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Abstract

Hardware-software security architectures can significantly improve
the security provided to computer users. However, we are lacking a
security verification methodology that can provide design-time ver-
ification of the security properties provided by such architectures.
While verification of an entire hardware-software security architec-
ture is very difficult today, this paper proposes a methodology for
verifying essential aspects of the architecture. We use attestation
protocols proposed by different hardware security architectures as
examples of such essential aspects. Attestation is an important and
interesting new requirement for having trust in a remote computer,
e.g., in a cloud computing scenario. We use a finite-state model
checker to model the system and the attackers, and check the security
of the protocols against attacks. We provide new actionable heuristics
for designing invariants that are validated by the model checker and
thus used to detect potential attacks. The verification ensures that the
invariants hold and the protocol is secure. Otherwise, the protocol
design is updated on a failure and the verification is re-run.

1. Introduction

Although several papers have studied the design of hardware-

enhanced security architectures, security verification of these archi-

tectures remains an unsolved problem. While functional verification

of architectural designs exists, security verification has distinctly

different needs. A systematic hardware-software security verifica-

tion methodology is needed. We illustrate our security verification

methodology with hardware-enhanced attestation protocols. Attesta-

tion is an essential aspect of establishing trust between a user and a

remote computer, especially important in the era of cloud computing.

We describe attestation protocols for three classes of secure

software-hardware architectures in Figure 1, based on three very

different threat models. In the first class, both the hypervisor and

the guest OS are trusted. In the second class, only the hypervisor

is trusted, while in the third class, only the OS is trusted. In the

first class, we use the remote attestation protocol defined for the

Trusted Platform Module (TPM) [1]. In the second and third classes

of architectures, we do not need a separate TPM chip but instead

use processor-based attestation. New ideas such as a layer-skipping
trust chain are used to enable more focused remote attestation reports

for guiding decisions on whether specific tasks can run securely on

remote systems, thus increasing the resilience of distributed systems.

We show how to model and verify the attestation protocol used with

an external TPM chip as a baseline. We then present streamlined

protocols for the two new and interesting classes of untrusted OS and

untrusted hypervisor architecture. We do not model the fourth class

of architectures where both the hypervisor and the OS are untrusted,

since no architecture has been proposed with that aggressive threat

model yet.

In this paper we show how to model different components in

a system and how to model attacks and protocols. We present a

novel invariant selection heuristic. Then we use a finite-state model

checking tool, Murphi [8, 21], to check the models of the protocols

up to the invariants. The use of a model-checker can also help us

improve the design of protocols as it reveals defects of the protocols

and we can iteratively update them until all invariants pass. Writing

verification models in a model-checker also allows us to compare the

number of states explored and the number of rules fired for different

protocols, as a rough gauge of the flexibility or complexity of the

different attestation protocols.

Our methodology can be applied generally to verify protocols for

distributed hardware-software systems. In this paper, we focus on

designing and verifying attestation protocols. In particular, the startup

attestation protocols are used to verify that correct virtual machines

(VMs), or a set of trusted software modules, have securely started

on a remote system. The startup attestation is crucial, as any later

runtime attestations cannot be trusted if the initial state of the system

was not verified to have been correct. Once the user has received

the remote attestation, he can decide whether it is safe to execute his

tasks remotely on the secure hardware.

The rest of the paper is organized as follows. Section 2 provides

background on attestation under different threat models. Section 3

presents our verification methodology. Sections 4, 5 and 6 present

the details of the attestation protocols for the three different classes

of architectures. Section 7 discusses the evaluation of the verification,

while section 8 lists related work. We conclude in Section 9.

2. Attestation

Attestation is an essential and interesting new requirement for hav-

ing trust in a remote computer, e.g., in a cloud computing scenario.

Attestation is often rooted in having a trusted hardware component

which can be used to build trust in the rest of the system. In addition

to co-processor based attestations such as using a TPM [25], there

are processor-based attestations of Bastion [5, 4] and HyperWall [29],

for example. These architectures can measure (usually through a

cryptographic hash) trusted software modules needed for the safe

execution of security-critical tasks, e.g. [5], or the whole protected

VMs and their protections, e.g. [29]. The measurements are signed

with a private key of the hardware, thus they are tied to the platform

on which they were generated and they cannot be spoofed. Cor-

rect implementation of the architecture in turn guarantees that the

measurements are made correctly.

2.1. Attestation under Different Threat Models

We use, as an example, attestation protocols designed for use by

different hardware security architectures with different threat models.

In Figure 1, we show a classification of different architectures based

on two key characteristics. First, whether the guest OS inside the VM

is trusted or not. Second, whether the hypervisor is trusted or not.

These are important design points for a number of hardware security

architectures, and picking one architecture from each design point

provides us with a case study for verification under that threat model.

Systems using TPM-based attestation require having a full trust

chain from BIOS and boot loader up to the attested software (as
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Figure 1: Different threat models: trusted or untrusted Hypervisor
(tHV or uHV) and trusted or untrusted guest OS (tOS or
uOS).

shown by the arrow chain in Figure 1). While TPM attestation

can tell the customer whether any of these components has been

compromised, a correct full chain is needed to attest any tasks running

inside the VM. On the other hand, Bastion and HyperWall present a

layer-skipping approach to attestation where parts of the chain are

removed (since the removed components are not in the trust chain for

confidentiality and integrity).

2.2. Protocols for Attestation Delivery

We present protocols for the delivery of the attestation measurements

for each class of architectures. The differences in the protocols

highlight the different threat models of the architectures and the

trusted and untrusted components that we need to worry about. The

TPM’s protocol is based on past work, presented here as a baseline

case due to TPM’s wide use and study. The attestation protocols for

Bastion and HyperWall are new protocols that we have improved

from their authors’ initial proposals. All three protocols deliver

attestation measurements to a remote customer.

Upon receiving the attestation report, the user can check if the

measurements (e.g., cryptographic hashes) of the VM or software

modules correspond to the correct software and thus whether it is

safe to execute his or her task remotely. Since the users are in

possession of the programs and data they want to execute remotely,

they can measure them locally to obtain a set of good measurements

to compare against. The good measurements can also be available

from a trusted source, as in the Integrity Measurement Architecture

(IMA) [24], or the vendor of the software that the user is using. The

checking of the measurement values is not part of the actual protocol,

which only focuses on the secure delivery of the measured values.

3. Verification Methodology
We verify the protocols using a finite-state model checker. Automated

finite-state verification is a robust field with many tools available (see

related works in Section 8 for a sample list). However, not much work

on the design and verification of protocols for hardware-software

security architectures has been done. We aim to fill in this gap and

present our methodology for protocol design and verification for such

hardware-software security architectures.

3.1. Protocol Design

The design of protocols for startup attestation needs to answer four

questions about the attested values.

When were the attestation measurements taken? This depends on

the type of attestation. Our work focuses on attestation of the correct

initialization of the VMs or software modules; hence the protocols

require the attestation measurements to be taken at the initializa-

tion time of the VMs or the applications. For TPM, the attestation

measurements are taken at bootup and hypervisor initialization.

Who took the attestation measurements? Only trusted components

in the trusted computing base (TCB) should be allowed to take and

share the measurements. For the architectures which assume the hy-

pervisor or OS is trusted, these entities can take part in measurements

generation; otherwise only the hardware components in the TCB can

take part in generating the measurements.

Were the attestation measurements kept securely since generation?

The protection of measurements rests with the architecture. This

requires secure storage, for example, that ensures the protection of

the measurements from the time they are taken until the time they are

retrieved for attestation.

Are these measurements authentic and fresh? Authenticity of the

measurements rests in the digital signature which binds the measure-

ments to the underlying trusted hardware components of the system

and such a signature must be included in the protocol. Use of a nonce

provides freshness, so stale measurements cannot be replayed by an

attacker at a later time.

3.2. System Modeling for Verification

To verify the designed protocols, we need to translate these protocols

and their underlying architectures into representative yet tractable

models. We take the steps below to build a model of the architecture,

the attackers and the protocol, as a state machine. We then execute the

state machine for model checking, to verify the protocol. A sample

graphical specification of such a protocol is shown in Figure 2.

Subjects: The protocol modeling requires specifying subjects (ver-

tical lines in Figure 2). Subjects are hardware, software or network

components in the distributed system. A solid vertical line represents

a trusted subject while a dashed vertical line represents an untrusted

subject, which can be an attacker. Each subject has a set of states

based on the protocol and each state has inputs and outputs. The

transitions between different states are also defined by the protocol.

For startup attestation protocols, the main subject is the customer,

CUST , who asks for attestation of the remote system and receives

attestation reports. Once the customer verifies the report and authen-

ticates the system, it will reach the commit state. There is a network

subject, NET , to represent the network through which the customer

communicates with the remote system. And there are multiple sub-

jects within the Remote System (e.g. hypervisor, OS, processor, etc.)

depending on the individual architecture.

Attacks: Our proposed modeling does not attempt to enumerate

various possible attacks and individual attackers. Rather, any values

being relayed by an untrusted entity are modeled as outputs which

can be in a "good” (correct value), "bad” (malicious value) or "old”

(replayed value) state so the tool can model any modification or

replay of values. Furthermore, any values derived by any subject

from inputs that are in the "bad” or "old" state are said to be tainted
and the taint is propagated to the final commit state where no tainted

values should be accepted.

Figure 2: Graphical specification of a protocol model.
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Invariants: Invariants are conditions which need to hold true in

the commit state of our model. The invariants concisely capture

the threats we are worried about and ensure that an attack has not

happened. The verification is complete and the protocol deemed

secure if no invariant is violated. Our heuristic for invariant selection

is presented below.

Execution: Based on the above specification, a state machine is

built that the model-checker can explore and verify. It starts in the

initial state of the customer, CUST , and searches for all possible

states. At each state, it takes actions corresponding to the rules. It

will exhaustively explore all possible rules and states, to find all the

possible paths from the initial state to the commit state. Then in these

paths, the model-checker will judge if the invariants are satisfied. The

protocol is verified to be secure if all invariants are satisfied in all

paths from protocol initiation to the customer commit state. If any

invariant fails, we fix the protocol and repeat the model-checking.

3.3. New Invariants Selection Heuristics

Invariant selection is a difficult problem. We take a step towards

a systematic definition of invariants by specifying heuristics which

have worked well for our own verification efforts. The focus of our

heuristics is on invariants that need to hold true when the customer,

CUST , accepts the attestation report and reaches the final commit

state. The invariants are generated and evaluated in order, following

the three rules:

1. Check for expected values – All received values should make

sense given some value that was previously sent and remembered

by the customer. For example, if a nonce was sent and later a hash

over some values including the nonce is received then the hash

needs to contain that nonce, otherwise the customer should not

accept the message.

2. Check for self-consistency – All received values should be mu-

tually consistent. For example, if message M is received with a

hash of the message hM then the customer should not accept the

message unless the M and hM match.

3. Check for tainted values – If a trusted subject receives a “bad” or

“old” value as input from an untrusted subject, its output is tainted

and the taint is propagated to the commit state. Any values derived

from the tainted value later on are also tainted. At the commit

state, inputs can be checked if they are tainted, tainted values

should never be accepted in that state. For example, some values

which are generated remotely have no known “good” values that

the customer can check against (e.g. a remote VM generates a

fresh key), i.e. there is no expected value to check against. Also,

the self-consistency check may not catch this if a keyed hash is not

used (most likely by design mistake). Hence tainting is needed.

3.4. Verification Workflow

Our general approach to building and checking a model of the system,

the attackers and the protocol is:

1. Define the subjects which can see or affect the protocol and the

information it passes; identify trusted and untrusted subjects;

2. Add states to each subject (whenever a subject sends output or

accepts some input information related to the protocol, a state is

needed to handle the communication);

3. Add outputs and inputs that are communicated between subjects

at each of the subjects’ states;

4. Model potential attacks: define all the bad or old variables output

from the untrusted subjects.

5. Specify invariants for the protocol. Add tainting variables when a

“bad” or “old” value of interest is output from an untrusted subject,

so that state is captured and propagated to the commit state.

6. Run the model-checker and see if the invariants pass for every

path through the model, from the protocol initiation state to the

commit state.

If an invariant fails, the protocol needs to be fixed and the verifica-

tion needs to be re-run. The process can be executed iteratively until

no invariants cause a failure and require protocol improvements.

For this work we selected Murphi [8] as the model checking tool.

Sections 4, 5 and 6 present attestation protocols for three classes

of hardware-software security architectures. The invariants listed

in these sections have been formulated using the above heuristics.

Models are built and translated into Murphi code. The verification

results are presented in each section. Section 7 summarizes the design

and verification.

4. Case study: trusted hypervisor, trusted OS
We begin our design and evaluation of protocols for delivery of startup

attestation with the class of architectures with a trusted hypervisor

and a trusted guest OS (tHV, tOS). The Trusted Platform Module

(TPM) [1] assumes such a TCB in the attestation that it provides. We

use the TPM attestation protocol as a baseline protocol. Although

many attestation protocols are built on TPM [25, 20, 3], few have

focused on verification of the attestation protocol. We show how

Murphi can be applied to verify this TPM attestation protocol, which

is original work.We use an existing TPM attestation protocol as our

baseline.

4.1. Required Architecture
TPM is a co-processor integrated into a hardware platform. It pro-

vides operations such as: hash functions (SHA-1 and HMAC), public-

key encryption and decryption (RSA), signatures, random number

generation, and it offers memory for persistent key storage. It protects

against software attacks but not hardware attacks.

One of the main goals realized by the TPM is to perform attestation,

i.e. measure the configuration of the system’s software, and send this

to a third party to verify that the software has not been changed.

(a) Protocol Diagram (tHV, tOS)

(b) Protocol Notation (tHV, tOS)

Figure 3: Startup attestation protocol for the case of trusted hypervi-
sor and trusted OS, e.g., for TPM.
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The trusted computing base includes the entire hardware platform

(including processor, memory and the TPM chip), the hypervisor

and the guest OS in the VM. However, software applications in the

VMs are untrusted. TPM’s Platform Configuration Registers (PCRs)

are used to store measurements about the platform configuration

[12]. PCR values are initialized during the platform boot process.

When software is loaded for execution, hash values of its code or

configuration data are calculated and extended (i.e., accumulated)

into the PCRs. A final PCR value is an accumulation of individual

measurements and configuration data, which define the software as

well as the order they are launched. It can be sent to the customer

for bootup integrity attestation of the software. The PCR values

are signed with the Attestation Identity Key (AIK). This key-pair

is created by the TPM and certified by a trusted third party called

the Privacy Certification Authority (Privacy CA). Different AIKs are

distributed to different customers by the Privacy CA.

4.2. Description of Attestation Protocol

The protocol for delivery of TPM attestation reports is shown in

Figure 3. The customer sends the request attestation to the TPM with

a session nonce, N, which is used to prevent replay attacks. Then the

TPM will retrieve the values of the PCR, sign these with the private

AIK and send it back to the customer. When the customer receives the

report, he can use the public AIK to decrypt the report. Comparison

of the nonce inside is used to make sure that the attestation report is

fresh, and then the PCR values can be checked to see if they match

the expected values for the software components.

4.3. Protocol Invariants

We specify four invariants for the protocol according to the heuristics

in Section 3.3. The invariants are listed below:

1. The signature received is fresh,

2. The attestation of requested PCRs returns the expected measure-

ment values,

3. The customer’s saved nonce was not tampered with, and

4. The PCR value used by the processor was not tampered with.

The nonce and PCR are known to the customer. So invariants 1 and

2 are attestation of expected values. The nonce and PCR are also

checked to see if they are tainted, giving invariants 3 and 4. For

easy comparison, Table 1 lists the invariants of all the architectures

discussed in this paper.

4.4. Verification Results

Invariant (1) is satisfied because the nonce is used to ensure the

freshness of the attestation. Invariant (2) passes because the customer

and their local storage are assumed to be secure. So the nonce won’t

be leaked. Also, the Integrity Measurement Architecture (IMA) [24]

can be used to get the list of the entities included in the measurement

and expected good values of measurements for these entities. As a

result, the customer is able to check if the received PCRs match the

expected values, satisfying invariant (3). In this platform, the PCR

and AIK are stored in the TPM, which is assumed to be secure. So

invariant (4) is not violated.

5. Case Study: trusted hypervisor, untrusted OS

We now consider the class of trusted hypervisor and untrusted OS

architectures (tHV, uOS), e.g., the Bastion [6] architecture.

5.1. Required Architecture

In this class, the aim is to protect Trusted Software Modules (TSMs)

within an untrusted software stack. For example, in Bastion, the

hardware first protects a trusted hypervisor. Upon hypervisor launch,

the hardware computes a cryptographic hash over the identity of the

hypervisor. This can be used for authentication of the hypervisor

before it can access the secure storage area. The keys used to encrypt

and fingerprint this cryptographically-secured hypervisor storage are

securely stored in new processor registers. Next, the trusted hypervi-

sor can now launch trusted software modules, using its hypervisor

secure storage to store module states and "soft registers" for protect-

ing these modules. The hypervisor computes the Module Identity

(the hash over the module’s initial code and data), and a hash over

its Security Segment. The latter is a new data structure that includes

the module’s code, private data pages, authorized entry points and

authorized shared memory interfaces. These values are stored in the

hypervisor’s secure storage area. For the protection of secure storage

for the modules, the module will encrypt the data and save it to the

disk. It will also calculate the hash of the encrypted data. Both the en-

cryption key and the hash value are stored in the hypervisor’s secure

storage. Hence the data’s confidentiality and integrity are protected

by the security of the trusted hypervisor, while the hardware protects

the hypervisor.

5.2. Description of Attestation Protocol

The protocol for delivery of attestation reports for Bastion [6] is

shown in Figure 4. The customer sends the request for attestation to

the module (TSM) with a session nonce, N, and a list of modules to

attest, Mid∗, e.g. the target module depends on other modules that

should be attested as well. Then the module generates an asymmetric

key pair (EK and DK) to be used to establish a secure channel with

the customer. The module stores the private key DK in an encrypted

and integrity-checked memory page and creates a report containing

(a) Protocol Diagram (tHV, uOS)

(b) Protocol Notation (tHV, uOS)

Figure 4: Startup attestation protocol for the case of trusted hypervi-
sor and untrusted OS, e.g. for Bastion architecture.
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the hash hEK = h(EK,N) over the public key EK and nonce. It

then invokes the hypervisor’s attest routine to request hashes of the

identities and security segments of the modules (hM∗ and hS∗) to

add to the report. The hypervisor compiles the report by looking up

hash measurements for the modules listed in Mid∗ and then asks the

processor to add the measurement of the hypervisor hH to the report

and sign it with the processor’s private key SK. This is done by a new

attest instruction in Bastion. The signature over the reported values,

[hH,hM∗,hS∗,hEK]SK , and the session’s public encryption key EK
are sent to the requester.

When the customer receives the report, first the processor’s public

key VK is used to verify the signature R on the attestation report.

Then the known "good” values for the measurements of the modules

and the hypervisor are compared with the received values. The

customer should also calculate the hash value of received EK and N,

compare it to the received hEK in the attestation report to check for

self-consistency.

Improvements to Bastion protocol: Comparing with the proto-

col in [6], we remove the measurements of modules and hypervisor in

the plaintext of the report because the signature is already sufficient

to protect the integrity of these measurements. The customer should

remember the module id he or she requested and has known “good”

values of measurements to check if the reply contains the correct

measurement values.

Moreover, the specification of the attest hypercall, which is part

of the protocol, was not clear in the Bastion architecture [6] – if

implemented wrongly it could have led to an attack. For instance, if

the network or VM is untrusted, the attestation request could have

been manipulated, allowing an untrusted module to masquerade as

a good one. The untrusted module could generate its own set of

keys and invoke a forged attestation hypercall to the hypervisor, but

include the good module’s id as if it came from the trusted module.

Upon receiving the report, the customer would think he received the

attestation from the correct module, and that the channel between

him and the module is trusted.

To prevent this, the secure hypervisor must be aware of the module

id of the module that sends the attestation hypercall and ensure that

the attestation request includes that id in the list of modules to attest.

Our new protocol uses the semantics of the fixed attest hypercall with

this property.

5.3. Protocol Invariants

We specify seven invariants for the protocol according to the heuris-

tics in Section 3.3. The invariants are listed below (and in Table 1, in

column "tHV, uOS", for easy comparison with the other protocols):

1. The signature received is fresh,

2. The attestation of the requested Trusted Software Modules (TSMs)

returns the expected measurement values,

3. The EK received was not tampered with,

4. The customer’s saved nonce and module list requested for attesta-

tion were not tampered with,

5. The Hypervisor Identity hash stored in the processor was not

tampered with,

6. Module Identity and Security Segment stored in hypervisor secure

storage were not tampered with, and

7. TSM’s memory and DK were not tampered with.

The nonce and TSM measurements need to be checked if they are

as expected, giving invariants (1) and (2). The customer needs to

check if the module’s public key, EK, is self-consistent with the hash

hEK, giving (3). The identity of hypervisor and modules as well as

the TSM’s private key need to be checked to see if they have been

tainted, giving (5), (6) and (7).

5.4. Verification Results

Using Murphi, we can prove that invariant (1) is never violated. This

is because we use the nonce to ensure the attestation is fresh, so the

replay attacks cannot happen in this protocol. Invariant (2) passes

after Bastion specification is fixed (as described above) so that the

attest hypercall checks the calling module’s id. Invariant (3) passes as

the trusted module will use the hash function to protect the integrity

of its decryption key. Any potential attacks to tamper with EK will

be detected by the customer by regenerating the hash of (EK,N) and

comparing with hEK Invariant (4) passes because any modifications

by the untrusted subjects along the way, like the network and the

guest OS, is detected due to signature and hashes. In addition, Bastion

ensures the secure storage of Module Identities and Module Security

Segments, as well as Hypervisor Identity, so invariants (5) and (6)

pass. In Bastion architecture, the decryption key DK is stored in the

secure storage of the trusted software module, so invariant (7) passes.

6. Case Study: untrusted hypervisor, trusted OS

We now consider the class of untrusted hypervisor and trusted OS

(uHV, tOS). While a trusted hypervisor can provide many useful

features, a number of researchers have begun to explore alternative

designs of a virtualized environment with an untrusted hypervisor

[28, 29, 14]. This reduces the systems’ trusted computing base.

6.1. Required Architecture

In this class of architecture, the hypervisor is removed from the TCB

and the goal is to protect guest VMs from a compromised hypervisor.

To realize this in the HyperWall architecture [29], a new Confidential-

ity and Integrity Protection (CIP) table is introduced. The CIP table is

implemented in a special portion of DRAM and accessible only from

(a) Protocol Diagram (uHV, tOS)

(b) Protocol Notation (uHV, tOS)

Figure 5: Startup attestation protocol for the case of untrusted hyper-
visor and trusted OS, e.g. for HyperWall architecture.
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the trusted processor hardware’s memory management unit (MMU)

and input/output memory management unit (I/O MMU). The CIP

table stores mappings of hypervisor and DMA access rights to the ma-

chine memory pages assigned to VMs. Because of these mechanisms,

a malicious hypervisor cannot access the VM’s memory directly (or

through DMA by configuring a device) and the confidentiality and

integrity of the VMs are protected.

When a VM is started, the CIP hardware updates CIP tables with

the protections requested for that VM by the customer. Once suc-

cessfully initialized, the hardware makes sure that the hypervisor (or

devices via direct memory access, DMA) is not able to access the

protected memory regions. The hardware generates the hash of the

initial CIP protections and the hash of the initial memory contents,

and updates the attestation measurement signature. The hypervisor

sends the signature back to the customer to attest the virtual machine

that was started.

Because portions of the VM’s code and data memory are now

protected from hypervisor or DMA access, the VM can generate

and store secrets in this memory. Specifically, the VM may gener-

ate a public-private key pair (EK, DK) and store it in the protected

memory. So the VM can communicate with the customer securely,

preventing attacks on its confidentiality and integrity from the ma-

licious hypervisor. The keys (EK, DK) are tied to the hardware

through the sign_bytes instruction [29]. The hardware has the

public-private key pair (V K, SK) and uses the SK signing key when

the sign_bytes instruction is invoked. This instruction does not trap

to the hypervisor, so the key cannot be intercepted. The SK is unique

to each microprocessor implementing the HyperWall architecture

and the customer can obtain certificates from the cloud provider for

the public processor key V K corresponding to SK on the machine

where the VM is executing, to verify the signature. The hardware

key vouches for the soft keys (V K, SK) generated by the VM and

the customer knows that the VM which sends him the EK is the one

executing on (and protected by) a HyperWall machine.

6.2. Description of Attestation Protocol

The protocol for delivery of attestation reports for HyperWall is

shown in Figure 5. First, the customer requests attestation of the VM

V Mid, and specifies a nonce N. This is communicated directly to the

VM and sent in clear text (although communication between the VM

and customer can be secured with the SSL protocol to prevent third

parties from eavesdropping, the target VM has not been attested yet,

so it has to assume the information is visible to others).

Next, the VM generates a public-private key-pair (EK, DK). EK,

the nonce and V Mid are passed along to the hardware for attestation.

The processor retrieves the hash measurements of the initial state

hv and protections hs of the VM, and generates a signature of the

request using its SK key. These are relayed by hypervisor and VM

back to the customer.

Improvements to HyperWall Protocol: HyperWall originally

used two protocols to archive what we can do in one protocol: The

first one was a challenge-response protocol for the VM startup; the

second one was a modified SSL protocol for secure communication

establishment. Since both the VM’s protection and its public key need

the certification of the processor, we can easily put all these values

in a single signature, and realize the two goals in one procedure.

Moreover, the public key of the VM can then be used with a standard

SSL protocol. These improvements were made using our verification

methodology.

6.3. Protocol Invariants

We specify six invariants for the protocol according to the heuristics

in Section 3.3. The invariants are listed below (and in Table 1, in

column "uHV, tOS", for easy comparison with the other protocols):

1. The signature received is fresh,

2. The attestation of the requested VM returns the expected measure-

ment values,

3. EK received was not tampered with,

4. The customer’s saved nonce and V Mid were not tampered with,

5. VM image hash and protections hash used by the processor in

attestation were not tampered with, and

6. VM’s memory and DK were not tampered with.

The customer needs to check the expected values of nonce and VM

measurements, giving invariants (1) (2). The customer should do the

self-consistency check for the public key sent, EK, with the hash of it

that is also sent, giving (3). The nonce, VM’s measurements, identity,

protections and private keys should not be modified by an untrusted

party, i.e., not tainted, giving invariants (4), (5) and (6).

6.4. Verification Results

The nonce N needs to be included in the final reply message to the

customer, passing invariant (1). While the hypervisor could modify

the nonce, V Mid or EK as the attestation request passes through it,

the attestation request from the VM goes directly to the hardware,

bypassing the hypervisor, ensuring invariant (2) passes. This also

ensures the nonce and EK are not tampered with. Inclusion of EK in

the reply message ensures that the customer is able to recognize a po-

tentially compromised EK (e.g. compare the received EK to the value

inside the signature, using the known public key of the processor) and

invariant (3) passes. Invariant (4) passes because any modification by

the untrusted subjects along the way, like the network, is detected due

to signature and hashes. To pass invariant (5), the processor needs

to have some memory which cannot be tampered with, ensuring that

hashes of the initial VM image or protections are not compromised.

The HyperWall architecture has memory accessible only to hardware,

thus passing invariant (5). To ensure that DK or the VM’s protected

code or data are not exposed, VM needs protected memory that will

not be accessible to the hypervisor or other VMs. HyperWall’s CIP

protections for VM memory enable passing invariant (6).

7. Evaluation

7.1. Verification Complexity

Thanks to the use of Murphi, we can quantitatively compare the

models of the attestation protocols. Table 2 attempts to summarize

the modeling and verification complexity for each model.

The Murphi states explored are a function of the number of subjects

and their states. The Murphi rules fired are a function of the number

of variables passed between each subject’s states. The number of

invariants is proportional to the number of untrusted subjects modeled

and the number of values checked at the commit state. Lines of

verification files includes comments and commented-out code, which

are crucial for clarifying modifications made when ensuring that

the invariants pass, so this is reported rather than source lines of

code (SLOC). Model execution time is the run time of verification of

each model on a commodity Dell R610 system with Linux OS and

CMurphi 5.4.4.

One interesting pattern is that a protocol’s and architecture’s flexi-

bility will usually show up as a higher number of Murphi states and
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Table 1: Summary of invariants for the protocols for the three types of architectures, invariant types were explained in Section 3.3.

Invariant Type tHV, tOS (e.g. TPM) tHW, uOS (e.g. Bastion) uHV, tOS (e.g. HyperWall)

expected values
1. Received signature is fresh 1. Received signature is fresh 1. Received signature is fresh

2. Received the expected 2. Receiving the expected 2.Receiving the expected measure-

measurements of PCRs measurements of the TSMs requested ments of the VM requested

self-consistency — 3. EK received was not tampered with 3.EK received is not tampered with

tainted values

3. Nonce was not tampered 4. Nonce and modules list were 4.Nonce and V Mid were not tamper-

with not tampered with ed with

4. PCR values were not 5. Hypervisor Identity was not 5.The hashes of the VM image and its

tampered with tampered with protections were not tampered with

— 6. Module Identity and Secure Segment —

hashes were not tampered with

— 7. TSM’s private key DK was not 6.VM’s private key DK was not

tampered with tampered with

Table 2: Summary of Murphi verification of the protocols.

Architecture Mur Murphi In Lines Model
-phi Rules -var of run

States Fired -iants file time
tHV, tOS 720 7236 4 722 0.53s

e.g. TPM

tHV, uOS 7920 265392 7 963 0.61s

e.g. Bastion

uHV, tOS 1584 39852 6 829 0.56s

e.g. HyperWall

rules fired. In Bastion, for example, multiple software modules can

be attested in one run of the attestation protocol. To achieve this,

however, Bastion requires retrieving measurements from multiple

secure memory locations (modeled as mem2 and mem3 subjects in

Figure 4). This is reflected in higher numbers in Table 2. Also, while

the TPM attestation only reports the software loaded and measured at

boot-time, the Bastion and Hyperwall initialization protocols report

the secure launching of arbitrary trusted software modules or Virtual

Machines, respectively, and the creation of a public-private key pair

for future secure communications with the customer.

7.2. Security Discussion

First, TPM, Bastion and HyperWall all help to improve the integrity

of certain trusted software components. TPM aims to protect the

integrity of the entire software stack. Bastion tries to protect the

secure launch of a set of trusted software modules in a VM by re-

porting the measurement of the identity and security segment of each

of these modules, and the measurement of the trusted hypervisor.

HyperWall aims to protect the VM’s secure initialization by reporting

the measurement of the VM’s image and requested protections of the

VM. All these values can be sent to the remote customer in a signed

attestation report. Our verifications assure the correctness of these

startup attestation protocols.

Second, we build a secure communication channel between the

remote customer and the trusted software components in the last two

architectures. The customer can talk securely to TSMs in Bastion,

and to VMs in HyperWall. Our verification shows that these commu-

nication channels are protected and the untrusted components in each

architecture have no access to the newly generated private key.

We note that the security verification of the protocols depends on

trusted components remaining trusted. For example, in Figure 3 for

the TPM attestation protocol, the entire hardware platform (including

the processor, the TPM chip and the main memory), the hypervisor

and the Virtual Machine (including the guest OS and the application)

are all assumed to be trusted components. If any of these trusted

components is compromised, then the security verification of TPM’s

attestation protocol becomes null and void.

8. Related Work

Our work is motivated by many proposals for hardware security

architectures, e.g. [27, 19, 6, 29, 14, 17, 9], commercial solutions,

e.g. [1, 10] and the fact that few of these are verified for security

properties.

Closely related to our work, XOM [18] and SecVisor [26] have

received the benefit of verification using model-checking. XOM

verification checked read-protection and tamper-resistance against

a simplified model of the instruction set operations on registers and

memory. SecVisor verification [11] used a logical system to reason

that the security demonstrated by a small model of the SecVisor refer-

ence monitor can scale to the implementation size. Both verification

efforts found defects in the original designs.

Our work uses automated finite-state verification, which is a robust

field: security verification has been performed with many tools aside

from Murphi, e.g PRISM [16] or Alloy [13]. This approach has been

used to verify a large number of diverse systems, including network

security protocols like SSL [22], multiprocessor memory consistency

protocols [23], linux file systems [30], web security techniques [2]

and browser-based isolation [7]. Machine-aided proof techniques

have also been able to verify the security of an OS microkernel [15].

In contrast to the above, our work presents two new protocols for

delivery of startup attestation and is the first to look at applying the

finite-state model checking to these protocols for hardware-software

security architectures.

9. Conclusion

In this work we presented modeling and verification of protocols for

delivery of startup attestation for three different classes of security

architectures, where the OS or hypervisor can be untrusted. The TPM

attestation protocol was presented as a baseline for comparison with

the processor-based attestation protocols. The streamlined definitions

of the startup attestation protocols, with an untrusted OS or untrusted

hypervisor, are new contributions in the paper. We also detailed a

methodology of modelling the protocols, the underlying system and

attackers, and verifying the protocols using the Murphi finite-state

enumeration tool. We also defined a methodology and new heuristics

for the invariants generation. These heuristics can be used to generate
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the invariants to improve and verify the protocols. We hope this work

will encourage more tools and methodologies needed for systematic,

design-time verification of hardware-enhanced security architectures.
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