properties associated

with their VMs. The Cloud Controller will entrust the Attes

tation Server to collect the monitored security measurements

from the correct VMs, and send a report back to it. It then

sends the results back to the customers to keep them informed

of the VMs' security health. When these results reveal poten

tial vulnerabilities for the VMs, the Response Module in the

Controller carries out appropriate remediation responses.

3.2.3. Attestation Server: The Attestation Server acts as the

attestation requester and appraiser, and consists of two essen

tial modules. 1) The Property Interpretation Module is re

sponsible for validating measurements, interpreting properties

and making attestation decisions. It needs a certificate from

a privacy Certificate Authority (pCA) to authenticate cloud

servers. The privacy Certificate Authority may be a separate

trusted server already used by the cloud provider for standard

certification of public-key certificates that bind a public key

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:09 UTC from IEEE Xplore. Restrictions apply.

8

1"'---
I
I

Launch Policy I

Attestation Server

Attestation Request I Policy
... ______ +1 -+1 Validation

Attestation Results I
I

Module

I Module

Measurement
Collection

VM Deployment

�----------------------

Server 1
I All. Client 11 Trust Mod I

M t. Client I Mon. Mod I

Server 2
I All. Client 11 Trust Mod I

M t. Client I Mon. Mod I

Server n

I All. Client 11 Trust Mod I
I I
I I

Countermeasure
Deployment

M t. Client I Mon. Mod I
Cloud Customer ______________________ 4

Cloud Controller Cloud Servers

Figure 1: Architectural Overview of CloudMonatt

Table 1: Types of Monitoring and Attestation Requests (nonces N are added for freshness for each request)

Request API Description
startup_atlest_current(Vid, P, N) Invoke an attestation of VM Yid for security property P, before launching the VM
runtime allest current(Vid, P, N) Invoke an immediate attestation of VM Yid for security property P
runtimcallescperiodic(Vid, P, freq, N)) Invoke a periodic attestation of VM Yid for security property P at the frequency of freq or at random intervals
stop_allest--1Jeriodic(Vid, P, N» Stop a periodic attestation of VM Yid for security property P

to a given machine. 2) The Property Certification Module is

responsible for issuing an attestation certificate for the proper

ties monitored. There can be different Attestation Servers for

different clusters of cloud servers, enabling scalability of the

CloudMonatt architecture.

We introduce the Attestation Server for security monitor

ing/attestation while the Cloud Controller is responsible for

management. This job split achieves better scalability, since

attestation servers can be added to handle more cloud servers.

It consolidates property interpretation in the attestation servers,

rather than replicating this in each cloud server, or burdening

the Cloud Controller. This also achieves better "separation of

duties" security, since the Cloud Controller need only focus

on cloud management while the Attestation Server focuses on

security. It also improves performance by preventing a bottle

neck at the Cloud Controller if it had to handle management

as well as myriad attestation requests and security property

interpretations.

3.2.4. Cloud Server: The Cloud Server is the computer that

runs the Virtual Machine (VM) in question. It is the attester in

the system. It provides different measurements for different

security properties. Figure 2 shows the structure of a cloud

server with a Type-I hypervisor (e.g., Xen [7]). This has the

hypervisor sitting on bare metal, and a privileged VM called

the host VM (or DomO) running over the hypervisor. Not all

the cloud servers in the cloud provider's data center have to

be trusted (almost all existing ones are not), only those servers

on which security monitoring is necessary need to be secure.

To support CloudMonatt's goals, a cloud server must include

a Monitor Module and a Trust Module.

The Monitor Module contains different types of monitors

to provide comprehensive and rich security measurements.

These monitors can be software modules or existing hard-

365

ware mechanisms like performance counters or the TPM chip.

For example, the hardware performance monitor unit (present

ubiquitously in Intel x86 and ARM processors) has numerous

hardware performance counters to collect runtime measure

ments of the VMs' activities. An Integrity Measurement Unit

(which could use a TPM [20] chip) can be used to measure

accumulated hashes of the system's code and static data config

uration. In the hypervisor, a VMI introspection tool (examples

given in Section 2.1) can be used to collect the information

inside the specified VM, and the VMM profile tool can be used

to collect dynamic information about each VM's activities.

We define a new hardware Trust Module in Figure 2. This

Trust Module is responsible for server authentication using the

Identity Key, crypto operations using the Crypto Engine, Key

Generation and Random Number generation (RNG) blocks,

and secure measurement storage using the Trust Evidence

Registers. By using new hardware registers to store the secu

rity health measurements (trust evidence), we do not need to

include the main DRAM memory in our Trusted Computing

Base, although trusted RAM can also be used instead of Trust

Evidence Registers in the Trust Module.

Figure 2 also shows the functional steps taken by the Moni

tor Module and the Trust Module. The Cloud Server includes

an Attestation Client in the host VM that CD takes requests

from the Attestation Server to collect a set of measurements.

It invokes the Monitor Module to @ collect the measurements

and the Trust Module to Cl) generate a new attestation key for

this attestation session. This new attestation key is signed by

the Trust Module's private identity key. The required mea

surements of suspicious events or evidence of trustworthy

operation are @ collected from the Monitor Module and G)
stored into new Trust Evidence Registers. These Trust Evi

dence Registers are analogous to the performance counters

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:09 UTC from IEEE Xplore. Restrictions apply.

used for evaluating the system's performance, except that they

measure aspects of the system's security. The Trust Module

then @ invokes its Crypto Engine to sign these measurements

and (J) forwards the data to the Attestation Client which ®
sends it to the Attestation Server. The Trust Module contains

a Key Generator and a Random Number Generator for gener

ating keys and nonces.

•

Guest VM Guest VM

Figure 2: Server Architectures Enabling Security Monitoring

include new trusted hardware and software features (shown

in grey) in a Trust Module and a Monitor Module.

3.3. Threat Model

The threat model is that of hostile VMs running in the cloud

on the same cloud server, or hostile applications or services

running inside a VM, that try to breach the confidentiality

or integrity of a victim VM's data or code. They may also

try to breach its availability, in spite of the cloud provider

having allocated the VM its requested resources. The cloud

provider is assumed to be trusted (with its reputation at stake),

but may have vulnerabilities in the system. We assume that

the Cloud Controller and the Attestation Server are trusted -

they are correctly implemented, with secure bootup and are

protected during runtime. However the Cloud Servers need not

be trusted, except for the Trust Module and Monitor Module

in each server. Note that the trusted servers, the Cloud Con

troller and Attestation Server, can be redundancy protected for

reliability and security, and are only a small percent of all the

servers in the cloud's data center. Also, not all the thousands

of cloud servers need to be CloudMonatt-secure servers.

We focus on two types of adversary's capabilities: (1) An

adversary, who tries to exploit vulnerabilities in the customers'

VMs, either from inside the VM, or from another malicious

VM co-resident on the same server. (2) An active adversary

who has full control of the network between different servers,

366

as in the standard Dolev-Yao threat model [15]. The adversary

is able to eavesdrop as well as falsify the attestation messages,

trying to make the customer receive a forged attestation report

without detecting anything suspicious. With regard to this

second adversary, CloudMonatt needs secure monitoring and

attestation protocols which we define next.

3.4. Secure Monitoring and Attestation Protocols

In a distributed architecture where communication is over

untrusted networks, the protocols are an essential part of the

security architecture: they establish trust between the customer

and the cloud provider, and between different computers in the

cloud system. In CloudMonatt, an attestation protocol must

be unforgeable in spite of the network attacker and the other

attackers in the untrusted servers. This requires secure commu

nications among the four entities in Figure 1, and unforgeable

signatures of the measurements and the attestation report from

the place of collection (in the Cloud Server) through the At

testation Server, Cloud Controller and finally to the customer.

We first describe the main attestation protocol. Details of the

cryptographic keys involved, the secure communications and

storage will be clarified later.

Figure 3 shows the attestation protocol in CloudMonatt.

Initially the customer sends to the Cloud Controller the attes

tation requests including the VM identifier Yid, the desired

security properties P and a nonce N I. The Cloud Controller

knows the current mapping of all VMs to their assigned cloud

servers, and hence forwards the request to the Attestation

Server, after adding cloud server identifier I to the attestation

request. The Attestation Server then requests security mon

itoring measurements (rM) from the Cloud Server I where

the VM is running. The Cloud Server collects the required

measurements M, calculates the quote Q3 as the hash value

of (Vid, rM, M and nonce N3), and sends these values back

to the Attestation Server. (We borrow the term "Quote" from

TPM notation, to represent a cumulative hash measurement.)

The Attestation Server checks the signature and hash values,

interprets the measurements M and property P, and generates

the attestation report R. This attestation report is signed by the

Attestation Server and transmitted securely to the Controller,

and then signed by the Controller and transmitted back to the

customer. Three different nonces NI, N2 and N3 are used to

prevent replay attacks over the three channels between each

successive pair of servers, for each attestation request.

3.4.1. Secure Storage and Communications: For secure

storage, the Trust Module provides Trust Evidence Registers

for attestation measurements, which are only accessible to the

Trust Module and Monitor Module. Accesses to the databases

in the Cloud Controller and the Attestation Server are also

protected to ensure data confidentiality and integrity.

For secure communications over networks, the Cloud

Monatt architecture expects the customer, Cloud Controller,

Attestation Server and secure Cloud Servers to implement the

SSL protocol. Our contribution is defining the contents of

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:09 UTC from IEEE Xplore. Restrictions apply.

CUSTOMER CLOUD CONTROLLER ATTESTATION SERVER CLOUD SERVER ,----�
r,------,=='------./"
1

1
�[Vid,rM,M,N3'Q3jAsK')K1 [Vid,rM,M,N3,Q3jASK' 1 1

��C¥a'c=u�'at=e�� 1
1+-...11(-[V-·d- 1 P-R- N-Q-j- .)-n Q2=H(VidIIIIIPIIRIIN2) 1

� I " , , 2' 2SK KJ I I I � 1 I : 1 1
\-�:-;::'-;c:;-::-----il I : 1 1

�---------l 1 i l l
I Ge

,
t R I 1 ([Vid,P,R ,N1,Q1jSK')K' 1 : 1 1 1 : '

.. __ : __ 1 ___ � --J 1---1----1 1_ _________ 1 __ _
--�-- session key

,.. -- - -- , r------(session key r-'---------i--I 1 0. 1 1 • r;0l 1 �. ,.� Attestation signingl � I ' I I � session key '
I T verification key pair �-- :1 � � VK

1 e+' 1 customer's Identity r;Y' • 1 -r;Y' 1 1 ' , Kcust IVKCU�keypalr I �clOUdcontroller s I � I attestation server's. : cloud server's � 1 , 1 1 �- I -� "denlltykey pa" 1 �� ldent'tYkeypa" 1 : identify key pair � i-�
1 __ :.. _ I ... __ _ _ _ _ __ _ _ _ _ _, ___________ _

Figure 3: Attestation Protocol and Key Management in CloudMonatt. We use the notation [MJK for a private key operation with

key K, {M}K for a public key operation with key K, and (M)K for a symmetric key operation with symmetric key K.

the SSL messages, and the keys and signatures required for

unforgeable attestation reports and Cloud Server anonymity.

3.4.2. Cryptographic Keys Used: We now describe the keys

used in Figure 3. The Cloud Controller, Attestation Server

and each secure Cloud Server must have one long-term public

private key-pair that uniquely identifies it within the cloud

system. This is minimally what is required for SSL support,

and is already present in all cloud servers. Hence, each secure

cloud server owns a pair of public-private identity keys, {VKS,

SKS}. The private key, SKs, can be burned into the Trust Mod

ule when manufactured, or more preferably, securely inserted

into a non-volatile and tamper-proof register in the Trust Mod

ule when the server is first deployed in the cloud data center.

It is never released outside of the Trust Module. The public

key, VKs, can be used to authenticate the cloud server. A

cloud server mainly uses this identity key-pair to generate a

temporary key pair for each attestation request.

A new session-specific key-pair, {AVKS, ASKs), is created

by the Trust Module whenever an attestation report is needed,

so as not to reveal the location of a VM. (An attacker may try

to find the server which hosts the victim VM, then he can try

to co-locate his VM on the same server. We do not want our at

testation protocol to help an attacker do this [31].) The public

attestation key AVKs is signed by the Cloud Server's SKs and

sent to the pCA for certification. The pCA verifies the signa

ture via VKs and issues the certificate for AVK5 for that server.

This certificate enables the Attestation Server to authenticate

the Cloud Server "anonymously" for this attestation.

For secure communications between the servers, SSL first

authenticates sender and receiver using their public-private

key-pairs, then generates symmetric session keys for encrypt

ing the messages passed between each pair of servers. Hence,

Figure 3 shows the communications between the customer

and the Controller protected with a symmetric session key

KX, between the Controller and the Attestation Server with a

367

symmetric session key KY, and between the Attestation Server

and Cloud Server with sYlmnetric session key KZ.

In the next section, we elaborate on what security health

monitoring means for different security properties like con

fidentiality and availability, in addition to integrity. In past

work, integrity has been the primary, if not the only security

property measured (and usually only on bootup). We give

concrete examples to illustrate the definition and monitoring

of a broader range of security properties, including example

attacks, to illustrate potential security breaches in the cloud.

4. Security Health Monitoring

We define the Security Health of a Virtual Machine as an

indication of the likelihood of its security being affected by

the actions of hostile VMs co-resident on the same Cloud

server, or hostile applications, services or mal ware within the

VM itself. Different indicators of different aspects of secu

rity health can be monitored. In our context, these different

aspects of security are the security properties requested by

the customer. These security properties can be monitored by

the various monitors in the server's Monitor Module or col

lected by the Trust Evidence Registers in the server's Trust

Module. The CloudMonatt architecture is flexible and allows

the integration of an arbitrary number of security properties

and monitoring mechanisms, including logging, auditing and

provenance mechanisms.

To monitor and attest a security property, three requirements

must be satisfied: (1) the Attestation Server can translate the

security property, requested for attestation by the customer, to

the measurements to request from the target cloud server; (2)

the target cloud server implements a Monitor Module that can

collect these measurements, and a Trust Module with a Crypto

Engine that can securely hash and sign the measurements

and send them back to the Attestation Server. (3) the Property

Interpretation Module in the Attestation Server is able to verify

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:09 UTC from IEEE Xplore. Restrictions apply.

the measurements and auxiliary information, and interpret if

the security property is satisfied.

4.1. Property Mapping and Interpretation

The Attestation Server has a mapping of security property P

to measurements M. This gives a list of measurements M that

can indicate the security health with respect to the specified

property P. The Attestation Server can also behave as the

property interpreter and decision maker: when it receives

the actual measurements M' from the server and VM, it can

judge if the customers' requested security properties are being

enforced. (A simpler Attestation Server may just pass back

the measurements M' without performing any interpretation

or initiating any remediation responses.)

There are many possible security properties that a customer

may want. They may include specific properties related to

the cornerstone security properties of Confidentiality, Integrity

and Availability. We illustrate below with a few examples to

show that CloudMonatt is flexible enough to support a variety

of detection mechanisms. The detection of abnormal VM

behaviors is orthogonal to our work, and new methods can

easily be integrated into the CloudMonatt framework.

4.2. Case Study I: Startup integrity

We start with the well-known use case supported by TPM [20],

where a customer wants to check the integrity of both the host

platform and the VM before launching his VM in the cloud.

4.2.1. Example Attacks: Attackers (inside-VM or outside

VM) may try to launch a malicious hypervisor, host OS, or

guest OS. These software entities could have been corrupted

during storage or network transmission. Similarly, the VM

image could have been compromised, with mal ware inserted.

4.2.2. Monitoring Mechanism: The monitoring mechanism

involves accumulated cryptographic hashes of the software

that is loaded onto the system, in the order that they are loaded.

A standard TPM chip can be used, and integrated into the

hardware platform. The measurement is typically done in two

phases: First, the server's platform configuration (hypervisor,

host OS, etc.) is measured (i.e., hashed) during server bootup.

Second, the VM image is measured before VM launch.

The Attestation Server can have full knowledge of the at

tested software, and the correct pre-calculated hash values of

its executable files. It can use these correct values to check the

hash measurements sent back by the cloud server, and issue

the integrity property attestation, if the hash values match. Al

ternatively, the Attestation Server can use a trusted Appraiser

system (like an Integrity Measurement Architecture (IMA)

[33]) to check if the measured hash values conform to the cor

rect values for a pristine, malware-free system, before sending

the Startup Integrity Property attestation back to the customer.

4.3. Case Study D: Runtime Integrity

The customer may want to know if his VM is infected with

mal ware during runtime, not just at startup time as with TPM-

368

based attestation.

4.3.1. Example Attacks: The attacker can spread virus into

the customer's VM. Then the mal ware inside-VM can compro

mise the customer's critical programs. Once the malware gets

root privilege in the OS, it can compromise the whole VM.

4.3.2. Monitoring Mechanism: A common technique to

monitor the VM's health uses VM Introspection (VMI)

[19,14,17]. implemented as a hypervisor-level monitor. VMI

allows the hypervisor to monitor the VM from outside the VM,

and examine the states of the target VM. Different VMI tools

have been designed to detect and analyze the malware inside

the VMs, such as VMwatcher [25] and Ether [l3]. These

tools can be integrated into CloudMonatt. For example, when

customers ask to check if there is malware running as a back

ground service and hiding itself in the target VM, the Attesta

tion Server can issue a request for getting the list of running

tasks for that VM. The VM Introspection Tool located in the

hypervisor's Monitor Module can probe into the target VM's

memory region to obtain the running tasks list [25]. This in

formation will be written into the Trust Evidence Registers

and transmitted back to the Attestation Server. The customer

can compare this actual task list in the returned Attestation

Report and compare it with the one he gets from querying the

corrupted guest OS, to detect the mal ware running in his VM.

4.4. Case Study ill: Runtime Confidentiality Breach

through Covert Channels

For VMs with confidential code or data, cryptography is typ

ically used to protect confidential data-at-rest and data-in

transit. However, during execution, the confidential data is

decrypted and any secret key being used is also decrypted.

During this time, although VMs are protected (isolated) from

each other by the hypervisor, it may still be possible to leak

the secret crypto key used via a cross-VM covert channel or

side channel.

4.4.1. Example Attacks: Hypervisors enable memory protec

tion by enforcing isolation between VMs. However, covert

channels still exist across VMs running on the same server. A

covert channel exists when a colluding insider (e.g., a program

inside the victim VM) can use a medium not normally used

for conununications to leak secret information to an unautho

rized party in another VM. No security policies are overtly

broken by overt communications, but are broken by covert

communications. When VMs on the same server share phys

ical resources, the contention for these shared resources can

leak information, e.g., in the form of timing features. For side

channels, past work have demonstrated the shared cache can

be exploited by a hostile VM to extract crypto keys from the

victim VM [46,43, 6, 22, 47]. For covert channels, two VMs

can encode and transmit information by generating certain

characteristics of the shared hardware, which can be detected

in certain cases, as in CC-hunter [11]. For example, differ

ent cache operations (hit or miss) [31, 45], or memory bus

activities (locked or unlocked bus) [44], may be indicative of

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:09 UTC from IEEE Xplore. Restrictions apply.

certain side-channel or covert channel operations, and may

be detectable with new hardware monitoring features.. To

illustrate how easy it is to leak information through a covert

channel, we design a new cross-VM covert-channel as a case

study. We also show how it can be monitored and detected in

CloudMonatt.

CPU-based covert-channel attack: The basic idea for this

covert channel is to use the CPU as the channel medium to

transmit information. The sender VM can occupy the CPU

for different amounts of time, to indicate different information

(e,g, long CPU usage indicates a "1" while short CPU usage

signals a "O il) . For example, in Xen, the sender VM can trick

the Xen scheduler to achieve a fine control over CPU usage. It

first requests two colluding virtual CPUs and keeps them idle

for some time to build up Xen scheduling credits. Then the

main attacker vCPU can sleep to yield the CPU resource, or

wake up by exploiting Inter Processor Interrupts (IPI) from the

other vCPU to the main attacker vCPU, to give it high priority

with the scheduler. When the sender main vCPU and receiver

VM share the same CPU, the receiver VM can measure its

own execution time, to infer the sender VM's CPU activity,

and thus, infer the covert channel information leak. Figure 4

shows the sender VM's CPU usage, observed by the receiver's

VM. This covert channel has a high bandwidth of 200bps.

20 40 60 80 100 120

Time

Figure 4: Cross-V M Covert Information Leakage

4.4.2. Monitoring Mechanism: Covert channels are based on

contention for shared resources. Programs involved in covert

channel communications give unique patterns of the events

happening on such hardware [11]. The Attestation Server

invokes the Monitor Module on the target server to collect the

necessary information for real time analysis.

We use CPU usage intervals to detect the existence of the

covert channel attack we just created. We set the interval

granularity as 1ms. Since the default execution interval in

Xen is 30ms, we use 30 programmable Trust Evidence Reg

isters to count the occurrence of each CPU usage interval,

(0,1],(1,2], ... ,(29,30], experienced by the sender VM. Suppose

the sender VM executes for 4.6ms, then the Trust Evidence

Register (4,5] will be incremented by 1. The distribution of

CPU usage intervals can reveal the existence of covert chan

nels when the sender VM maliciously changes the time interval

to transmit information.

After a certain detection period, the 30 Trust Evidence Reg

isters give the distribution of the different CPU usage intervals.

369

These 30 values are sent as the security health measurements

for detecting this type of covert channel conununications.

4.4.3. Covert-Channel Property Interpretation: When the

Attestation Server receives the 30 values, the Property Interpre

tation Module calculates the probability distribution (shown

in Figure 5) of the CPU usage intervals. If a covert channel

exists, the distribution graph gives two peaks: each peak repre

senting the activity of transmitting a "O il or a "1", respectively.

For a benign VM, it typically gives one peak for the default

interval of 30 ms. The Attestation Server can use machine

learning techniques to cluster the covert-channel results and

benign results. (We use 30 bins in our experiment, but a differ

ent number can be used to save space or increase accuracy.)

This is only one type of covert channel and other types of

covert channels can also be monitored (with more Trust Ev

idence Registers and mechanisms). The system could also

be designed to switch randomly between monitoring different

sources of covert channels, and use the periodic attestation

mode.

0.2
c

.2
� 0.1 .;:
u;
c O.O+-��-
� 0 5 10 15
:c Benign pattern I
cv 0.9 1---"''--�-----"

.Q
o
(£ 0.6

0.3

20 25 30

O.O+-��-��--��-���-��--'
o 5 10 15 20

Time Interval
25 30

Figure 5: Measurements of Covert-channel Vulnerabilities

4.5. Case Study IV: Runtime CPU Availability

Availability of the resources and services agreed upon by the

cloud customer and the cloud provider in the Service Level

Agreement (SLA) is a very important security problem in

cloud computing. Even if over-provisioning is practiced, the

cloud provider is still responsible for providing a fair resource

allocation for each VM based on its SLA. During runtime, the

customer wants to know if his VM is given the requested re

sources as paid for. We now show an example of an availability

attack, and how CPU resource availability can be monitored.

4.5.1. Example Attacks: An attacker may try to get more re

sources to severely reduce the availability of shared resources

to a victim VM, thus degrading its performance. This may

be to improve the attacker's own performance, or it may just

be to attack the victim and deny him his rightful use of cloud

resources. To achieve this goal, the attacker VM can change

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:09 UTC from IEEE Xplore. Restrictions apply.

its own workloads to steal more resources from the victim. A

typical example is the CPU availability attack against Xen's

credit scheduler [48], The attacker can also change the victim

VM's behavior to give up computing resources to the attacker,

such as in Resource-Freeing Attacks (RFA) introduced in [40],

For this case study, we demonstrate a new CPU resource avail

ability attack, and use it as an example of resource availability

monitoring in CloudMonatt.

CPU resource availability attack: This attack targets the

boost mechanism of Xen's credit scheduler algorithm [5].

Specifically, each VM receives some credits periodically, and

the running VM pays out credits. The Xen scheduler wakes

up the VM with extra credits in Round-Robin order. However,

when a VM is woken up by certain interrupts, it always gets

higher priority to take over the CPU. So the attacker's strategy

is to launch a VM with multiple vCPUs and use them to keep

sending and receiving Inter Processor Interrupts (IPIs) to each

other, so one of the attacker's vCPUs always has the highest

priority. Since the attacker's VM always has higher priority

than the victim VM, they consume a lot of CPU resources,

thus starving the victim's CPU usage.

14

12
Cl)
E
j:: 10
c

:8 8 :::I
(,)
Cl)
>< 6 w
Cl)
. � 4 1V Qi
D:: 2

0

bzip2 hmmer astar

Victim's Program

Figure 6: Performance for CPU Availability Attacks.

Figure 6 shows the results for the denial of CPU service

attack. The attacker VM and victim VM are located on the

same CPU using a Xen hypervisor. The victim VM runs three

CPU-bound programs from the SPEC2006 benchmark suite.

The attacker VM runs different services typically done in the

cloud, as well as the CPU availability attack we designed.

When the attacker is IIO-bound (File, Stream or Mail servers),

the attacker does not consume much CPU and the victim

VM has no performance degradation. When the attacker runs

CPU-bound tasks (Database, Web or App servers), the victim's

execution time is doubled since it can get a fair share of 50% of

the CPU quota. However, when the attacker performs the CPU

availability attack described above, the victim's performance

is degraded by more than ten times.

370

4.5.2. Monitoring mechanism: The basic idea for availability

monitoring is to measure the resource usage of the attested

VM, e.g., CPU usage in this example. During the testing

period for CPU availability, the VMM Profile Tool measures

the attested VM's CPU time: it observes the transitions of

each virtual CPU on each physical core, and keeps record

of the virtual running time for the attested VM. After the

testing period, the VMM Profile Tool stops the measurements

and calculates the total virtual running time: CPU _measure.

This measurement is written into one Trust Evidence Register,

signed and sent back to the Attestation Server.

4.5.3. Availability Property Interpretation: The Attestation

Server retrieves the attested VM's virtual running time and

calculates the relative CPU usage as the ratio of a VM's virtual

running time to real time. If the relative CPU usage is very

small, then the Attestation Server interprets the VM's CPU

availability as compromised (as shown in Figure 7).

.,

(Victim's program)
120% ���

b
�
Z i P

_
2

������
hm

�
me
�

r
�����

a
=
sta
=

r
���

100%

g» 80%
'"
=

� 60%
U
.,
� 40%
co a;
11::

20%

0%

Figure 7: Measurements of CPU Availability Vulnerability .

5. VM Lifecycle and Attestation Responses

Attestations can be performed at all stages of a VM's Iifecycle,

during VM launch, during its runtime, before and after any

VM migrations and on VM termination.

5.1. VM Startup and Responses

Startup attestation can ensure that the VM is correctly initial

ized and launched. This is an attestation of the integrity of the

platform and the VM image. If the platform's integrity is com

promised, CloudMonatt will select another qualified server

for hosting this VM. If the VM image is compromised, then

the VM launch request will be rejected. If both the VM and

platform pass the integrity checks, the VM will be successfully

launched on this server.

5.2. VM Runtime and Responses

CloudMonatt provides a flexible protocol for monitoring the

VM's runtime activities, as described in Section 3.4 and Table

1. Customers can issue a one-time attestation request, or a

periodic attestation request, during the VM's execution to

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:09 UTC from IEEE Xplore. Restrictions apply.

monitor its health. CloudMonatt provides a set of responses

to a VM that is compromised, or under attack. Currently we

implement:

#1 . Termination: the cloud controller can shut down the

VM to protect it from attacks.

#2. Suspension: the controller can temporarily suspend

the VM when it detects the platform's security health may be

questionable. Meanwhile, it can initiate further checking and

also continue to attest the platform. If the attestation results

show the cloud server has returned to the desired security

health, the controller can resume the VM from the saved state.

#3. Migration: when the security health of the current

server is questionable or the server has been compromised,

the controller tries to find another secure cloud server that can

satisfy the VM's security property requirements. If a suitable

server is found, the controller migrates the VM to that server.

Otherwise, this VM is terminated for security reasons.

5.3. VM Migration and Responses

A VM may need to migrate to other servers due to resource

optimization, or for security reasons. CloudMonatt finds a

qualified server that supports this VM's security and attestation

needs. The VM may need to be shut down if no server is found.

6. Implementation

We implemented our property-based cloud attestation on the

OpenS tack Havana platform [4]. We integrated the OpenAttes

tation software (oat) [2] for host remote attestation protocols.

We integrated the TPM-emulator [39] and leveraged it to em

ulate the functions of the Trust Module in the hardware. Our

evaluation results in Section 7 show that the emulation of the

Trust Module has little impact on the system performance.

Figure 8 displays our prototype implementation.

6.1. Cloud Controller

The Cloud Controller is implemented by the OpenStack Nova.

We modify three modules (shown in gray in Figure 8):

nova api: We extend the VM launch command with the

monitoring and attestation options: when launching VMs, the

customers can specify which properties they want to monitor

for their VMs. When the cloud provider searches for a desti

nation machine for initial VM allocation or migration, it must

choose servers which support such properties.

Four new commands (Table 1) are added to enable the

customers to monitor the VM's health. The customers provide

the security properties they want to monitor, the attested VM

id, and a nonce, and they will receive the attestation results.

nova database: We modify the controller's database to en

able it to store the customers' specifications about the security

properties required for their VMs, from nova api. We also

add new tables in the database, which record each servers'

monitoring and attestation capabilities: i.e., what properties

they support for monitoring.

37 1

nova scheduler : the nova scheduler is modified to imple

ment the Policy Validation Module and Deployment Module

of the Cloud Controller in Figure 1. It is responsible for choos

ing the host for the VM during initial allocation and migration.

The default scheduler in OpenS tack is to choose the server

with the most remaining physical resources, to achieve work

load balance. We add a new filter: propertyJilter, to select

qualified cloud servers to host VMs based on their customers'

security properties, monitoring and attestation requirements.

We add two new modules (shown in red) in the controller:

nova attesCservice: This essential module manages the

attestation services. It connects nova database (for retrieving

security properties), oat api (for issuing attestations and receiv

ing results) and nova response (for triggering the responses).

nova response: This implements the Response Module in

Figure 1. It is responsible for providing some responses if the

attestation fails, as discussed in Section 5.

6.2. Attestation Server

The attestation server and client are realized by OpenAttes

tation. The Attestation Server has four main modules: oat

database stores information about the cloud servers and mea

surements; oat appraiser is responsible for triggering attesta

tions and reporting the measurements; oat PrivacyCA provides

public-key certificates for the cloud servers. We modify oat

api and add a new module oat interpreter :

oat api: We extend the APIs with more parameters, i.e.,

security properties and VM id.

oat interpreter: This essential new module implements

the Property Interpretation and Certification Modules of the

Attestation Server. It can interpret the security health of the

VM and make attestation decisions, based on the information

of the cloud server from the nova database and the security

measurements from the oat database.

6.3. Cloud Servers

In each cloud server, nova compute is the client side of Open

Stack nova. We modify oat client, the client side of OpenAt

testation, to receive attestation requests. We modify the TPM

emulator to provide secure storage and crypto functions. We

add two new modules: Monitor Kernel can start the security

measurements and store the values into the TPM emulator,

and Monitor tools can integrate different software VMI tools,

VMM Profile tools or other logging or provenance tools, into

the server to perform the monitoring and take measurements.

7. Evaluation

Our testbed includes three Dell PowerEdge R210II servers,

each with a quad-core 3.30 GHz Intel Xeon processor, 32GB

RAM, and on-board dual Gigabit network adapter with 1 Gbps

speed. We select one server as the cloud controller, equipped

with Nova Controller and OpenAttestation Server. The other

two servers are implemented as cloud server nodes.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:09 UTC from IEEE Xplore. Restrictions apply.

CUSTOMER

c=J Unmodified module

c::J Modified module

_ New module

1
1
1

1 _ _ _ _ _ _ _ _ _ _ _ _ 1

CLOUD CONTROLLER

1
1
1

1 - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I

ATTESTATION SERVER , - - - - - - - - - - - - - -

1

1
1 - - - - - - - - - - - - - - -

CLOUD SERVER - - - - - - - - - - - - - - - -
1

Figure 8 : Implementation of Attestation Architecture.

7.1. Performance Evaluation

We consider two performance issues: the overhead of VM

launching due to new security requirements, and the overhead

of attestation during runtime. We also evaluate different re

sponses for attestation failure recovery. OpenS tack Ceilometer

[3] is exploited for timing measurements.

7.1.1. VM Launch: In the original OpenS tack platform, VM

launch involves the following four steps:

• Scheduling : allocate VMs to appropriate servers based on

customers' requirements and servers' workloads.

• Networking: allocate the networks for VMs.

• Block_device_mapping: set up block devices for VMs.

• Spawning: start VMs on the selected servers.

Our OpenS tack CloudMonatt architecture involves five

steps for VM launching. At the Scheduling stage, the con

troller needs to check oat database to find qualified servers

which have the security features that support the customer's

desired security properties. Steps 2, 3 and 4 are the same as

above. We add a fifth stage Attestation after the Spawning

stage. This stage will check if the VM has been launched

securely.

6

5

4

G> 3 E
i= 2

Figure 9 : Performance for VM launching.

Figure 9 shows the time for each stage of VM launching.

We test three VM images (cirros, fedora and ubuntu) with three

VM flavors (small, medium and large). This figure shows that

the overhead of the Attestation stage is about 20%, which

is acceptable for VM launching. The main overhead of an

attestation is from the message transmitting in the network.

372

7.1.2. VM Runtime: During VM runtime, customers can

monitor the VM at any time, or periodically at a given fre

quency. To test the performance effect of periodic runtime

attestation, we ran different cloud benchmarks in one virtual

machine, while the customer issues the periodic runtime at

testation request at different frequencies. Figure 10 shows

the effect of periodic runtime attestation at a frequency of 1

minute, 10 seconds and 5 seconds, on ubuntu-large VM.

1 20%

G>
c.> 1 00%
c:::
'" E 80%
:5

't: 60% G>
a.
G> 40% >
� a; 20%
0::

0%
database file web app st ream mail

Cloud Benchmark
Figure 10: Performance Effect of Runtime Attestation.

This figure indicates that there is no performance degrada

tion due to the execution of runtime attestation. This is for

CPU-resource monitoring, where the measurements are taken

during the VM switch - the VMM Profile Tool does not inter

cept the VM's execution. Whether runtime attestation causes

performance degradation to the VM execution time depends

on the measurement collection mechanism. However, if the

periodic attestation frequency is low, then the performance

effect is negligible.

7.1.3. Response: The effectiveness of attestation in preventing

runtime security breaches depends on two factors: (1) how

long it takes to detect potential exploitation of vulnerabilities.

This is related to attestation time and mode; and (2) how long

it takes to perform the remediation responses. We evaluate the

overhead of the defense strategies described in Section 5.

Figure 11 shows the attestation time and reaction time for

each response strategy, providing insights into which strategy

should be used. Two factors influence the choice of a response:

(1) The reaction time of the response should ideally be less

than the "damage time", where we define "damage time" as

the time from the point at which the attack is detected to the

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:09 UTC from IEEE Xplore. Restrictions apply.

point at which damage results from the attack. In this respect,

Termination is the fastest while Migration is the slowest. (2)

The response strategy should also be determined by the spe

cific nature of the attacks and the customers' security needs

and usage scenarios. For example, Termination sacrifices VM

availability as the customer cannot use the VM any more; Sus

pension enables the customer to continue the VM only after

the server recovers from security breaches; Migration enables

the customer to use the VM immediately after the migration is

done. So Migration may be the best for service availability.

1 5

en
-; 10
E i=

5

o

Figure 11: Attestation reaction times during VM runtime.

7.2. Security Evaluation

7.2.1. Server Protection: The trusted entities in the attesta

tion architecture include the Cloud Controller and the Attes

tation Server. It is important that these machines have secure

bootup and are secured for runtime protection. Traditional

approaches can be taken to protect these servers, e.g., establish

ing firewalls, disabling VM launching on these central servers,

data hashing and encryption in the database, etc. In addition,

the Trust Module and Monitor Module in the Cloud Servers

also need to be protected against hardware or hypervisor at

tacks via existing protection mechanisms (e.g., [10,42,26]).

7.2.2. Protocol Verification: We verify the cryptographic

protocol described in Section 3.4 to ensure that customers can

receive unforgeable attestation reports.

Protocol properties : We identify several security properties

of the protocol for verification:

Secrecy:

CD The symmetric keys KX , KY , KZ and the private part of

asymmetric keys SKCllS1 , SKc , SKa , SKs , ASKS are unknown

to the attacker;

@ The security properties P, measurements M and attesta

tion report R are unknown to the attacker;

Integrity:

Q) The security properties P, measurements M and attesta

tion report R are not modified by the attacker;

Authentication:

@ The customer and Cloud Controller are authenticated

and indeed talking with each other;

373

� The Cloud Controller and Attestation Server are authen

ticated and indeed talking with each other;

@ The Attestation Server and Cloud Server are authenti

cated and indeed talking with each other.

We use ProVerif [9] to verify the above security properties.

We model the authentication and communication procedures

of our protocol in Pro Verif, and check the secrecy, integrity

and authentication properties defined above.

8. Conclusions

This paper shows how to increase assurance in cloud systems

by enabling secure monitoring and attestation of security fea

tures provided by a cloud server for the customer's VMs. Key

advances over prior work include: (1) Providing a flexible

architecture for a rich set of security properties for VM attesta

tion; (2) building the framework for bridging the semantic gap

between the security properties a customer wants to request

and the measurements collected from a cloud server; (3) en

abling initialization as well as runtime attestation during the

lifetime of the VM; (4) designing two new cloud-based attacks

and the corresponding mechanisms for monitoring those types

of confidentiality and availability attacks; (5) defining a novel

periodic attestation capability during VM runtime; and (6)

building in automated responses to bad attestation results to

prevent potential, or further, security breaches. To the best of

our knowledge, this is the first real implementation of property

based attestation, for security properties other than integrity

checking.

For fast deployability, we leverage existing cloud mecha

nisms and well-honed security mechanisms where possible,

identifying the minimal changes needed for a cloud system

to implement our CloudMonatt architecture. We also show

the set of cryptographic keys that must be present or estab

lished, and we define and formally verify our secure attestation

protocol. The feasibility of our solution is established by an

implementation on the OpenStack cloud software.

We hope that our CloudMonatt framework can lay the foun

dation for future work on monitoring various aspects of secu

rity health in cloud computing, and seeing whether these can

be seamlessly integrated into CloudMonatt. Future work can

also lead to further improvements in both the security and the

performance of cloud computing.

Acknowledgements

We thank Dr. Pramod lamkhedkar, now at AT&T Labs, for

invaluable help with setting up the OpenS tack testbed, and

the anonymous reviewers for their feedback on this work.

This work was supported in part by the National Science

Foundation under grant NSF CNS-1218817. Any opinions,

findings, and conclusions or recommendations expressed in

this work are those of the authors and do not necessarily reflect

the views of the NSF.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:09 UTC from IEEE Xplore. Restrictions apply.

References

[1] "Intel trusted execution technology," http:
Ilhttp://www.intel.com/content/www/us/en/
archi tecture- and- technology Itrusted-execution-technology I
mal ware-reduction-general-technology. html/.

[2] "Openattestation project," https:llwiki.openstack.org/wiki/
OpenAttestation.

[3] "Openstack ceilometer," https:llwiki.openstack.orglwikilCeilometer.
[4] "Openstack cloud software," http://www.openstack.orgl.
[5] "Xen credit scheduler," http://wiki.xen.org/wikilCredicScheduler.
[6] G. L Apecechea, M. S. lnci, T. Eisenbarth, and B. Sunar, "Fine grain

cross-vm attacks on xen and vmware are possible ! " IACR Cryptology
ePrint Archive, 2014.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Hanis, A. Ho, R. Neuge
bauer, l. Pratt, and A. Warfield, "Xen and the art of virtualization," ACM
SIGOPS Operating Systems Review, 2003.

[8] S. Berger, R. Caceres, K. A. Goldman, R. Perez, R. Sailer, and L. van
Doom, "vtpm: Virtualizing the trusted platform module," in Proceed
ings of the Coriference on USENIX Security Symposium, 2006.

[9] B. Blanchet, "An efficient cryptographic protocol verifier based on
prolog rules," in Proceedings of the IEEE Workshop on Computer
Security Foundations Workshop, 2001.

[10] D. Champagne and R. Lee, "Scalable architectural support for trusted
software," in Proceedings of the International Symposium on High
Peiformance Computer Architecture, 2010.

[11] J. Chen and G. Venkataramani, "Cc-hunter: Uncovering covert timing
channels on shared processor hardware," in Proceedings of the IEEE
International Symposium on Microarchitecture, 2014.

[12] L. Chen, R. Landfermann, H. Lohr, M. Rohe, A.-R. Sadeghi, and
C. StUble, "A protocol for property-based attestation," in Proceedings
of the ACM Workshop on Scalable Trusted Computing.

[13] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, "Ether: Mal ware analysis
via hardware virtualization extensions," in Proceedings of the ACM
Coriference on Computer and Communications Security, 2008.

[14] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, "Virtu
oso: Narrowing the semantic gap in virtual machine introspection," in
Proceedings of the IEEE Symposium on Security and Privacy, 2011.

[15] D. Dolev and A. C. Yao, "On the security of public key protocols,"
Stanford University, Tech. Rep., 1981.

[16] P. England and J. Loeser, "Para-virtualized tpm sharing," in Proceed
ings of the International Coriference on Trusted Computing and Trust
in Information Technologies: Trusted Computing - Challenges and
Applications, 2008.

[17] y. Fu and Z. Lin, "Space traveling across vm: Automatically bridging
the semantic gap in virtual machine introspection via online kernel
data redirection," in Proceedings of the IEEE Symposium on Security
and Privacy, 2012.

[18] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, "Terra: A
virtual machine-based platform for trusted computing," in Proceedings
of the ACM Symposium on Operating Systems Principles, 2003.

[19] T. Garfinkel and M. Rosenblum, "A virtual machine introspection based
architecture for intrusion detection," in Proceedings of the Symposium
on Network and Distributed Systems, 2003, pp. 191-206.

[20] T. C. Group, "Tcg software stack specification," http:
Iltrustedcomputinggroup.org, Aug. 2003.

[21] T. C. Group, "Design, implementation, and usage principles for tpm
based platforms," May 2005.

[22] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, "Wait a minute ! a
fast, cross-v m attack on aes," in Research in Attacks, Intrusions and
Defenses. Springer, 2014.

[23] T. Jaeger, R. Sailer, and U. Shankar, "Prima: Policy-reduced integrity
measurement architecture," in Proceedings of the ACM Symposium on
Access Control Models and Technologies, 2006.

[24] P. Jarnkhedkar, J. Szefer, D. Perez-Botero, T. Zhang, G. Triolo, and
R. B. Lee, "A framework for realizing security on demand in cloud
computing," in Proceedings of the IEEE Conference on Cloud Com
puting Technology and Science, 2013.

[25] X. Jiang, X. Wang, and D. Xu, "Stealthy mal ware detection through
vmm-based "out-of-the-box" semantic view reconstruction," in Pro
ceedings of the ACM Conference on Computer and Communications
Security, 2007.

[26] F. McKeen, L Alexandrovich, A. Berenzon, C. Rozas, H. Shafi,
V. Shanbhogue, and U. Savagaonkar, "Innovative instructions and
software model for isolated execution," in Proceedings of the ACM
International Workshop on Hardware and Architectural Support for
Security and Privacy, 2013.

374

[27] A. Nagarajan, V. Varadharajan, M. Hitchens, and E. Gallery, "Property
based attestation and trusted computing: Analysis and challenges," in
Proceedings of the International Coriference on Network and System
Security, 2009.

[28] B. Payne, M. Carbone, M. Sharif, and W. Lee, "Lares: An architecture
for secure active monitoring using virtualization," in Proceedings of
the IEEE Symposium on Security and Privacy, May 2008.

[29] D. Perez-Botero, J. Szefer, and R. B. Lee, "Characterizing hypervisor
vulnerabilities in cloud computing servers," in Proceedings of the
International Workshop on Security in Cloud Computing, 2013.

[30] J. Poritz, M. Schunter, E. Van Herreweghen, and M. Waidner, "Property
attestation -scalable and privacy-friendly security assessment of peer
computers;' IBM Research, Tech. Rep., 2004.

[31] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, "Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds," in Proceedings of the ACM conference on Computer and
communications security, 2009.

[32] A.-R. Sadeghi and C. StUble, "Property-based attestation for computing
platforms: Caring about properties, not mechanisms," in Proceedings
of the Workshop on New Security Paradigms, 2004.

[33] R. Sailer, X. Zhang, T. Jaeger, and L. van Doom, "Design and im
plementation of a tcg-based integrity measurement architecture," in
Proceedings of the Conference on USENIX Security Symposium, 2004.

[34] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu, "Policy
sealed data: A new abstraction for building trusted cloud services," in
Proceedings of the Conference on USENIX Security Symposium, 2012.

[35] V. Scarlata, C. Rozas, M. Wiseman, D. Grawrock, and C. Vishik, "Tpm
virtualization: Building a general framework," in Trusted Computing.
Vieweg+ Teubner, 2008.

[36] J. Schiffman, T. Moyer, H. Vijayakumar, T. Jaeger, and P. McDaniel,
"Seeding clouds with trust anchors," in Proceedings of the ACM Work
shop on Cloud Comp uting Security Workshop, 2010.

[37] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doom, and P. Khosla,
"Pioneer: Verifying code integrity and enforcing un tampered code
execution on legacy systems," in Proceedings of the ACM Symposium
on Operating Systems Principles, 2005.

[38] E. Shi, A. Perrig, and L. van Doom, "Bind: a fine-grained attestation
service for secure distributed systems," in Proceedings of the IEEE
Symposium on Security and Privacy, 2005.

[39] M. Strasser and H. Stamer, "A software-based trusted platform mod
ule emulator," in Trusted Computing-Challenges and Applications.
Springer, 2008.

[40] v. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M. Swift,
"Resource-freeing attacks: Improve your cloud performance (at your
neighbor's expense)," in Proceedings of the ACM Conference on Com
puter and Communications Security, 2012.

[41] M. Velten and F. Stumpf, "Secure and privacy-aware multiplexing of
hardware-protected tpm integrity measurements among virtual ma
chines," in Proceedings of the International Conference on Infonnation
Security and Cryptology, 2013.

[42] Z. Wang and X. Jiang, "Hypersafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity;' in Proceedings of the IEEE
Symposium on Security and Privacy, 2010.

[43] M. WeiB, B. Heinz, and F. Stumpf, "A cache timing attack on aes
in virtualization environments," in Financial Cryptography and Data
Security. Springer, 2012.

[44] Z. Wu, Z. Xu, and H. Wang, "Whispers in the hyper-space: High-speed
covert channel attacks in the cloud." in Proceedings of the Conference
on USENIX Security Symposium, 2012.

[45] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting,
"An exploration of l2 cache covert channels in virtualized environments,"
in Proceedings of the ACM workshop on Cloud computing security
workshop, 2011.

[46] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, "Cross-vm side
channels and their use to extract private keys," in Proceedings of the
ACM coriference on Computer and communications security, 2012.

[47] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, "Cross-tenant side
channel attacks in paas clouds;' in Proceedings of the ACM Conference
on Computer and Communications Security, 2014.

[48] F. Zhou, M. Goel, P. Desnoyers, and R. Sundaram, "Scheduler vulnera
bilities and coordinated attacks in cloud computing," in Proceedings
of the IEEE International Symposium on Network Computing and
Applications, 2011.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:16:09 UTC from IEEE Xplore. Restrictions apply.

