
New Models of Cache Architectures Characterizing
Information Leakage from Cache Side Channels

Tianwei Zhang
Princeton University

tianweiz@princeton.edu

Ruby B. Lee
Princeton University

rblee@princeton.edu

ABSTRACT

Side-channel attacks try to breach confidentiality and re-
trieve critical secrets through the side channels. Cache mem-
ories are a potential source of information leakage through
side-channel attacks, many of which have been proposed.
Meanwhile, different cache architectures have also been pro-
posed to defend against these attacks. However, there are
currently no means for comparing and evaluating the effec-
tiveness of different defense solutions against these attacks.
In this paper, we propose a novel method to evaluate a

system’s vulnerability to side-channel attacks. We establish
side-channel leakage models based on the non-interference
property. Then we define how the security aspects of a cache
architecture can be modeled as a finite-state machine (FSM)
with state transitions that cause interference. We usemutual
information to quantitatively reveal potential side-channel
leakage of the architectures, and allow comparison of these
architectures for their relative vulnerabilities to side-channel
attacks. We use real attacks to validate our results.

1. INTRODUCTION
Confidentiality is a major concern in information secu-

rity. Strong encryption is often used for confidentiality pro-
tection. Many attacks have been designed to break these
cryptographically protected systems. Among them, side-
channel attacks exploit the physical characteristics of the
system to derive the crypto keys. These attacks are serious
security threats for several reasons. First, side-channel at-
tacks target the vulnerabilities of the systems instead of the
cryptographic algorithms. So the same attack strategies can
often be applied to different ciphers. Second, side-channel
attacks can be successfully performed in a short period of
time (e.g., average 3 minutes in [1]), which may not cause
any noticeable impact on the system. Third, the attackers
do not need high privileges to launch an attack. All the op-
erations are within their authorized privilege level. Fourth,
side-channels exist widely in different systems. Power [2,3],
electromagnetic radiation [4, 5], timing [6], etc., can all be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ACSAC ’14, December 08 - 12 2014, New Orleans, LA, USA
Copyright 2014 ACM 978-1-4503-3005-3/14/12 ...$15.00
http://dx.doi.org/10.1145/2664243.2664273.

exploited by the attacker to infer the inaccessible critical in-
formation. Fifth, the observable side-channel information is
due to the inherent physical features of the system, so it is
very difficult to eliminate these side-channels.

A popular target of side channel attacks is the hardware
cache. Caches are one of the most important features for im-
proving performance in modern processors. Their use in the
memory hierarchy significantly reduces the memory access
time. However, the different access times due to fast cache
hits versus slow cache misses can be exploited in cache side
channel attacks to leak information. [1, 7–9]. It is typically
unacceptable to eliminate this side channel by disabling the
cache, because of the severe performance degradation that
would result. Recent work has also shown the possibility
of cross-VM side-channel attacks in cloud computing [10],
making side-channel attacks a real and serious threat.

To defend against cache side-channel attacks, a variety of
software defenses [1,8,11,12] have been proposed. These de-
fenses tend to degrade performance severely [11], and are not
applicable to arbitrary programs [12]. Furthermore, software
defenses are not completely secure, since software has no
control over hardware caches. For example, a software solu-
tion [1,8,11] may add instructions to load an entire security-
sensitive table into the cache, before each access to this ta-
ble, in the software-implemented cipher. However, this does
not prevent the cipher from being context-switched out and
having the cache lines containing table entries evicted by an-
other program (possibly the attacker). Also, hardware cache
controllers have the freedom to invalidate, evict or replace
any cache lines – beyond the control of any software.

Hardware defenses have also been proposed to mitigate in-
formation leakage through cache side-channels, with the goal
of providing more security and higher performance than soft-
ware defenses. The idea is to rethink cache architectures to
thwart certain types of side-channel attacks without impact-
ing the essential performance provided by caches. Different
secure cache architectures have been proposed [13–15]. The
performance of these architectures can be tested by perfor-
mance benchmarks, but their security effectiveness have only
been analyzed qualitatively. Currently, there are no reliable
methods for comparing the effectiveness of different secure
cache architecture approaches. In this paper, we propose a
new way of modeling caches to answer two questions: (1)Do
these secure caches really defend against cache side-channel
attacks? and (2)What are the relative vulnerabilities of dif-
ferent cache architectures to different side-channel attacks?

Our approach is to model the security aspects of different
cache architectures as finite state machines, and accurately

model the interference property which can show preserva-
tion or breaches of confidentiality under side-channel at-
tacks. Our cache state machines include different subjects
and states. Transitions between different states can leak
confidential information between different subjects, when the
non-interference property is violated. In addition, we pro-
pose some quantitative representations of the potential vul-
nerabilities of the modeled cache architectures to the side
channel attacks. To the best of our knowledge, our method
of modeling the security aspects of cache architectures and
interferences is novel, as are our quantitative measures of
side-channel vulnerability which allow comparison of differ-
ent cache defense strategies and analysis of the root causes
of side-channel leakage.
The key contributions of this paper are:

• Showing how to apply the principle of non-interference
to the modeling of side-channel information leakage;

• Exploiting mutual information for measuring the side-
channel information leakage, and identifying three con-
ditions for achieving non-interference properties;

• A new way of building finite-state machines for mod-
eling the security aspects of cache architectures, and
using a model-checking tool for quantitative character-
ization of the systems’ side-channel vulnerabilities;

• Verifying our cache security models and their relative
side-channel vulnerabilities with real attacks.

The rest of the paper is organized as follows: Section 2
gives the background of cache side-channel attacks and dif-
ferent secure cache defenses. Section 3 describes our side-
channel leakage models and quantification for measuring in-
formation leakage. In Section 4, we show how to build new
security models of cache architectures. In Section 5, we inte-
grate the side-channel leakage model into the cache security
models and quantify the caches’ potential information leak-
age. We consider other side-channel attacks in Section 6.
Section 7 uses experimental data with real attacks to vali-
date our security models of the different cache architectures.
Section 8 discusses related work. Section 9 gives our conclu-
sions and suggestions for future work.

2. BACKGROUND

2.1 Cache Side-channel Attacks
Cache side-channel attacks are particularly dangerous as

they are simple software attacks on essential hardware com-
ponents. The attacker does not need to share the address
space with the victim and access its memory. However, he
shares the hardware caches with the victim, which provides
the attacker a side channel to observe the victim’s secret in-
formation: a victim’s programs executing on the system may
have different cache behaviors (hits or misses) when memory
accesses are made. These behaviors have different timing
characteristics. The attacker tries to capture these char-
acteristics, and deduce the victim’s memory accesses that
might help him recover the key and break the ciphers.
A large number of cache side-channel attacks have been

proposed during the past few years [1,7–9,16–18]. The root
cause of all the existing attacks is due to interference: either
external interference between the attacker’s program and the

victim’s program, or internal interference inside the victim’s
own program [13]. Combined with the cache behaviors the
attackers want to observe (cache misses or hits), we have four
cache side-channel attack categories [19] shown in Table 1
and described below.

Table 1: Cache side-channel attack categories

External Interference Internal Interference
Cache I. Access-based attacks II. Timing-based attacks
Misses e.g., Percival’s attack e.g., Bernstein’s attack
Cache III. Access-based attacks IV. Timing-based attacks
Hits e.g., Shared library e.g., Bonneau’s attack

Type I: Attacks based on Cache Misses due to Ex-
ternal Interference. In this class of attacks, the attacker
and the victim run their processes on the same processor,
and they share the same data cache. So the victim’s pro-
cess may evict the cache lines holding the attacker’s data,
which will cause the attacker future cache misses and give
the attacker the chance to infer the victim’s cache accesses.
Some access-based cache attacks belong to this class, and a
typical one is Percival’s attack [7].

Type II: Attacks based on Cache Misses due to
Internal Interference. In this class, the attacker does not
run programs simultaneously with the victim. Instead, he
only measures the total execution time of the victim, e.g., for
encryption of one plaintext block. A longer execution time
indicates there may be more cache misses from the victim’s
own execution; this can give the attacker information about
the victim’s memory accesses. Some timing-based cache at-
tacks belong to this class, such as Bernstein’s attack [8].

Type III: Attacks based on Cache Hits due to Ex-
ternal Interference. In this class, the attacker and the
victim share some memory space (e.g, a shared cryptogra-
phy library). First, the attacker evicts all, or some, shared
memory blocks out of the cache. After a certain time inter-
val of the victim’s execution, the attacker reads the shared
memory blocks and measures the access time. A short time
means the attacker has a cache hit, indicating that this cache
line has been accessed by the victim during that interval and
re-fetched into the cache by the victim. Then the attacker
can infer the memory addresses the victim has accessed. The
access-based attack in [1] belongs to this class.

Type IV: Attacks based on Cache Hits due to In-
ternal Interference. Similar to type II attacks, the at-
tacker still only needs to measure the total execution time
of the victim. But he only cares about cache hits inside the
victim’s code. If the attacker measures a shorter execution
time, it may be due to more cache hits during the victim’s
execution. So the attacker may be able to infer information
about the encryption keys through the “cache collision” (i.e.,
cache hits) of memory accesses. Some timing-based attacks
belong to this class, such as Bonneau’s attack [9].

2.2 Cache Defenses and Architectures
Different cache defenses and secure cache architectures

have been proposed to protect against cache side-channel
attacks. Basically these designs follow one of two strategies:
Partitioning or Randomization [20]:

2.2.1 Partitioning.
Caches can be exploited as side-channels in the external

interference attacks because the attacker and the victim can
share the caches, and thus interfere with each other’s cache

usage. So one straightforward approach to prevent informa-
tion leakage is to prevent the cache sharing by dividing the
cache into different zones for different processes. We have
the following cache designs using this idea:
Static-Partitioning (SP) cache: This cache is stati-

cally divided into two parts either by ways (like columns)
or by sets (like rows). In set-associative caches partitioned
by ways, each way is reserved for either the victim or the
attacker program. The cache can also be partitioned by
sets, where each set is reserved for either the victim or the
attacker program. Due to the elimination of cache line shar-
ing, SP caches can effectively prevent external interference,
but at the well-known cost of degrading the computer’s per-
formance because of the static cache partitions.
Partition-Locked (PL) cache: PL cache [13] uses a

finer-grained dynamic cache partitioning policy. In PL cache,
each memory line has a protection bit to represent if it needs
to be locked in the cache. Once the protected line (e.g., the
victim’s critical data) is locked in the cache, it can not be
replaced by an unprotected line (e.g., the attacker’s data).
Instead, the attacker’s data will be directly sent between
the processor and the memory, without filling the cache.
This replacement policy will thwart the attacker’s plot to
spy on the victim’s cache accesses to security-critical data
lines (e.g., those containing AES tables). This leverages, for
cache security, the Lock-bit already provided by some caches
to improve cache performance for frequently accessed data.
The proper use of a PL cache is to preload the sensitive
cache lines (e.g., AES table) before encryption begins.

2.2.2 Randomization.
In this approach, side-channel information is randomized,

thus no accurate information is leaked out from caches. There
are at least two ways to realize randomization: adding ran-
dom noise to the attacker’s observations and randomizing
the mappings from memory addresses to cache sets.
Random-Eviction (RE) cache: a RE cache periodi-

cally selects a random cache line to evict. This can add
random noise into the attacker’s observations so he cannot
tell if an observed cache miss is due to the cache line re-
placement or the system’s random eviction policy. This will
increase the attacker’s difficulty in recovering secret infor-
mation like a cipher key.
Random-Permutation (RP) cache: RP cache [13]

uses random memory-to-cache mappings to defend against
side-channel attacks. There is a permutation table for each
process. This enables a dynamic mapping from memory ad-
dresses to hardware-remapped cache sets. When one process
A wants to insert a new line D into the cache, it checks A’s
permutation table and finds the corresponding cache line R
in set S. If this R belongs to another process B, instead of
evicting R, thus revealing information to outsiders, a random
line R’ in a random set S’ is selected, evicted and replaced
by D. At the same time, the sets S and S’ in A’s permu-
tation table are swapped, and the lines in these two sets
belonging to A are invalidated. Since process A’s memory-
to-cache mappings are dynamic, random and unknown to
process B, process B cannot tell which memory addresses
process A actually accessed. This is different from conven-
tional caches, which have static and fixed memory-to-cache
mappings, rather than dynamic and randomized mappings.
NewCache: NewCache [14,21] randomizes the memory-

to-cache mappings by introducing the concept of a Logical

Direct-Mapped Cache (LDM), which does not physically ex-
ist. The mapping from memory addresses to the LDM cache
is direct-mapped, with the benefits of simplicity and speed.
The mapping from the LDM cache to the physical cache is
fully-associative and is realized using Line Number Registers
(LNreg’s). This dynamic and random mapping enhances
the security against information leakage, as each memory
line can be mapped to any physical cache line with equal
probability; and the cache access pattern changes with each
execution of the same program. Furthermore, the perfor-
mance is enhanced since the LDM cache can be much larger
than the physical cache, by merely adding extra index bits
to each LNreg [14]. For the replacement policy, if the incom-
ing line D cannot find any line in the physical cache with the
same index (called an index miss), it will randomly choose
a line R to replace. If the incoming line can find a line R
in the physical cache with the same index, but the tag of
the line (i.e. the rest of the memory address minus the in-
dex bits) is different (called a tag miss), then D may replace
R [21]. The advantage of NewCache is achieving the security
benefits of dynamic randomized mapping of memory lines to
cache lines, with the same (or even better) performance as
conventional caches [14].

3. SIDE-CHANNEL LEAKAGE MODELING
We now build a model for side-channel leakage. First we

consider a general system which can be modeled as a finite
state machine. The state machine consists of a set of subjects
and states. Each subject may provide some actions to the
machine, causing it to transition from one state to another,
and generate some observations. In order to study the infor-
mation flow between different subjects in this machine, we
use the concept of non-interference [22], as defined below:

Definition: Given a state machine M, and its subjects
S and S ′, we say S does not interfere with (or is non-
interfering with) S ′, if the actions of S on M do not affect
the observations of S ′.

Then we have the following principle to judge the infor-
mation flow in the state machine:

Principle: Given a state machine M, and its subjects
S and S ′, if S is non-interfering with S ′, then there is no
information flow from S to S ′.
We now consider the side-channel information leakage.

We treat a side channel C as a state machine. It is a con-
nection between two subjects: a victim who performs some
actions as inputs I to one side of the channel, and an at-
tacker who retrieves certain observations as outputs O from
the other side of the channel. The input I can change C’s
state, and affect the output O. So the measurement of side-
channel information leakage is equivalent to the evaluation
of the non-interfering property between the channel’s input
and output: if I is non-interfering with O, then there is no
side-channel information leakage through C.

Quantification: Side-channel leakage is a statistical pro-
cess, so we use mutual information [23] to quantify the non-
interference property between the channel’s input and out-
put. We denote PI(i) as the probability that the side chan-
nel C is fed with the input i, PO(o) as the probability that
C produces the output o, PI,O(i, o) as the joint probability
that C produces the output o with the input i, PO|I(o|i)
as the conditional probability that C produces the output o
given the input i, and PI|O(i|o) as the conditional probabil-
ity that the input of C is i given the output is o. Then the

mutual information between I and O is defined below:

I(I;O) =
∑
i∈I

∑
o∈O

PI,O(i, o) log

(
PI,O(i, o)

PI(i)PO(o)

)
(1a)

=
∑
i∈I

∑
o∈O

PO(o) PI|O(i|o) log

(
PI|O(i|o)

PI(i)

)
(1b)

I(I;O) measures how much information about I is leaked
to O through the side channel. If I(I;O) is close to zero,
then I is non-interfering with O, and there is little side-
channel information flow from I to O.
Equation 1(b) is the product of three terms. To reduce

the mutual information to zero, we can make any of the
three terms equal zero. So we have three conditions that
can realize the non-interference property:
C1 (Output Elimination) The channel C does not pro-

duce any output. Then the input does not interfere with the
output. We have the following expression:

∀o ∈ O, PO(o) ≈ 0 (2)

C2 (Noise Domination) For any output o, if its gen-
eration is due to the channel’s inherent noise instead of the
input, then the output is not affected by the input:

∀o ∈ O, i ∈ I, PI|O(i|o) ≈ 0 (3)

C3 (Input Ambiguity) For any output o, the input of
the channel C can be any i with the same probability. Then
the input does not interfere with the output. That is:

∀i ∈ I, o ∈ O, PI|O(i|o) ≈ const

Plugging this into the probability equation gives

PI(i) =
∑
o′∈O

PI,O(i, o′) =
∑
o′∈O

PI|O(i|o′)PO(o′)

≈ PI|O(i|o)
∑
o′∈O

PO(o′) = PI|O(i|o)

This gives the desired expression of Input Ambiguity:

∀o ∈ O, i ∈ I, log

(
PI|O(i|o)

PI(i)

)
≈ 0 (4)

These three conditions are the key ideas for designing
countermeasures to mitigate side-channel leakage. In Sec-
tion 5, we show how to use these conditions to evaluate the
side-channel leakage from different cache architectures.

4. SECURITY MODELING OF HARDWARE

CACHE ARCHITECTURES
In this section, we show how to build finite state machines

to model the security aspects of cache architectures.

4.1 Cache State Machine
We first consider the state machine of a single cache line

shared by the attacker and the victim, which is shown in
Figure 1. Each cache line can be in one of three states: A
(occupied by the attacker), V (occupied by the victim) or
INV (invalid - does not have any valid contents). There

are five events that cause state transitions: V miss, the
victim has a cache miss for a memory line that maps into
this cache line; A miss, the attacker has a cache miss for
data that maps into this cache line; and similarly, V hit
and A hit, which indicate a cache hit for this cache line by
the victim or the attacker, respectively; and Invalidate, the
cache clears out the data to invalidate this line.

External Interference

INV

V A

V_
m
is
s

A_miss
A_hit

A_miss

V_miss

A
_m
iss

V_miss
V_hit

InvalidateIn
va
lid
at
e

Start
Fake Interference

Figure 1: State machine for a single cache line

Now we consider how to model the whole cache as the
combination of all the cache lines, and the dynamic oper-
ations within the cache state machine. Table 2 shows our
model structure and transition rules for the cache states. It
has four columns. For each Event, the cache will transition
from the Current State to the Next State, and output
the Information Flow Log. Assume m is the number of
ways for set-associativity (columns), and n is the number of
cache sets (rows). Then:

Current/Next State: State Matrix Sp,q = {A,V, INV}
is the state of the cache line for set p and way q. Replacement
Matrix lp,q = {0, ..., m−1} is used to model the LRU (Least
Recently Used) replacement policy ordering of set p and way
q for replacement, when a new line has to be brought into
the cache set. If lp,q = 0, the line in set p and way q has the
highest priority to be replaced. If lp,q = m − 1, then this
line has the lowest priority to be replaced in the set.

Event: We define the Event Vector as Tp = {A miss, A hit,
V miss, V hit, Invalidate}, which is the cache action on set
p that causes a state transition from Sp,q to S′

p,q, following
the rules in Figure 1.

We will discuss the Information Flow Log in detail
in Section 5. For now, it suffices to say that it is a new
output generated for the cache state machine that counts
state transitions that violate the non-interference property.
For example, external interference occurs when an attacker’s
cache line is replaced with a victim’s cache line.

4.2 Secure Cache Modeling
The state machine of each secure cache architecture de-

scribed in Section 2.2 can be built based on Figure 1 and
Table 2. We now show the differences in the cache models
based on the caches’ unique features. Details can be found
in our technical report [24].

Conventional Cache: Caches start out empty, which means
all cache lines are in the INV state at the beginning of each
experiment, transitioning to either V or A state on a V miss
or A miss event, respectively. Subsequently, they transition
between these 2 states. Conventional caches do not invali-
date cache lines on load or store instructions. Hence, the In-
validate event only occurs on a special “Invalidate addresses”
instruction – if this exists in the Instruction Set.

Table 2: Cache structure and state transition
Current State Event Information Flow Log Next State

State Matrix Replacement Matrix Event Vector Interference Matrix State Matrix Replacement Matrix⎡
⎢⎣

S0,0 · · · S0,m−1

...
. . .

...
Sn−1,0 · · · Sn−1,m−1

⎤
⎥⎦

⎡
⎢⎣

l0,0 · · · l0,m−1

...
. . .

...
ln−1,0 · · · ln−1,m−1

⎤
⎥⎦

⎡
⎢⎣

T0

...
Tn−1

⎤
⎥⎦

⎡
⎢⎣

I0 → O0 · · · In−1 → O0 I−1 → O0

...
. . .

...
...

I0 → On−1 · · · In−1 → On−1 I−1 → On−1

⎤
⎥⎦

⎡
⎢⎣

S′
0,0 · · · S′

0,m−1

...
. . .

...
S′
n−1,0 · · · S′

n−1,m−1

⎤
⎥⎦

⎡
⎢⎣

l′0,0 · · · l′0,m−1

...
. . .

...
l′n−1,0 · · · l′n−1,m−1

⎤
⎥⎦

Static-Partitioning (SP) Cache: For SP cache, the dif-
ference with the conventional cache is that each cache line
can only have two states (INV and V, or INV and A). So
transitions of A→ V or V→ A can never happen.
Partition-Locked (PL) Cache: We consider two uses of PL

cache: (1)PL cache without preload of the security-critical
data before the victim’s program begins: the cache is ini-
tially empty. Both the victim and attacker can fill the cache
with its data. However, once the victim’s critical cache lines
are locked in the cache, they can not be replaced by the at-
tacker. So we have the transition of A → V, but V → A
is forbidden. When the cache is in the state of V and en-
counters the event of A miss, the attacker’s data will be sent
to the CPU directly, and the cache stays in V. (2)PL cache
with preload of the security-critical data: the victim initially
occupies the cache line and locks it in the cache. So neither
transition of A→ V, nor V→ A can happen. The A miss
cannot change the state of the PL cache and A hit can never
happen for these security-critical lines.
Random-Eviction (RE) Cache: Compared with a conven-

tional cache, the RE cache state machine has two more tran-
sitions due to the introduction of random noise: A→ INV
(attacker’s line is randomly chosen to be evicted) and V→
INV (victim’s line is randomly chosen to be evicted).

Random-Permutation (RP) Cache: An event for RP cache
may involve mutiple cache lines when swapping the cache
sets. When Line l in set s is in state V and encounters an
A miss, it still stays in state V. Instead, a random Line l′

in a random set s′ is selected and replaced by the incoming
attacker’s line, thus jumping to state A from whatever state
it was in before. All lines of set s and s′ in state A will be
evicted out of the cache and go to state INV. In the mean-
time, the mappings of set s and s′ will be swapped in the
attacker’s permutation table. A similar procedure happens
when Line l in state A encounters a V miss. Line l′′ in set
s′′ is randomly selected and replaced, and all the lines of set
s and s′′ in state V go to INV state when swapping sets s
and s′′ in the victim’s permutation table.

NewCache: We consider different cache events on a cache
line l. When there is a cache hit for the victim (V index hit
& V tag hit) or the attacker (A index hit & A tag hit), the
cache will stay in state V or A, respectively. When there
is an index hit but a tag miss for the victim (V index hit
& V tag miss) or the attacker (A index hit & A tag miss)
for line l, according to NewCache’s replacement policy [14,
21], line l will be directly replaced by the incoming line,
jumping from state V to V or from state A to A. When
there is an index miss for the victim (V index miss) or the
attacker (A index miss), a random cache line l′ is selected
to be replaced, and line l′ will jump to state V or A respec-
tively, from whatever state it was in previously.

5. LEAKAGE MEASUREMENT
To evaluate cache systems’ side-channel vulnerabilities, we

now integrate the leakage model (Section 3) into the cache
state machine model (Section 4). We define the Interfer-

ence Probability to measure the information leakage through
cache side channels. As an example, we use our method to
evaluate Type I attacks (observing cache misses due to ex-
ternal interference) in Table 1.

5.1 Side-channel Leakage Interpretation
As we stated in Section 3, the cache is shared by the victim

and the attacker, and is treated as a potential side channel.
The victim’s actions are the inputs to the side channel, and
the attacker’s observations are the outputs from the side
channel. To evaluate the side-channel leakage, we need to
study the interference between the victim’s actions and the
attacker’s observations. That is, how the victim’s actions
can affect the attacker’s observations.

We define Ip as the victim’s actions on cache set p (0 ≤
p < n), and Oq as the attacker’s observations of cache set q
(0 ≤ q < n). During the transitions between different cache
states, we define a novel Information Flow Log to record
the side channel’s inputs and outputs, as shown in Table 2.

Information Flow Log: This log is used to track the
root causes of interference. It defines a structure called In-
terference Matrix. Inside this matrix, Ip → Oq = {1, 0}
depicts if this cache state transition happens with the vic-
tim’s action on cache set p, which will lead to the attacker’s
later observation on cache set q. An extra input for noise,
I−1, and transition I−1 → Oq = {1, 0} depicts if the inher-
ent noise from the cache channel will lead to the attacker’s
later observation on cache set q.

The mutual information (Equation 1) and 3 non-interference
conditions (Equations 2, 3 and 4) can be used to evaluate
the side-channel leakage. To do so, we need to go over all the
possible cache states and count the number of each kind of
interference, N(Ip → Oq), where −1 ≤ p < n and 0 ≤ q < n.
Then we calculate the Interference Probabilities:

PI,O(Ip, Oq) =
N(Ip → Oq)∑

−1≤p′<n

∑
0≤q′<n N(Ip′ → Oq′)

(5)

From Equations 1 and 5 we can evaluate the mutual infor-
mation between the victim’s actions and attacker’s observa-
tions. In Equation 6, we only use the range (0 ≤ p′ < n), and
omit the noise represented by p′ = −1, which we consider
fake interference. The mutual information can accurately
reflect the interference between the attacker and the victim
through cache side channels.

I(I;O) =
∑

0≤p′<n

∑
0≤q′<n

PI,O(Ip′ , Oq′) log

(
PI,O(Ip′ , Oq′)

PI(Ip′)PO(Oq′)

)

(6)
We can also use the Interference Probabilities to identify

cases of no information leakage, based on the three non-
interference conditions in Equations 2, 3 and 4.

C1 (Output Elimination) For all 0 ≤ q < n, PO(Oq)
is close to 0. Then the attacker can not observe any in-
formation through the cache side channel, and there is no
information leakage.

C2 (Noise Domination) For all 0 ≤ q < n, PI|O(I−1|Oq)

is close to 1. Then all of the attacker’s observations are
caused by the channel’s noise, the victim’s actions do not
affect the attacker’s observations. Hence there is no infor-
mation leakage.
C3 (Input Ambiguity) For all 0 ≤ p < n and 0 ≤ q < n,

PI|O(Ip|Oq) is close to PI(Ip). Then the victim’s actions
cannot be distinguished by the attacker’s observations, and
there is no information leakage.

5.2 Case Study: Type I Attacks
In Section 2.1 we classify the side-channel attacks into

four categories based on the root causes of the attacks: the
interference due to cache behaviors. Our cache modeling
technique targets the root causes, so it can cover all the
categories. As a case study, we pick type I attacks based on
cache misses due to external interference, and study different
caches’ vulnerability to this type of side-channel attacks.
Other attack types can be evaluated in a similar way.
For Type I cache attacks, the attacker observes cache

misses due to external interference. Whenever a cache line
occupied by an attacker is over-written (replaced) by a cache
line belonging to a victim, the attacker will have an obser-
vation by detecting a cache miss when he next accesses this
cache line that he had previously filled with his own data.
Specifically, when the victim’s cache line with a cache index
of p wants to replace the attacker’s cache line with a cache
index of q (for conventional caches, p = q), a cache state
transition from A to V happens, and this will be an Ex-
ternal Interference (shown in Figure 1). The cause of this
External Interference is the victim’s input Ip to the cache
side channel, and the result of this External Interference is
the attacker’s output Oq from the cache side channel later.
So this is the interference Ip → Oq.

It is also possible that the eviction of the attacker’s cache
line is not due to the victim’s actions. This happens in RE
cache when the attacker’s cache line is randomly selected to
be evicted out, or in RP cache when the attacker’s cache
line is invalidated due to the update of permutation tables.
Specifically, when the attacker’s cache line with a cache in-
dex of q is evicted out of the cache due to such noise, a cache
state transition from A to INV happens, and we call this
Fake Interference (Figure 1). The cause of this Fake Inter-
ference is the side channel’s inherent noise, and the result of
this Fake Interference is the attacker’s later observations of
output Oq from the cache side channel. The interference is
labelled I−1 → Oq.

To evaluate the caches’ vulnerability to Type I attacks,
we count the number of each kind of External Interference
and Fake Interference. Then we use Equation 5 to calculate
Interference Probabilities. Finally we calculate the mutual
information in Equation 6 and use the three non-interference
conditions to confirm the absence of information leakage.
We use Murphi [25] to implement our cache security mod-

els with the interference property. Murphi is a finite state
machine model checker, used to verify the invariants of the
system by enumerating all the explicit states. Instead of
checking invariants, we use Murphi to go over all the pos-
sible cache states and record the Information Flow Log
for each transition. Without loss of generality, we assume a
3-set, 2-way set-associative conventional cache as the base-
line for this study. We used 10 rounds of memory accesses,
which was enough to get stable interference probabilities.

Murphi will analyze all the possible states, for all the cache
lines in the cache.

5.3 Evaluation Results

5.3.1 Analysis of Non-interference Conditions
For each cache, we collect counts for the Information

Flow Log, including counts of the number of each type of
interference. From this, we calculate the joint Interference
Probability between each input and each output.

Conventional Cache: Table 3 gives the results for the
baseline conventional cache. We observe that for a conven-
tional cache, PI,O(Ip, Oq) is very distinguishable for (q = p)
compared to (q �= p), and none of the three conditions C1,
C2 or C3 are satisfied. So the input I interferes highly with
the output O. We conclude that the conventional cache is
very leaky, and hence insecure.

Table 3: Interference Probability for conventional cache

PI,O(I, O) Io I1 I2 I−1

O0 33.3% 0.0% 0.0% 0.0%
O1 0.0% 33.3% 0.0% 0.0%
O2 0.0% 0.0% 33.3% 0.0%

(27,996 interferences in total)

Static-Partitioning Cache: Table 4 shows the Interference
Probability of an SP cache. There are no attacker’s observa-
tions from SP cache, satisfying condition C1. So SP cache
can effectively reduce Type I side-channel leakage to zero.

Table 4: Interference Probability for SP cache

PI,O(I, O) I0 I1 I2 I−1

O0 0.0% 0.0% 0.0% 0.0%
O1 0.0% 0.0% 0.0% 0.0%
O2 0.0% 0.0% 0.0% 0.0%

(0 interferences in total)

Partition-Locked Cache: Tables 5a and 5b display the In-
terference Probability of PL cache without and with preload.
PL cache without preload has the same interference distribu-
tion as conventional caches, indicating that PL cache with-
out preload can leak information when loading the victim’s
cache lines into the cache for the first time. PL cache with
preload has the same interference distribution as SP cache,
indicating that with proper usage like preloading the victim’s
sensitive cache lines, PL cache prevents information leakage.

This example demonstrates the power of our methodol-
ogy: even though the PL cache without preload may survive
the ”Prime and Probe” attack during experimentation, our
security modeling of PL cache still reveals its vulnerability:
there can still be information leakage targeting the cache
warm-up stage. This agrees with the observation in [26].

Table 5: Interference Probability for PL cache

(a) without preload

PI,O(I, O) I0 I1 I2 I−1

O0 33.3% 0.0% 0.0% 0.0%
O1 0.0% 33.3% 0.0% 0.0%
O2 0.0% 0.0% 33.3% 0.0%

(13,794 interferences in total)

(b) with preload

PI,O(I, O) I0 I1 I2 I−1

O0 0.0% 0.0% 0.0% 0.0%
O1 0.0% 0.0% 0.0% 0.0%
O2 0.0% 0.0% 0.0% 0.0%

(0 interferences in total)

Random-Eviction Cache: Now let us consider the ran-
domization approach. The Interference Probability of RE
cache is shown in Table 6. The results show that a large
amount of interference is fake (70.8%). Although it is still
possible for the attacker to retrieve side-channel information

from the rest of the interferences (29.2%), it will be a hard
job to filter out the noise due to fake interference from the
observations. According to C2, the larger the proportion of
fake interference, the more difficult it is for the attacker to
retrieve useful information.

Table 6: Interference Probability for RE cache

PI,O(I, O) I0 I1 I2 I−1

O0 9.7% 0.0% 0.0% 23.6%
O1 0.0% 9.7% 0.0% 23.6%
O2 0.0% 0.0% 9.7% 23.6%

(117,349,797 interferences in total)

Random-Permutation Cache: Table 7 displays the Inter-
ference Probability for RP cache. We can see that Fake
Interference constitutes a very high percentage of the total
interferences (80.4 %). This is due to the cache line inval-
idations done when swapping mappings in the permutation
table. In addition, the interference of each Ip on each Oq

has about the same probability. This is due to the random
mapping from memory address to cache set. When the at-
tacker observes a cache miss in set q, it is hard for him to tell
which set is accessed by the victim. Both non-interference
conditions C2 and C3 hold, thus enhancing the security of
RP cache against Type I side-channel leakage.

Table 7: Interference Probability for RP cache

PI,O(I, O) I0 I1 I2 I−1

O0 2.17% 2.19% 2.19% 26.8%
O1 2.19% 2.17% 2.19% 26.8%
O2 2.19% 2.19% 2.17% 26.8%

(7,842,324 interferences in total)

NewCache: We simulate a NewCache with 3 logical cache
lines and 2 physical cache lines. Table 8 shows the Inter-
ference Probability. Due to the fully-associative mappings
from the Logical Direct Mapped cache to the physical cache,
the interference of Ip on any Oq happens with the same
probability. According to non-interference condition C3,
the attacker’s observations are not affected by the victim’s
actions. This means NewCache does not leak information
through Type I side-channel attacks.

Table 8: Interference Probability for NewCache

PI,O(I, O) I0 I1 I2 I−1

O0 11.1% 11.1% 11.1% 0.0%
O1 11.1% 11.1% 11.1% 0.0%
O2 11.1% 11.1% 11.1% 0.0%

(1,368,954 interferences in total)

5.3.2 Mutual Information
For each cache architecture, we calculate the mutual in-

formation between the victim’s actions and the attacker’s
observations based on Equation 6 (the logarithm base is 2
and information leakage is measured in bits), as shown in
Table 9. This shows that the conventional cache and PL
cache without preload leak the most information. RE cache
has a smaller mutual information value, but still gives the
attacker some chances to retrieve critical information. The
mutual information of RP cache is close to zero, indicating
that it will be hard for the attacker to leak secrets with Type
I side-channel attacks. SP cache, PL cache with preload and
NewCache have zero mutual information, so the attacker can
not get the victim’s secrets from his observations.
The conclusions from mutual information are consistent

with our previous analysis of non-interference conditions.

Table 9: Mutual Information for each cache architecture

Cache Architecture I(I, O) (bits)

Conventional 1.585
SP 0.000

PL-w/o preload 1.585
PL-w/ preload 0.000

RE 0.461

RP 2.586×10−6

New 0.000

5.4 Discussion
From the above analysis we observe that different defenses

usually focus on different non-interference conditions. For
the partitioning approach, the defenses usually try to realize
C1. The attacker cannot observe output from the channel as
it is isolated from the victim (SP cache and PL cache). For
the randomization approach, the defenses usually try to re-
alize C2 and C3. For C2, the cache adds a large amount of
random noise to the attacker’s observations (RE cache and
RP cache). For C3, the cache randomizes the mappings be-
tween the victim’s actions and the attacker’s observations
(RP cache and NewCache). This ambiguity makes it hard
for the attacker to get accurate conclusions about the vic-
tim’s actions. Any of the three conditions is effective at
reducing the side-channel leakage. We hope this will inspire
researchers to propose more defenses beyond the partition-
ing and randomization approaches discussed in this paper.

Our modeling methodology provides different usages: (1)
a general evaluation of a cache’s vulnerability to side-channel
attacks, as in this paper, considers all possible cache state
transitions for successive rounds of memory accesses. This
will cover all possible attacks on all ciphers; (2) an evaluation
of a cache’s vulnerability to a specific attack on a specific
cipher, can be achieved by feeding the cache models with
the victim’s and attacker’s actual memory access traces.

6. MODELING OTHER ATTACKS
We discuss how to apply our modeling methodology to

other cache side-channel attacks and cache features.

6.1 Other Cache Attacks
Our case study focused on Type I attacks: the cache

misses that cause external interference between the attacker
and the victim. So we consider the transitions of V miss,
from state A to V. Our model can also be applied to the
other three attack categories in Table 1.

(1) Type II Attacks: These are based on cache misses due
to internal interference, so we consider the transitions of
V miss from state V to V. The channel’s input Ip is the
victim’s access with a cache index of p, and the output Oq

is the victim’s replaced cache line with a cache index of q.
A random cache mapping for the victim can make Ip → Oq

ambiguous, reducing the vulnerability to leak information.
(2) Type III Attacks: These are based on cache hits due to

external interference. We need a fourth type of state A/V,
indicating this line contains a memory line shared by the
victim and the attacker. Then we consider the transitions
of A hit from state A/V to A/V. The channel’s input Ip is
the victim’s access of a shared line with address index p, and
the output Oq is the event that the attacker gets a cache hit
in the cache set q. Ip → Oq denotes the interference that the
attacker’s line with address index p gets a cache hit in the
cache set q, due to the victim’s placement of this shared line.
We denote I−1 as the event that brings the victim’s line into

the cache for non-critical operations like prefetching, then
I−1 → Oq is a Fake Interference which can introduce noise.
(3) Type IV Attacks: These are based on cache hits due to

internal interference. We consider the transitions of V hit
from state V to V. The input Ip to the channel is the event
that the victim brings its line with index p into the cache,
and the output Oq is the event that the victim gets a cache
hit when accessing a cache set q. Ip → Oq denotes the
interference that the victim’s line with address index p gets
a cache hit in the cache set q. Similarly I−1 is the non-
critical operations that bring in the victim’s cache line, then
I−1 → Oq is a Fake Interference that adds random noise.

Relevant interference probabilities, mutual information and
non-interference conditions can similarly be evaluated for
these types of side-channel vulnerabilities.

6.2 Other System Features
Our cache modeling methodology can also be extended to

model other features of modern microprocessors.
(1)Multiple processes: Other processes, not the victim nor

the attacker, can affect the attacker’s observations. We can
introduce a new state R to indicate the cache line occupied
by the Rest of the processes. A new cache event “R miss”
can transition the cache state from A to R, generate Fake
Interference and add noise to the attacker’s observations. R
can also be superimposed on the INV state, and “R miss”
on the “Invalidate” transition from A to INV states, in
Figure 1. This generalizes the Fake Interference we measure
as“noise”coming from multiple sources - invalidations, other
processes or other channel noise.
(2) Prefetching : This fetches data into cache before being

requested, to avoid future cache misses. We add two new
events “V prefetch” and “A prefetch” to model the data
prefetching of victim and attacker. Prefetching can reduce
the side-channel leakage by adding noise. For instance, in a
Type I attack, V prefetch can evict the attacker’s cache line
and transition the cache state from A to V. This generates
Fake Interference when the attacker has a cache miss later
for this line, and may satisfy Condition C2. A prefetch can
evict the victim’s cache line and transition the cache state
from V to A. Then the attacker will experience a cache
hit for this line, and cannot observe the victim’s previous
actions. This may satisfy Condition C1.

(3) AES-NI [27]: Intel x86 processors introduced new in-
structions specifically for AES block encryption and decryp-
tion. This eliminates cache usage for those AES implemen-
tations rewritten using AES-NI instructions. Since this re-
moves state V and all transitions related to it from Figure 1,
the attacker cannot observe any interference from the victim
and Condition C1 is satisfied. Unfortunately, AES-NI does
not apply to legacy code (or new code written without using
AES-NI instructions). It does not mitigate the cache side-
channel leakage from other ciphers, e.g., RSA. It also does
not protect cache side-channel leakage in other processors,
e.g., the dominant ARM processors used in mobile devices.

7. VALIDATION OF CACHE MODELS
We launch an actual attack program to see if this validates

the results of our cache modeling case study. We use the
Probability Distribution of Candidate Keys to quantify the
feasibility of this attack, hence the system’s vulnerability.

7.1 Probability Distribution of Candidate Keys

When an attacker attempts to break a cryptography com-
puting platform, he can feed different plaintexts into the
platform, and ask for encryption with the key he wants to
steal. He then collects the side-channel observations dur-
ing the encryptions and tries to infer the keys or narrow
down its possible values. To improve the accuracy and fully
recover the keys, the attacker usually repeats a bunch of
attack rounds to obtain different candidate keys. He cal-
culates the Probability Distribution of Candidate Keys, and
selects the key with the highest probability. A successful
attack is able to select the correct key based on its signif-
icantly higher probability in the Probability Distribution of
Candidate Keys. So we use this to evaluate the success of an
attack, and hence the systems’ vulnerability to this attack.

7.2 Implementation
We launch an access-based side-channel attack on AES

[17]. We use gem5 [28] to simulate this attack on different
cache architectures, and compare their Probability Distri-
bution of Candidate Keys. For each cache, we simulate L1
caches, with cache size of 32 Kbytes, line size of 32 bytes and
set-associativity of 8-way, which is a typical configuration in
modern processors. The victim runs AES encryption for 218

random blocks in the study phase (the key is known to the
attacker) and in the attack phase (the key is unknown to the
attacker). The attacker primes and probes the cache contin-
uously to collect the access time for each cache line, to infer
the victim’s memory accesses, and hence his encryption key.

7.3 Attack Results
Figure 2 shows the attack results. We use a solid red line

to show the Probability Distribution of Candidate Keys, and
a dotted blue line to denote the correct encryption key.

For conventional caches (Figure 2a), eight keys (32-39)
get more than 10 % probabilities while the rest are close to
zero. The correct key-byte value 35 is among the top eight
candidate keys, but the attacker cannot pick it out. This
is because one cache line contains 8 AES entries, and the
attacker is unable to differentiate which entry is actually
accessed, when he observes a victim’s access to this line. He
needs other methods like brute-force or two-rounds attack
[17] to find the correct key from the 8 possible values. We
conclude this attack on the conventional cache succeeds.

Similar results can be observed for Random Eviction cache
(Figure 2d). This shows two types of RE cache: RE1000 (a
random cache line is evicted every 1000 memory accesses – in
red) and RE10 (a line is evicted every 10 memory accesses –
in black). RE cache also leaks eight candidate keys: RE1000
has the same probability distribution as conventional caches,
while RE10 is much smaller. A RE cache with more frequent
random evictions is more difficult to attack.

Figure 2b shows the distribution of candidate keys for
SP cache. This shows that the attack does not produce
any distinguished candidate keys. Thus this attack on SP
cache fails at 218 samples. We get the same conclusion for
Partition-Locked Cache (Figure 2c), Random-Permutation
Cache (Figure 2e) and Newcache (Figure 2f).

Comparing Table 9 and Figure 2, we see that the results
we get from the two independent evaluation methods are
consistent. For the partitioning approach, PL and SP caches
can effectively defend against Type I side-channel attacks.
For the randomization approach, RP and NewCache are also
very effective in reducing Type I side-channel leakage. RE

0 50 100 150 200 250

0%

3%

6%

9%

12%

15%

KeyByte Value

P
ro

b
ab

ili
ty

Conventional
Correct

(a) Conventional Cache

0 50 100 150 200 250

0%

3%

6%

9%

12%

15%

KeyByte Value

P
ro

b
ab

ili
ty

SP
Correct

(b) SP cache

0 50 100 150 200 250

0%

3%

6%

9%

12%

15%

KeyByte Value

P
ro

b
ab

ili
ty

PL
Correct

(c) PL cache

0 50 100 150 200 250

0

3%

6%

9%

12%

15%

KeyByte Value

P
ro

b
ab

ili
ty

RE1000
RE10
Correct

(d) RE cache

0 50 100 150 200 250

0%

3%

6%

9%

12%

15%

KeyByte Value

P
ro

b
ab

ili
ty

RP
Correct

(e) RP cache

0 50 100 150 200 250

0%

3%

6%

9%

12%

15%

KeyByte Value

P
ro

b
ab

ili
ty

New
Correct

(f) NewCache

Figure 2: Probability Distribution of Candidate Keys

caches are attackable, but if the eviction frequency increases
(at the cost of performance), the attack becomes harder.
In several cases, our abstract cache models give more in-

formation than the actual attacks. For example, they can
show the effect of PL cache with preloading of the sensi-
tive table data (not vulnerable) versus PL cache with no
preloading (vulnerable), as shown in Table 5.

8. RELATED WORK
Past work in evaluating side-channel attacks can be clas-

sified into several categories based on their features:
Mutual Information: [29] applied mutual information and

Guessing Entropy to evaluate the feasibility of key-recovery.
[30] proposed static analysis to establish formal security
guarantees against cache side-channel attacks, and can es-
timate the upper bound of information leakage from side
channels. [31] presented an information-theoretic metric for
adaptive side-channel attacks, which can estimate the at-
tacker’s remaining uncertainty for adjusting his strategy.
Success Probability: In [29], Success Rate is defined as a

general metric to evaluate the feasibility of side-channel key
recovery. Then [32] defines the average Success Rate to eval-
uate the profiled cache timing attacks. It also builds an an-
alytical model to estimate the Success Rate for determining
the best attack strategy. [33] builds a predictive model for
evaluating the side-channel leakage through caches. It cal-
culates the probability that the attacker can correctly detect
a memory access given a victim’s critical memory access.
Correlation Metric: [34] proposed the Side-channel Vul-

nerability Factor (SVF) to measure a system’s vulnerability
to all side channels. It calculates the Pearson Correlation

Coefficient between the Similarity Matrices of the victim’s
execution traces and the attacker’s observation traces. [35]
proposed the timing-SVF metric for timing-based cache side-
channel attacks, which [34] did not address. In [36], a metric
called Cache Side-channel Vulnerability (CSV) is designed to
overcome SVF’s issues in its scope, definition and measure-
ments. It also states that using a single metric like SVF [34]
to evaluate the system’s vulnerability to all possible forms
of side-channel information leakage is problematic as it may
give misleading results and furthermore, it does not correctly
determine which secure cache designs are more effective in
defending against which side-channel attacks.

Formal Verification: Porras and Kemmerer designed the
technique of covert flow trees to systematically detect and
identify covert channels between processes [37]. [38] built
models of timing side-channel leakage from the program code
level. [39] uses the technique of self-composition to verify
the non-interference properties of cryptographic software by
considering two copies of the program.

Most of the above methods aim to evaluate the feasibility
of the attacker’s behaviors, instead of the system’s intrinsic
vulnerability. Unlike these past methods, we are the first to
model the cache architectures and measure their leakage.

9. CONCLUSIONS
This work proposes a novel methodology to evaluate a

cache system’s vulnerability to side-channel attacks. We
model side channel leakage from the non-interference prop-
erty, and use mutual information with three non-interference
conditions to guarantee no side-channel leakage. We then
show how to model cache architectures, and integrate these
with our side-channel leakage model. We also perform a
real attack on each of our detailed secure cache architecture
simulations, to see if our model is consistent with reality
(“ground truth”), to validate our modeling methodology.

Our modeling methodology focuses on the root cause of
cache side-channel leakage: the interference impacting cache
behavior. It can theoretically cover all types of side-channel
attacks (known or unknown). In the case study, we consider
the side-channel attacks (Type I) based on cache misses due
to external interference. But these models of caches and
interferences can be extended to other types of attacks, as
discussed in Section 6. Future work can also extend these
evaluation methods to new cache architectures and other
system features impacting cache behavior, as well as to other
subsystems (not just caches) that may be vulnerable to side-
channel or covert channel attacks.

10. ACKNOWLEDGMENTS
This work was supported in part by DHS/AFRL FA8750-

12-2-0295 and NSF CNS-1218817.

11. REFERENCES

[1] D. Gullasch, E. Bangerter, and S. Krenn, “Cache
games–bringing access-based cache attacks on aes to
practice,” in IEEE Symp. on Security and Privacy,
2011.

[2] T. S. Messerges, E. A. Dabbish, and R. H. Sloan,
“Investigations of power analysis attacks on
smartcards,” in USENIX Workshop on Smartcard
Technology, 1999.

[3] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power
analysis,” in Annual Intl. Cryptology Conference on
Advances in Cryptology, 1999.

[4] N. Homma, T. Aoki, and A. Satoh, “Electromagnetic
information leakage for side-channel analysis of
cryptographic modules,” in IEEE Intl. Symp. on
Electromagnetic Compatibility, 2010.

[5] P. Kocher, R. Lee, G. McGraw, and A. Raghunathan,
“Security as a new dimension in embedded system
design,” in Design Automation Conference, 2004.

[6] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J.
Quisquater, and J.-L. Willems, “A practical
implementation of the timing attack,” in Intl. Conf. on
Smart Card Research and Applications, 2000.

[7] C. Percival, “Cache missing for fun and profit,” in
Proc. of BSDCan, 2005.

[8] D. J. Bernstein, “Cache-timing attacks on aes,” tech.
rep., 2005.

[9] J. Bonneau and I. Mironov, “Cache-collision timing
attacks against aes,” in Lecture Notes in Computer
Science series 4249, Springer, 2006.

[10] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Cross-vm side channels and their use to extract
private keys,” in ACM Conference on Computer and
Communications Security, 2012.

[11] E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert,
“Software mitigations to hedge aes against cache-based
software side channel vulnerabilities,” 2006.

[12] E. Käsper and P. Schwabe, “Faster and timing-attack
resistant aes-gcm,” in Cryptographic Hardware and
Embedded Systems, 2009.

[13] Z. Wang and R. B. Lee, “New cache designs for
thwarting software cache-based side channel attacks,”
in ACM/IEEE Intl. Symp. on Computer Architecture,
2007.

[14] Z. Wang and R. Lee, “A novel cache architecture with
enhanced performance and security,” in IEEE/ACM
Intl. Symp. on Microarchitecture, 2008.

[15] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh,
and D. Ponomarev, “Non-monopolizable caches:
Low-complexity mitigation of cache side channel
attacks,”ACM Trans. Archit. Code Optim., 2012.

[16] O. Aciiçmez and c. K. Koç, “Trace-driven cache
attacks on aes,” in Intl. Conference on Information
and Communications Security, 2006.

[17] D. A. Osvik, A. Shamir, and E. Tromer, “Cache
attacks and countermeasures: the case of aes,” in RSA
conference on Topics in Cryptology, 2006.

[18] O. Aciiçmez, “Yet another microarchitectural attack:
exploiting i-cache,” in ACM workshop on Computer
security architecture, 2007.

[19] Z. Wang, Information Leakage Due to Cache and
Processor Architectures. PhD thesis, Princeton, 2012.

[20] Z. Wang and R. B. Lee, “Covert and side channels due
to processor architecture,” in Annual Computer
Security Applications Conference, 2006.

[21] F. Liu and R. B. Lee, “Security testing of a secure
cache design,” in Hardware and Architectural Support
for Security and Privacy, 2013.

[22] J. A. Goguen and J. Meseguer, “Security policies and
security models,” in IEEE Symp. on Security and

Privacy, 1982.

[23] T. M. Cover and J. A. Thomas, Elements of
Information Theory. Wiley InterScience, 2006.

[24] T. Zhang and R. B. Lee, “Secure Cache Modeling for
Measuring Side-channel Leakage,” in Tech. Report,
http://palms.ee.princeton.edu/node/428.

[25] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang,
“Protocol verification as a hardware design aid,” in
Intl. Conference on Computer Design: VLSI in
Computer & Processors, 1992.

[26] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou,
“Hardware-software integrated approaches to defend
against software cache-based side channel attacks,” in
IEEE Intl. Symp. on High Performance Computer
Architecture, 2009.

[27] S. Gueron, “Intel advanced encryption standard (aes)
instructions set,” 2010.

[28] “The gem5 simulator system,” in http://www.gem5.org.

[29] F.-X. Standaert, T. G. Malkin, and M. Yung, “A
unified framework for the analysis of side-channel key
recovery attacks,” in Annual Intl. Conference on
Advances in Cryptology: the Theory and Applications
of Cryptographic Techniques, 2009.

[30] B. Köpf, L. Mauborgne, and M. Ochoa, “Automatic
quantification of cache side-channels,” in Intl.
Conference on Computer Aided Verification, 2012.

[31] B. Köpf and D. Basin, “An information-theoretic
model for adaptive side-channel attacks,” in ACM
Conf. on Computer and Comms. Security, 2007.

[32] C. Rebeiro and D. Mukhopadhyay, “Boosting profiled
cache timing attacks with a priori analysis,” IEEE
Trans. on Information Forensics and Security, 2012.

[33] L. Domnitser, N. Abu-Ghazaleh, and D. Ponomarev,
“A predictive model for cache-based side channels in
multicore and multithreaded microprocessors,” in Intl.
Conference on Mathematical Methods, Models and
Architectures for Computer Network Security, 2010.

[34] J. Demme, R. Martin, A. Waksman, and
S. Sethumadhavan, “Side-channel vulnerability factor:
a metric for measuring information leakage,” in
ACM/IEEE Intl. Symp. on Computer Architecture,
2012.

[35] S. Bhattacharya, C. Rebeiro, and D. Mukhopadhyay,
“Hardware prefetchers leak: A revisit of SVF for
cache-timing attacks,” in Hardware and Architectural
Support for Security and Privacy, 2012.

[36] T. Zhang, S. Chen, F. Liu, and R. B. Lee, “Side
channel vulnerability metrics: the promise and the
pitfalls,” in Hardware and Architectural Support for
Security and Privacy, 2013.

[37] P. Porras and R. Kemmerer, “Covert flow trees: a
technique for identifying and analyzing covert storage
channels,” in IEEE Computer Society Symp. on
Research in Security and Privacy, 1991.

[38] J. Svenningsson and D. Sands, “Specification and
verification of side channel declassification,” in Intl.
Conf. on Formal Aspects in Security and Trust, 2010.

[39] J. Bacelar Almeida, M. Barbosa, J. S. Pinto, and
B. Vieira, “Formal verification of side-channel
countermeasures using self-composition,” Sci. Comput.
Program., 2013.

