
Side Channel Vulnerability Metrics:
the Promise and the Pitfalls

Tianwei Zhang
Princeton University

tianweiz@princeton.edu

Si Chen
Princeton University

sichen@princeton.edu

Fangfei Liu
Princeton University

fangfeil@princeton.edu

Ruby B. Lee
Princeton University

rblee@princeton.edu

ABSTRACT
Side-channels enable attackers to break a cipher by exploit-
ing observable information from the cipher program’s ex-
ecution to infer its secret key. While some defenses have
been proposed to protect information leakage due to certain
side channels, the effectiveness of these defenses have mostly
been given only qualitative analysis by their authors. It is
desirable to have a general quantitative method and metric
to evaluate a system’s vulnerability to side-channel attacks.

In this paper, we define the features of a good side-channel
leakage metric. We review a recently proposed metric called
the Side-channel Vulnerability Factor (SVF) and discuss its
merits and issues. We suggest the CSV metric, which tries
to show how to overcome some of the shortcomings of the
SVF metric, without completely changing its character. We
use software cache side-channel attacks and defenses as an
example to compare the metrics with known and measurable
results on system leakiness.

1. INTRODUCTION
The confidentiality of secret or sensitive information is

often protected by encryption.The encryption key is kept
secret and accessible only by authorized parties. If the secret
encryption key is leaked, then the confidentiality protection
provided by strong encryption is nullified. Cryptographic
algorithms are often designed to make it hard to recover the
secret key through mathematical analysis.

Different methods are proposed to break the cipher. The
simplest brute-force attack requires exponential time and
energy - hence, if the key is long enough, it would be com-
putationally infeasible to try all possible combinations of
the key. However, in practice, side-channel attacks enable
attackers to break the cipher in a much shorter time, with
much fewer trails.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HASP’13, June 23 - 24 2013, Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2118-1/13/06 ...$15.00.

Unlike normal communication channels like buses and in-
terconnection networks, side channels are not intended for
communications. As a computer operates, it gives off certain
observable characteristics that may leak secret information,
such as power measurements, heat, sound, electromagnetic
radiation or timing measurements. For instance, the char-
acteristics are different when a public-key encryption algo-
rithm is processing a key bit of ”1” versus a key bit of ”0”.
Hence, the key can be recovered by taking certain measure-
ments and then doing off-line analysis using statistical and
machine-learning techniques.

The question we ask in this paper is whether certain mi-
croarchitectural features make the system more vulnerable
to side channel attacks? Are there certain design parameters
that make a system more susceptible to side-channel leaks?
It is highly desirable to have a metric that can indicate a
system’s vulnerability to side channel attacks. This could
guide computer architects in making design decisions and
security, performance and power tradeoffs.

Recently, a metric called the Side-channel Vulnerability
Factor (SVF) was proposed [9] that tries to measure a sys-
tem’s vulnerability to all side channel leaks. While promis-
ing as a new hardware vulnerability metric, we find that
there are problems with its scope, definition and measure-
ment. Although a good metric is desirable, a defective met-
ric may be misleading, resulting in security designs that do
not actually improve security while needlessly degrading per-
formance. The search for a more reliable metric motivates us
to discuss and improve upon the SVF metric, without com-
pletely changing its character, in this paper. Our improved
CSV metric gives a more meaningful measure by appropri-
ately restricting the scope (albeit to some of the most im-
portant classes of microarchitectural side-channel attacks)
and giving a definition that is consistent with known system
behavior(sometimes referred to as ”ground truth”).

The contributions of this paper are:

• Providing an understanding of what side-channels are,
and the requirements of a good metric to determine a
system’s vulnerability to side channel attacks.

• Identifying the issues with the SVF metric proposed
by Demne et al [9].

• Making improvements to overcome these problems that
helps designers understand what information leakiness

is and how to mitigate it.

The rest of the paper is organized as follows: Section 2
gives the background of various side-channel attacks, as well
as the SVF metric proposed in [9]. We also look at the cache
side-channel attacks as a case study, as in [9]. Section 3
details the limitations of SVF and the inconsistency of its
results. In section 4, we introduce our improvements in the
CSV metric and report its results. Section 5 concludes.

2. BACKGROUND

2.1 Side Channel Attacks
Side-channel attacks aim to break a cipher by exploiting

the side-channel information. This by-product information
can be retrieved from the implementation of the crypto-
graphic algorithms in a physical system. Researchers have
discovered a variety of side-channel information existing in
a computation system, like a program’s execution time [11],
electromagnetic radiation from the device [10], power con-
sumption [12], fault detection [7], etc.

There are two factors which determine if the side-channel
attacks can be performed successfully [13]: from the sys-
tem’s aspect, the system must leak some useful information
to the attacker; from the attacker’s aspect, the attacker must
be able to capture this information and recover keys or pro-
tected data based on on-line or off-line analysis. As a result,
the system’s vulnerability to side-channel attacks includes
both the system’s vulnerability to leak the information and
the attacker’s capability to recover the information.

2.2 Charateristics of a Good System Vulnera-
bility Metric

As a metric is highly desirable to measure a system’s vul-
nerability to side-channel attacks, we first consider the char-
acteristics of a good metric. We list these below:

• Realistic. It must correctly represent reality, e.g. the
vulnerability of a system, and must represent ”ground
truth”.

• Deterministic. When given the same inputs, it must
give the same results each time.

• Consistent. It should show the same trend in dif-
ferent systems. It must give correct comparisons of
systems. Metric(A) > Metric(B) means system A is
more vulnerable than system B. Conversely, if A is
more vulnerable than B, then Metric(A)>Metric(B).

• Unbiased. It must not be biased or show preference
for some systems over others.

• Instructive. It should help computer architects to
understand which features or parameters are more prone
to leaking critical information under which types of at-
tacks, and guide them to make intelligent design deci-
sions.

• Universal. It should be applicable to all computer
systems for all kinds of side-channel attacks.

Recently Demme et al. defined a metric to evaluate a
system’s vulnerability to side-channel information leakage
[9]. We summarize and discuss their metric and results in
this paper.

2.3 Side Channel Vulnerability Factor, SVF
The Side-Channel Vulnerability Factor(SVF), introduced

in [9], is a metric to measure the correlation between a vic-
tim’s execution and an attacker’s observations. First, the
victim’s execution trace and the attacker’s observation trace
are collected, and patterns in both traces are detected using
phase detection techniques. Then, the correlation between
the actual patterns in the victim trace and the observed
patterns are computed. We give a condensed mathematical
definition of the SVF metric below:

Let v1, v2, . . . , vn be the victim’s execution trace (termed
the oracle trace in [9]) and a1, a2, . . . , an be the attacker’s
observation trace (or the side-channel trace). Suppose there
are k measurement results for each trace at time interval i,
we can denote the two traces as

~vi = [vi(1), . . . , vi(k)]; ~ai = [ai(1), . . . , ai(k)] (1)

Demme uses the Euclidean distance to define the victim’s
similarity matrix Mv as:

Mv(i, j) =

{
D(~vi, ~vj), if i > j

0, otherwise
(2)

whereD(~vi, ~vj) =
√

(vi(1)− vj(1))2 + . . .+ (vi(k)− vj(k))2.

The same definition is made to get the attacker’s similarity
matrix Ma.

Finally, Demme defines the SVF as the Pearson correla-
tion coefficient of vectorized forms of Mv and Ma:

SV F =

∑n
i=1

∑n
j=1 (Ma(i, j)−Ma)(Mv(i, j)−Mv)

σMaσMv

(3)

where Ma, Mv and σMa , σMv are the average and standard
deviation of attacker’s and victim’s similarity matrices.

2.4 Case Study:Cache Side-Channel Attacks
Information can be leaked out through side channels be-

cause different programs can share the same hardware, such
as processors and memory. So caches [14, 2], branch predic-
tors [3], pipelines [5, 16] and other shared resources are all
potential sources of information leakage. Among all the side-
channel attacks, cache side-channel attacks are particularly
dangerous. Since caches are one of the most important per-
formance features in a computer, they are almost universally
present in all processors, from embedded processors to high-
end multi-core processors for Cloud servers. Furthermore,
many optimized software implementations of cryptographic
algorithms use table lookups. Since the tables are stored
in memory, caches are implicitly involved in the execution
of these cryptographic programs. Also, cache side-channel
attacks do not require extra equipment, hence they are easy
to perform.

In cache-based side-channel attacks, the adversary does
not need to access the victim’s bus or memory. The attacker
process and the victim process can be isolated, and they
do not need to share the same address space. However,
they may still share the hardware caches, thus providing
the attacker a side-channel to observe the victim’s secret
information. Based on the actions the attacker can perform
and the information he can observe, the attacks are often
divided into three types: access-based attacks [15], timing-
based attacks [6] [8] and trace-based attacks [4].

One of the common techniques for the attacker to steal in-
formation from the victim is the ”Prime and Probe” attack
[15] [14]. In this method, the attacker allocates a contiguous
byte array, the size of which is equal to the cache size. At the
first ”Prime” stage, he will read a value from every memory
block in the array. This will evict all the victim’s lines. At
the second ”Probe”stage, he will again read each block in the
array, and measure the time of each memory access. A large
time means a cache miss, which indicates that this cache
set has been accessed by the victim between the ”Prime”
and ”Probe” stages. By inferring the state of the cache for
the victim’s encryption program between the ”Prime” and
”Probe” stages, the attacker can obtain the cache accesses
(and thus the memory accesses) made by the victim’s pro-
gram during that interval. The attacker can analyze such
side-channel information to recover confidential data. The
Probe stage is the Prime stage for the next interval.

3. DISCUSSIONS ON SVF
Demme’s SVF [9] provides a nice starting point for finding

a metric to measure the leakiness of a system; at the same
time, it also has some limitations, which we discuss below.
This is important, as computer architects may otherwise be
misled into making incorrect design decisions.

3.1 Scope
The aim of SVF is to use a single metric to reveal the

information leakage of the entire system for all side-channel
attacks. This is highly desirable, but may also be too hard
to realize. Security experts would typically agree that there
does not exist a universal way to measure vulnerability, con-
sidering there are so many side-channels and different types
of attacks, known or unknown. According to Demme’s SVF
definition, the SVF is the correlation between the similar-
ity matrices of two traces; let’s call them X and A. Thus
this SVF can ONLY evaluate the information leakage of X
through A, instead of the entire system. Just as Demme
et al. admitted that SVF cannot evaluate unknown side-
channels, the scope of SVF in [9] may be a bit overstated.

Let’s take the case of cache-based side-channels as an ex-
ample. In [9] they measure the number of accesses to each
cache set as the victim’s trace, and the load time of each set
in the probe stage as the attacker’s trace. Wang and Lee [17]
identify the root cause of cache side-channel attacks as inter-
ference (external or internal). So we think calculating this
SVF is only applicable to cache side-channel attacks caused
by external interference, more specifically, access-based at-
tacks using the ”Prime and Probe” attack. Attacks due to
internal interference, like timing-based attacks, cannot be
evaluated by this SVF since there is only aggregated time
that can be measured, but no trace of an attacker’s obser-
vation (in a time series). So SVF can not be what we term
a universal metric, i.e., a single metric for all side channel
vulnerabilities in a system, as claimed in [9]. We suggest
reducing the scope to a class of cache side-channel attacks.

3.2 Definition
Similarity Matrix: In [9], the Euclidean distance is used

to form the similarity matrix. Similarity matrix is a great
tool to compare the similarity between different points in one
trace, but it may not be appropriate to calculate the correla-
tion of two similarity matrices to compare their traces. The
side-channel attacker who performs access-based attacks on

the cache tries to infer the victim’s execution trace from
his observation trace. Calculating the similarity matrix of
the observation trace can only help the attacker decide the
phase classification of his own observation, not any informa-
tion about the victim’s execution traces. We suggest the
following improvements to the SVF metric: calculate the
correlation coefficient directly between the attacker’s obser-
vation traces and the victim’s execution traces without the
similarity matrix. Calculating the correlation of their sim-
ilarity matrices is unnecessary and may give wrong results
since the Euclidean distance removes information of individ-
ual elements in the trace.

Traces: Consider the values of traces collected for an SVF
calculation. At the attacker’s side, the trace is the cache ac-
cess time; at the victim’s side, the trace is the number of
accesses. However, we think the two traces are not corre-
lated. The attacker can only know if one cache set is accessed
by the victim, but he does not know the number of accesses.
It is possible that one cache block is accessed by the victim
many times during one interval, but only one cache miss is
observed by the attacker since only one attacker’s block is
evicted by the victim. We suggest the following improve-
ments to the SVF metric: use binary values to represent the
two traces. For the attacker’s traces, ”1” means for each
cache set, there is at least one cache miss and ”0” means all
lines are cache hits; for the victim’s traces, ”1” means there
is at least one cache access and ”0” means no cache access
at all, for each set. This will make the correlation between
the attacker’s and the victim’s traces less noisy.

3.3 Measurements
System’s vulnerability vs Attacker’s capability:

Since side-channel attacks are determined by the system’s
vulnerability as well as the attacker’s abilities, defining a
metric of vulnerability to side-channel attacks should con-
sider both of them. At the system’s side, since not all the
information revealed by a system is critical, only the critical
information should be considered to study the information
leakage of the system. Observing non-confidential informa-
tion of the system is not called ”side-channel information
leakage”. SVF can not distinguish the differences between
public and secret information of the system, which may lead
to some misleading conclusions.

At the attacker’s side, since a good metric will reveal the
system’s vulnerability to side-channel attacks, it should be
decoupled from the attacker’s capability to retrieve infor-
mation. The best way to realize this is to maximize the
attacker’s capability. If the attacker’s capability is too low,
even if the system is very vulnerable to side-channel attacks,
the attacker can not get much information. So calculating
such a metric may lead to wrong conclusions.

Let’s look at the cache case study in [9]. For access-based
attacks, the attacker’s capabilities depend on two aspects:
the way it performs the ”Prime and Probe” attacks and the
interval it chooses.

There are two main ways to perform access-based attacks:
synchronous and asynchronous attacks [14]. In synchronous
attacks, the attacker has some interaction with the victim
program. He is allowed (e.g., scheduled) to execute the
”Prime” and ”Probe” synchronously before and after the vic-
tim’s program. In asynchronous attacks, the attacker does
not have explicit interactions with the victim’s program. He
only needs to run the ”Prime and Probe” process in the

same processor as the victim’s encryption process. Clearly
synchronous attacks require more attacker capability.

Another important issue is the selection of intervals. In a
”Prime and Probe” attack, the interval granularity reflects
the attacker’s capabilities to retrieve information from the
system. The smaller the granularity, the higher the at-
tacker’s capability, and the more information he can retrieve.
A rather large interval, during which almost every cache set
is accessed by the victim, will prevent the attacker from re-
trieving useful information and make the ”Prime and Probe”
attack ineffective. The ideal granularity for the attacker in
a ”Prime and Probe” attack is to capture every access of
the victim to memory. However, there is a limitation on the
interval granularity for asynchronous attacks. It is limited
by how fast an attacker can do the scan of the entire cache.
For synchronous attacks, the interval can be made small
enough to observe the victim’s accesses accurately, depend-
ing only upon the granularity that the attacker’s process can
be scheduled alternately with the victim’s process.

Demme et al. do not define the capability of an attacker,
or give reasonable explanations for choosing the size of inter-
vals and the method for performing the ”Prime and Probe”
attack. These may result in mixing up the attacker’s capabil-
ity and the system’s vulnerability in an unpredictable way.
We propose synchronous attacks and small time intervals,
which maximize the attacker’s capabilities.

3.4 Results
To better illustrate the SVF metric and its potentially

misleading and inconsistent results, we select some configu-
rations representative of real machines in table 1. All cache
parameters are kept the same, except one of the 3 rows at
the bottom of the table, which correspond to parameters we
study. The SVF values from [9] are shown in figure 1, and
discussed below.

Partitioning Policy: Demme discusses two kinds of
partitioning policies. One is static partitioning, where two
simultaneous processes occupy equal separate parts of the
cache set-associativity ways in each set. So the victim and
attacker actually do not share any cache lines. When the at-
tacker probes the cache blocks that it has previously filled, it
is always a cache hit. So the variance of the attacker’s traces
should be close to zero, making the Pearson correlation co-
efficient close to zero. The SVF for this static partitioning
policy should ideally be 0, to represent ”ground truth”.

Another solution is dynamic partitioning. This divides the
cache equally at the beginning, and each process gets half of
the cache ways in each set. Every 106 cycles, the cache sets
will be reallocated to the attacker and the victim, 75% of
the ways of each set will be given to the program which uses
the cache more frequently during the last 106 cycles, and the
remaining 25% of the ways of each set will be given to the
other program. Compared to static partitioning, dynamic
partitioning may increase the performance, but it may leak
some information during the cache way reallocation since it
allows some amount of sharing. Considering the reallocation
period is much larger than the ”Prime and Probe” interval,
most of the time the attacker program is isolated from the
victim program and the information he will gather during
way reallocation is rather small. Based on this analysis, it is
easy to see that the SVFs of these methods should have the
following relationship if the relative SVFs are representative

of ”ground truth”:

SV Fnone ≥ SV Fdynamic ≥ SV Fstatic (4)

We study the SVF results with different cache partition-
ing policies. Here we fix all the cache parameters in table
1 (with no eviction and low-bit indexing is used). We vary
only the partitioning policy: no partitioning, dynamic parti-
tioning, and static partitioning. The results in [9] are shown
in figure 1(a). From these results, it is very hard to see that
static and dynamic cache partitioning have advantages in
preventing information leakage, like equation 4 shows. In
particular, for configuration A (32 Kbyte cache, 8-way set-
associative (SA), 64 byte lines), static partitioning has a
much higher SVF than no partitioning - which contradicts
”ground truth”. Also, the trends for the 4 configurations
are not consistent (they should all 4 be decreasing in SVF
values, from left to right). For a given cache size and asso-
ciativity, the SVF results indicate that longer line size (64
bytes) is less vulnerable than shorter line size (8 bytes) for
8-way SA caches (except for static mapping), but the op-
posite is shown for 4-way SA caches. These contradictory
results are not very useful to cache designers.

Eviction Policy: Here, random evictions are studied.
A random cache line is evicted periodically and fosters the il-
lusion that this cache line is accessed by the victim. It brings
difficulties to the attacker for key-recovery as the attacker
cannot differentiate the victim program’s real memory ac-
cesses or the system’s random evictions. From SVF’s point
of view, the introduction of random evictions should make
the attacker’s observed traces less correlated to the victim’s
traces, thus reducing the value of SVF. It is obvious that the
more frequent a random cache line is evicted, the more noise
is added into the attacker’s traces, thus the lower the SVF
should be. In [9], two eviction randomizations are studied:
100% Eviction evicts a cache line every cycle and 50% Evic-
tion evicts a cache line every cycle with 50% probability.
At such a high frequency, a large amount of ”fake” lines are
evicted between the attacker’s two consecutive accesses to
the cache. So the SVF should be much smaller than a con-
ventional cache with no random evictions. The relationship
expected is that the SVF with no evictions is greater than
that with random evictions, although we cannot be sure of
the relationship between 50% and 100% evictions. So we
have:

SV Fnone ≥ {SV F50%, SV F100%} (5)

We show the results in figure 1(b) for these three differ-
ent eviction policies. We use the cache parameters in table
1(with no partitioning and low-bit indexing). For configura-
tion D, 50% eviction has higher SVF than no eviction, and
100% eviction has the highest SVF, which is inconsistent
with equation 5. In addition, we see inconsistent effects of
cache line size on SVF for 4-way and 8-way SA caches, as in
figure 1(a) for partitioning.

Indexing Policy: Conventional caches use the low bits
of an address to index the cache set. Another policy is cal-
culating the bitwise XOR of two parts of the memory bits
to index the cache. Theoretically, these two methods should
carry the same amount of information. Since the memory-
to-cache mappings are fixed and known to the public, the
attacker can easily deduce the original memory address from
the cache set index observed. The indexing policy can be
effective in reducing information leakage when the mappings

between memory addresses and cache sets are randomized
[17, 18]. Here we detail two random-mapping cache archi-
tectures:

RP (Random Permutation) Cache [17] uses randomiza-
tion on cache misses to defend against cache side-channel
attacks. Each process may have a Permutation Table (PT),
which dynamically maps the memory address to a cache set.
When a process’s cache miss occurs and a victim cache line
belonging to another process is chosen for replacement, in-
stead of evicting and replacing this victim line, thus reveal-
ing information to outsiders, a new cache line in a new set
is selected randomly, evicted and replaced by the incoming
cache line. At the same time, this process’s Permutation Ta-
ble is updated by swapping the two corresponding sets, and
the lines in these two sets belonging to this process need to
be invalidated. The randomization and dynamic swapping
mechanism can effectively reduce the external interference
between different processes. Actually, RP Cache is not just
an indexing method, but it also combines aspects of ran-
dom eviction for protection against internal interference as
well as the external interference just described. However, its
random eviction is not like the 50% or 100% random evic-
tions described above and in [9], which can cause large and
unnecessary performance degradations.

PRS (Permutation Register Sets) Cache [9] uses the same
idea of Permutation Tables as RP cache (calling them PRS
instead), but it has a very different replacement algorithm.
Instead of swapping the permutation table entries on cache
misses, it swaps two randomly selected lines periodically.
For instance, the PRS Cache selects two lines in the victim
process’s PRS every 100 loads and swaps them. Then after
a certain time, all the lines are swapped many times and the
permuted indices in the PRS become rather random. Since
the attacker does not know the memory-to-cache mappings
given by the victim’s PRS, no information is leaked on mem-
ory to cache mappings.

Based on the analysis above, it is clear that caches with
LOW bit indexing and with XOR indexing should have the
same vulnerability to side-channel leakage, and higher than
RP cache and PRS Cache. So we have:

SV Flow ≈ SV Fxor ≥ {SV Fprs, SV Frp} (6)

We now study the results for these different cache indexing
policies. Figure 1(c) shows the SVF results from [9] for the
first three indexing mappings. (Actually in [9] Demme et al.
only gave the data of PRS, which they liken to RP cache.
Post [9] publication, they generated the SVF data for RP
cache.) In configurations A and C (8-way versus 4-way SA
caches, both with 64 byte lines), PRS cache has unusually
high SVFs, much higher than no indexing or any of the other
indexing schemes. This has led some people to conclude that
using security features like re-mapping registers (introduced
by RP cache) produces caches that are in fact less secure
than conventional caches. This is misleading and incorrect.
The reason for the high SVF for PRS cache given in [9]
is that it might create some unknown timing and pipeline
channels – which is unsubstantiated and also contradictory
to their earlier claim that SVF cannot measure unknown
side-channels (as we discussed in section 3.1). Rather, these
inconsistent SVF results may be more likely due to noise
in both the SVF definition and in its measurements. The
inconsistency in the results is further seen in configurations
B and D (8-way and 4-way SA caches, both with 8 byte

lines), where now the SVF values are about the same for all
the caches.

Based on the above results, this SVF metric does not sat-
isfy the requirements of our definition of a good metric for
being Realistic, Consistent and Instructive.

4. CSV: IMPROVEMENTS TO SVF
In this section, we suggest some improvements to Demme’s

SVF. We call the new metric the Cache Side-channel Vul-
nerability (CSV) metric. We use the gem5 simulator [1] to
simulate the different cache configurations and we calculate
CSV values. Our results show that CSV is more reasonable
than SVF [9] in that it reflects cache side-channel leakage
more accurately. Some key insights are to limit the scope
appropriately, so that the metric can actually reveal which
cache design parameters are more likely to leak than alterna-
tive ones, hence making the improved CSV more instructive
for making system design choices for security. We also reveal
system vulnerabilities more accurately by not mixing it up
with the attacker’s capabilities; we do this by assuming the
most powerful attacker in all cases.

4.1 SVF Improvements
Scope: We define the scope of CSV to reveal the sys-

tem vulnerability to cache side-channel information leakage
only, and by access-based attacks only. Other kinds of side-
channel attacks, e.g. pipeline side-channel attacks, or cache-
based timing-based attacks, are not properly reflected. We
believe this may also be the true reduced scope of the SVF
defined in [9].

Definition: We define the CSV as follows: Let v1, . . . , vn
be the victim’s execution trace and a1, . . . , an be the at-
tacker’s observation trace. If the number of cache sets is k,
then

~vi = [vi(1), . . . , vi(k)]; ~ai = [ai(1), . . . , ai(k)] (7)

where vi(j) is 1 if the victim accesses set j at time interval
i, or 0 if it does not; and ai(j) is 1 if the attacker’s access
time of set j shows a cache miss, or 0 if it is a cache hit.
Comparing with the SVF definition in [9], we use binary
values in both the victim’s and attacker’s traces instead of
the number of misses and the load time, respectively, for
each cache set.

We also abandon the use of Euclidean distance and the
Similarity Matrix, and simply put these vectors together to
form new matrices for the victim and attacker. So

Mv(i, j) = vi(j); Ma(i, j) = ai(j) (8)

The CSV is the Pearson correlation coefficient of these
two matrices as in equation 3.

Measurements: The vulnerability to side channel leak-
age includes both the system’s intrinsic information leakage
as well as the attacker’s capabilities to observe information.
To evaluate a system’s vulnerabilities, we should filter out
the attacker’s capabilities. One option is to always maxi-
mize the attacker’s capabilities. In [9], Demme et al. adopt
the asynchronous attacker model and 10,000 victim instruc-
tions as the interval granularity, but they do not give a clear
rationale for this choice. In our improved metric, to increase
the attacker’s capabilities, we run synchronous ”Prime and
Probe” attacks with a much smaller interval granularity, in
which the attacker’s and victim’s programs will run in turn.
The attacker will first initialize the cache, filling up all the

lines during the ”Prime” stage. After the victim’s program
executes for a very small interval, the attacker will probe the
cache, and at the same time prime the cache for the next
interval.

For the size of the interval, although we prefer smaller
granularities, a small interval may not reveal some cache se-
curity protections, e.g., when the memory system uses non-
blocking cache technology. Even though there is a cache
miss for the victim, the accessed line will be stored in the
MSHR (Miss Status Handling Register) in the gem5 sim-
ulator, for example, and the following instruction will be
executed before the missed cache line is fetched from mem-
ory to cache. This not only reduces the cache miss penalty,
but also adds some noise in the cache access trace, since the
victim’s access may not give the attacker immediate noti-
fication. So if the interval is too small, the non-blocking
cache effect will overshadow the other security countermea-
sures we care about, making it very hard to compare the
effectiveness of these protections. In our experiments, we
choose 100 cycles as the interval, which is fine for both the
attacker retrieving information and for revealing the effects
of security protections.

4.2 Implementation and Configurations
We use gem5, a research simulator developed and im-

proved over many years to implement caches and measure
our improved metric, rather than the less mature, home-
grown simulator used in [9]. Gem5 is a modular platform
encompassing system-level architecture as well as processor
microarchitecture. We emulate the ARM ISA, system call
emulation mode, with an out-of-order CPU, and 2GHz clock
frequency. The cache parameters (same as in [9]) that we se-
lect are listed in table 1. We implement a three-level cache.
The sizes of L1, L2 and L3 are 32KB, 256KB and 8MB. The
associativity of L1, L2 and L3 are the same: either 8 way or
4 way. The cache line size in all the caches is also identical:
either 64B or 8B. We run an AES program encrypting 100
blocks of random text as the victim’s program.

Parameter Value
Cache Size L1=32K, L2=256KB, L3=8MB
Line Size 64B or 8B
Associativity 8-way or 4-way
Single or Multi core Single
Cache Sharing L1, L2 and L3
Prefetch None
Attacker Style In Order

Partitioning No, Dynamic, Static
Eviction No, 50%eviction, 100%eviction
Indexing LOW, XOR, PRS, RP

Table 1: Cache configurations for figures 1-3. The param-
eters above the double line are fixed for all configurations
while we vary one of the three policies below the double
lines (the other two default to the first value listed).

4.3 Results
Improvement on Measurements: First, we improve

SVF only on the measurements by adopting synchronous
”Prime and Probe”techniques, and using the well-established
gem5 simulator. The results are shown in figure 2. From fig-
ure 2(a) we can see that the currently measured SVF shows
an SVF of zero for static partitioning, with a higher SVF for
dynamic partitioning and the highest SVF for no partition-
ing. This agrees with reality as expected in equation 4. Also,

these results are more consistent for all 4 configurations, un-
like the original SVF values in 1(a). However, for eviction
policies and indexing policies, the SVF results are almost the
same for the different configurations. So they cannot prop-
erly show the system’s vulnerability to side-channel leakage,
and hence are not instructive to system designers.

Our improved CSV: We calculate our improved CSV
as described in section 4.1. For measurements, we make an
improvement by using synchronous ”Prime and Probe” tech-
niques; for definition, we make improvements by removing
the similarity matrix and using binary traces. Our results
are shown in figure 3 and analyzed below:

Partitioning Policy: We compare the same three kinds
of partitioning policies as in [9]: no partitioning, static parti-
tioning and dynamic partitioning. Our results in figure 3(a)
show clearly that no-partition caches have the highest CSV
values from 0.55 to 0.9. For the static partitioned caches,
the CSV values are zero for all configurations; since the at-
tacker cannot probe the victim’s cache ways, it is always a
cache hit for every line when the attacker probes the cache,
thus retrieving no information. For dynamic partitioning,
information may leak when reallocating cache lines. The
value is greater than static partitioning, but definitely less
than no partitioning. This agrees with equation 4. If we
compare configurations A and B (or C and D), which have
the same associativity but different cache line sizes, we can
see that smaller line size is more vulnerable than larger line
size. If we compare configurations A and C (or B and D),
which have the same line size but different associativity, we
see that associativity differences (between 4-way and 8-way)
do not have much effect on the system’s vulnerability.

Eviction Policy: The second comparison is between
no eviction, 50% random eviction and 100% random evic-
tion. Theoretically, random evictions can add noise for the
attacker’s ”Probe” stage, and thus have a lower SVF. Our
result in figure 3(b) shows the CSV for no eviction is higher
than with random eviction, and 100% eviction has slightly
smaller CSV than 50% eviction as expected. This trend is
consistent for all configurations, and agrees with equation
5. If we want to see the effects of line size and cache asso-
ciativity to the system’s vulnerability, we can get the same
conclusions as the partitioning policy: smaller line size gives
higher CSV vulnerability, but set-associativity of 4 or 8 has
negligible impact.

Indexing Policy: We consider the same four indexing
policies: using the low bits to index the cache (as in con-
ventional caches today), bitwise XOR, the PRS cache and
the RP cache. Our results in figure 3(c) show that the CSV
of low bits and bitwise XOR are almost the same, for cache
configurations with the same line size. Both RP cache and
PRS cache have much lower CSV values than LOW and
XOR indexed caches. So RP cache and PRS cache are ef-
fective designs to defend against the ”Prime and Probe” and
cache access-based side-channel attacks. From the figure,
we can see RP cache is even less vulnerable to side-channel
leakage than the PRS cache. If we swap two random lines
more frequently, the CSV of PRS cache could be smaller.
Consistent with figures 3(a) and (b), we see that larger line
size is less leaky than smaller line size, and 4 or 8-way as-
sociativity has little impact on the CSV metric. Unlike the
SVF results, these observations about line size and associa-
tivity are consistent in all three policies studied (for parti-
tioning, eviction and indexing). A larger line size obscures

(a) SVF of Partitioning (b)SVF of Eviction (c) SVF of Indexing

Figure 1: Inconsistent results of SVFs from [9] for different configurations.

(a) SVF of Partitioning (b)SVF of Eviction (c) SVF of Indexing

Figure 2: Results of SVFs for different configurations on gem5 using synchronous ”Prime and Probe” techniques.

(a) Improved SVF of Partitioning (b)Improved SVF of Eviction (c) Improved SVF of Indexing

Figure 3: Consistent results of improved CSV for different configurations.

the particular AES table entry accessed by the victim, since
it contains more table entries.

4.4 Comparing SVF and CSV
We believe our CSV metric satisfies most of the good met-

ric properties we defined in section 2.2 and improves upon
the SVF metric in [9]. Both SVF and CSV are determinis-
tic and unbiased metrics, since both give the same value for
the same inputs and are not designed to show preference for
one system over another. However, SVF may not be rep-
resentative of reality and does not show consistent trends
across different systems (as shown in figure 1 and section 3),
while our CSV metric is both representative of reality and
consistent (as shown in figure 3 and section 4). The incon-
sistent results from the SVF metric make it less instructive
to computer architects, whereas our CSV metric can give
useful and consistent comparisons on which cache parame-
ter values may decrease vulnerability to cache side channels.
Both our CSV metric and the SVF are not universal met-
rics(despite SVF’s claim to be one), but a universal metric
may not be all that desirable since it may not be instructive:
it cannot tell the computer architect which parameters of a
subsystem’s design improves or degrades that subsystem’s
vulnerability to the side-channel attacks that target it.

5. CONCLUSIONS
In this paper, we describe side channels in general, and

cache side channels in particular. We discuss what a good
side channel vulnerability metric should be. Then we eval-
uate the side-channel vulnerability metric, SVF, proposed
in [9]. We point out some limitations of this SVF metric:
its scope, definition and measurements. We discuss their
experimental data. We overcome most of these limitations
of the SVF metric, and give an improved CSV metric. We
remove the ambiguity of the system’s vulnerability and the
attacker’s capability by assuming the most powerful attack-
ers. We reduce noise in the definition of the SVF metric,
by removing the similarity matrix, directly correlating the
victim and attacker traces, and representing these traces as
binary values: the victim either accesses a set or not, rather
than the number of accesses for each set, and the attacker
either observes a cache hit or a cache miss for a set, rather
than the time taken for accessing each set. We show that the
results of our CSV metric is consistent with ground truth (re-
alistic), shows consistent trends across cache configurations,
and thus is also more instructive to cache designers.

6. ACKNOWLEDGMENTS
We thank S. Sethumadhavan and J. Demme for giving us

access to their data in [9] for figure 1, and collecting further
data on RP cache. This work was supported in part by
DHS/AFRL FA8750-12-2-0295 and NSF CNS-1218817 and
CCF-0917134

7. REFERENCES
[1] The gem5 Simulator System. http://www.gem5.org.

[2] O. Aciiçmez. Yet another microarchitectural attack:
Exploiting i-cache. In Proceedings of the ACM
Workshop on Computer Security Architecture, pages
11–18, 2007.

[3] O. Aciiçmez, c. K. Koç, and J.-P. Seifert. On the
power of simple branch prediction analysis. In

Proceedings of the ACM Symposium on Information,
Computer and Communications Security, pages
312–320, 2007.

[4] O. Aciicmez and C. K. Koc. Trace-driven cache
attacks on aes (short paper). In Proceedings of the
International Conference on Information and
Communications Security, pages 112–121, 2006.

[5] O. Aciicmez and J.-P. Seifert. Cheap hardware
parallelism implies cheap security. In Proceedings of
the Workshop on Fault Diagnosis and Tolerance in
Cryptography, pages 80–91, 2007.

[6] D. J. Bernstein. Cache-timing attacks on aes.
Technical report, 2005.

[7] E. Biham and A. Shamir. Differential fault analysis of
secret key cryptosystems. In Proceedings of the
International Cryptology Conference on Advances in
Cryptology, pages 513–525, 1997.

[8] J. Bonneau and I. Mironov. Cache-collision timing
attacks against aes. cryptographic hardware and
embedded systems. In Lecture Notes in Computer
Science series 4249, pages 201–215, 2006.

[9] J. Demme, R. Martin, A. Waksman, and
S. Sethumadhavan. Side-channel vulnerability factor:
a metric for measuring information leakage. In
International Symposium on Computer Architecture,
pages 106 –117, June 2012.

[10] P. Kocher, R. Lee, G. McGraw, and A. Raghunathan.
Security as a new dimension in embedded system
design. In Proceedings of the Design Automation
Conference, pages 753–760, 2004.

[11] P. C. Kocher. Timing attacks on implementations of
diffie-hellman, rsa, dss, and other systems. In
Proceedings of the International Cryptology Conference
on Advances in Cryptology, pages 104–113, 1996.

[12] P. C. Kocher, J. Jaffe, and B. Jun. Differential power
analysis. In Proceedings of the International
Cryptology Conference on Advances in Cryptology,
pages 388–397, 1999.

[13] B. Köpf and D. Basin. An information-theoretic model
for adaptive side-channel attacks. In Proceedings of the
ACM conference on Computer and Communications
Security, pages 286–296, 2007.

[14] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks
and countermeasures: the case of aes. In Proceedings
of the Cryptographers’ Track at the RSA Conference
on Topics in Cryptology, pages 1–20, 2006.

[15] C. Percival. Cache missing for fun and profit. In Proc.
of BSDCan 2005, 2005.

[16] Z. Wang and R. B. Lee. Covert and side channels due
to processor architecture. In Proceedings of the Annual
Computer Security Applications Conference, pages
473–482, 2006.

[17] Z. Wang and R. B. Lee. New cache designs for
thwarting software cache-based side channel attacks.
In Proceedings of the International Symposium on
Computer Architecture, pages 494–505, 2007.

[18] Z. Wang and R. B. Lee. A novel cache architecture
with enhanced performance and security. In
Proceedings of the IEEE/ACM International
Symposium on Microarchitecture, pages 83–93, 2008.

