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Abstract—In this paper we present our vision for Security on
Demand in cloud computing: a system where cloud providers
can offer customized security for customers’ code and data
throughout the term of contract. Security on demand enables
security-focussed competitive service differentiation and pricing,
based on a threat model that matches the customer’s security
requirements for the virtual machine he is leasing. It also
enables a cloud provider to bring in new secure servers to the
data center, and derive revenue from these servers, while still
using existing servers. We show a framework where customers’
security requests can be expressed and enforced by leveraging
the capabilities of servers with different security architectures.

Index Terms—Virtual Machine Security; Cloud Computing;
Threat Models; Dynamic Provisioning; Hardware-Software Se-
curity Architectures; Live Migration; Trust Evidence.

I. INTRODUCTION

Just as cloud customers have different performance needs,

they also have different security needs for their computations

done in the cloud. For example, some customers insist on

guarantees of the confidentiality of their sensitive data or

proprietary code, while other customers are more concerned

about the integrity of the programs and the computed results,

while still others require availability of service as their top

priority. Some customers worry about malicious virtual ma-

chines (VMs) being co-resident on the same cloud server as

their VMs, while others would like the cloud server to help

them defend against possible vulnerabilities in the commodity

guest operating system (OS) that they may employ in their

VMs. The present service level agreements (SLAs) and cloud

implementations do not allow such flexibility in security

specifications [1]–[3]. At best, they provide a rigid, small set of

features [4], such as malware detection and monitoring [5] or

encryption [6], which are applied uniformly to all customers.

This paper presents a Security on Demand (SoD) framework

for infrastructure as a service (IaaS) clouds, which provides

on-demand, customized VM security for the cloud customers.

The framework is based on three primary design goals: 1)

enable customers to request customized security for their VMs,

2) enable different secure server architectures to service these

customized security requests, and 3) provide persistent security

for each VM throughout its life-time in the cloud.

In the security on demand framework, we propose a novel

mechanism for allowing cloud customers to choose among

a range of security options, where each option is based on

a specific underlying threat model. The capability to offer

customized VM security requests is based on allowing the

cloud customer to select his or her choice of threat model,

which he or she finds most suitable for the VM. For instance,

a customer requesting a VM for processing highly secretive

financial data, will prefer the data to be protected from most

entities in the cloud environment such as the hypervisor, other

VMs, etc., and will require a threat model in which very few

entities are trusted. On the other hand, a customer requesting

VM for processing ordinary photographs may choose a less

restrictive threat model.

Another feature of the security on demand framework

is the manner in which we leverage existing secure server

architectures to service these highly customized VM security

requests. At present, there does not exist a single secure server

architecture which provides desired security protections under

all the different threat models. However, numerous secure

hardware-software architectures have been proposed [7]–[19],

and some are commercially available [20]–[22], which can

provide security protections very well under different, specific

threat models. Our SoD framework would enable a cloud

provider to afford to have different types of secure servers

in a datacenter, each capable of providing a desired type of

security. A cloud provider can then select the most appropriate

type of secure server, which can satisfy the security options

selected by the customer. A key challenge in servicing such

requests is to define a common representation to which var-

ious types of security options, and the security enforcement

capabilities of different server architectures, can be accurately

mapped. Once such a mapping is in place, a secure server

type can be easily selected for a customer’s security request by

matching the appropriate parameters. In this paper, we define

such a common representation and the manner in which the

mapping can be carried out.

Finally, in order to provide lifetime VM security, we propose

a novel use of live VM migration. We observe that the

security enforcement process for a given VM can be disturbed,

primarily by two events: 1) change in the security level

requested by the cloud customer, and 2) an attack on the

server on which the VM is running. When either of these

events occur, the VM is remapped to a new server capable

of satisfying the new security requirements, and it is live-

migrated to the newly selected server. This process is carried

out throughout the lifetime of the VM to ensure persistent

security. In this paper, we analyze the feasibility of such an
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approach by testing the average time and downtime required

for live VM migration under different workloads. In order

to demonstrate the practicality of the complete security on

demand framework, we have implemented a prototype by

modifying the OpenStack cloud system.

The security on demand framework offers numerous advan-

tages in addition to tailored VM security. First, it empowers

cloud customers to choose security based on their context spe-

cific requirements, and change the type of requested security

as the requirements change. Second, it allows cloud providers

to charge cloud customers based on the type of security

service they request. Such a differential pay-by-service-type

model is at the heart of the cloud computing paradigm,

and it is only natural that it is extended to include security

services. Third, it allows designers, vendors and researchers to

identify the different types of customer security requirements

within a common representation, and also get their existing

architectures and products deployed in real cloud environments

– perhaps in small numbers at first until their value results in

increased customer demand.

The primary contributions of this paper are:

• a mechanism for requesting different types of VM secu-

rity based on different underlying threat models,

• a detailed mapping of security features expected by

customers to a set of threat models we define, and then

to secure server architectures,

• a mechanism for managing trust in the cloud servers

based on the hardware and/or software security mech-

anisms they provide, and

• a prototype implementation of the above features within

the opensource OpenStack cloud software.

The remainder of the paper is organized as follows: Sec-

tion II describes the security threat model for infrastructure

as a service (IaaS) clouds. Section III describes the com-

ponents and working of the security on demand framework.

Section IV provides details of our prototype implementation

in the OpenStack cloud system. Section V discusses security,

while Section VI discusses performance, especially live VM

migration. We briefly list related works in Section VII and

conclude in Section VIII.

II. THREAT MODEL FOR IAAS CLOUD

In an IaaS-based cloud computing setup, the security of

a customer’s application (i.e. code) and data, can be com-

promised by non-trusted entities in numerous ways. Attacks

can either be launched by malicious entities that operate

within the same VM, within the same server, within the

cloud, or outside the cloud provider’s setup. The attacks can

compromise different security properties like confidentiality,
integrity, availability, privacy, anonymity, etc. Table I shows

potential attacks at each level. We categorize these attacks to

build a comprehensive threat model, that forms the basis of

our framework.

TABLE I
ATTACKING ENTITIES WITHIN AND OUTSIDE THE CLOUD

VM-level Server-level Cloud-level
Attacks Attacks Attacks

E
nt

iti
es OS Other VMs Cloud Manager

Other Apps Hypervisor Other Servers

Same App Hardware Outside Entities

A. VM-level Attacks

Attacks by the OS inside the VM. The operating system

running within the VM can be malicious or compromised to

breach the security of customers’ code and data. Since the OS

has access to the full memory space allocated to the VM,

it can see or modify a VM’s code or data thus violating

confidentiality and integrity.

Attacks by Other Programs in the VM. It is possible that

the security of data and code within a VM is compromised by

other programs running in the same VM. Since the programs

may share the same physical memory space, a malicious

program may be able to compromise the security of the

sensitive data and code.

Attacks by the Same Application. It is possible that the

very code that is operating on the sensitive data is malicious

and compromises the confidentiality of the data, by illegally

leaking the data to some third party. For example, there have

been cases where patients’ medical records or phone books

have been leaked out and sold by authorized applications [23],

without the knowledge of the user.

B. Server-level Attacks

Attacks by Other VMs. In cloud computing, cloud providers

run multiple VMs simultaneously on the same server. The

VMs thus share caches, machine memory and other resources

with other VMs. A malicious VM can therefore compromise

the security of other VMs running on the same server.

Attacks by the Hypervisor. Hypervisors are powerful: they

are responsible for allocating hardware resources, they run

at the highest privilege level, and have access to the VMs’

memory. Hence, a compromised hypervisor can easily carry

out confidentiality and integrity attacks on a VM. A hypervisor

is also responsible for scheduling the VMs and hence can

easily cause a Denial-of-Service (DoS) attack on a VM,

breaching availability.

Hardware Attacks. Physical attackers have the ability to di-

rectly manipulate hardware, probe it or even steal the hardware

to analyze it at a later time [24]. Many security breaches have

been due to physical attacks on hardware involving stolen (or

improperly disposed of) hard drives that contain sensitive data,

e.g., [25]. Other attacks, such as the cold boot attack [26],

show that secrets can be recovered from volatile memory even

after it is removed from a computer.

C. Cloud-level Attacks

Attacks by the Cloud Manager. A cloud manager is responsi-

ble for allocating VMs to servers. A malicious cloud manager

can compromise the security of a customer’s code and data.

A cloud manager can compromise the security of a VM by
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Fig. 1. Security on Demand Framework.

allocating it to the wrong set of servers. A cloud manager may

also run at a higher privilege and access a server’s memory,

thereby breaching a VM’s confidentiality and integrity.

Attacks by Other Servers in the Cloud. It is possible that a

VM is attacked by other servers in the cloud. A malicious or

compromised server inside the cloud perimeter may attempt

to launch an attack on another server where the sensitive VM

or applications are running; this would be an indirect attack.

A malicious server could also attempt to attack the VM or

applications directly if such a VM or applications have open

connections to the network (e.g. running a web server).

Attacks by Entities Outside the Cloud. It is also possible

that a VM is attacked by entities outside the cloud. The attacks

possible in this scenario are similar to the attacks done by

servers in the cloud, but these entities are outside the cloud

perimeter and these attacks have the additional difficulty of

having to breach any protections present at the perimeter of

the cloud.

III. SECURITY ON DEMAND CLOUD FRAMEWORK

A. Overview

Our Security on Demand architecture, as shown in Figure 1,

is based upon the IaaS cloud computing paradigm, in which

VMs are leased to cloud customers. A customer initially

requests a VM along with a security policy, which defines

the desired level of security requested for the VM. The level

of security requested depends on the cloud entities trusted by

the customer.

For the initial deployment, the cloud manager determines

the type of server that is best suited to match the security

requirements of the VM. We assume that the cloud provider

has different types of servers, each type capable of providing

different types or degrees of security. Once the VM is deployed

on an appropriate server, each deployed VM enters a security

life-cycle, which ensures that the requested VM security is

always maintained while the VM is running. The security life-

cycle process operates in 4 steps: In Step 1 , security proper-

ties of each server are collected by a trust monitor. In Step 2 ,

the Trust Monitor translates servers’ security properties it has

collected into well-defined, meaningful security capabilities.

In Step 3 the capabilities of each server are then provided to

a Policy Validation module responsible for the validation of

a virtual machine’s requested security policies against these

capabilities. Finally, in Step 4 a response mechanism is

triggered if either the security requirements of the VM change,

or the server on which the VM is deployed is no longer

trustworthy. The response mechanism is typically a migration

request which moves the VM to a suitable server capable of

satisfying the security requirements of the VM.

In the remainder of this section, we will explain how

different degrees of security are requested, how different types

of secure server architectures are capable of enforcing differ-

ent security needs, what properties need to be collected for

maintaining trust, and finally the feasibility of live-migration

as a response mechanism.

B. Requesting VM Security

A cloud customer needs to be able to specify his or her

security requirements for cloud services. A customer can

choose between different security levels by specifying different

entities that he trusts within the cloud. We propose an initial

set of security options from which a customer can choose

different VM security levels.

1) Basic Security: This is the basic security package in

which the VM is protected against other VMs on the

same server.

2) Hypervisor-protection (or Host-OS protection for hy-
pervisors like KVM): This option will protect the VM

against an untrusted hypervisor.

3) HW-protection: This option will also provide protection

against HW attacks.

4) Cloud Manager-protection: This option will protect the

VM against an untrusted cloud manager.

5) Guest OS-protection: In this option, the VM’s code and

data will be protected against an untrusted guest OS.

6) Apps-protection: In this option, the VM provided to the

customer will allow the customer to specify trusted ap-

plications within the VM that will operate on customer-

specified protected data, and the data will be protected

against other applications within the VM.

7) Same App-protection: This option will provide post-

access output control on sensitive data. The customer-

specified sensitive data will be protected against the very

application operating on the sensitive data, and prevent

that application from illegitimately leaking out the data

beyond this application.

A customer can combine different options specified from

1-7 to select the type of security for his leased VM. Based

on the selections, our security on demand software fills out

a security request matrix as shown in Table II. Once the

options are selected, a customer can also specify whether

he requires confidentiality protection or integrity or both. In

future, other security properties like availability, provenance

and audit logs can be added. For example, consider VM-A

for which a basic security package (Option 1) is chosen with

both confidentiality and integrity protection, and a VM-B for

which options 1 and 2 are chosen for both confidentiality

and integrity protection. For each of these VMs the security

matrix is filled out correspondingly as shown in Table II. In

addition, for some customers, default security packages can be

created, e.g., “security for on-line medical records”, and these

are translated into the options above (e.g., options 1, 5, 6, 7).
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TABLE II
SECURITY REQUEST MATRIX. THE CELLS WOULD BE FILLED ACCORDING TO THE SECURITY PACKAGE CHOSEN BY THE CUSTOMER.

Protected Same VM Same Cloud Server Cloud
Entity Same App Other Apps Same OS Other VMs Hypervisor HW attacks Manager

C I C I C I C I C I C I C I

VM-A x x x x x x
√ √

x x x x x x

VM-B x x x x x x
√ √ √ √

x x x x

TABLE III
SERVER SECURITY CAPABILITIES: PROPOSED HARDWARE AND SOFTWARE SECURITY ARCHITECTURES AND SOME COMMERCIALLY AVAILABLE

SECURITY ARCHITECTURES WHICH DEFEND AGAINST CONFIDENTIALITY AND INTEGRITY ATTACKS FROM DIFFERENT SOURCES. (*) REMOVES

HYPERVISOR DURING RUNTIME. TSM = TRUSTED SOFTWARE MODULE WITHIN AN APP

Security Same VM Same Cloud Server Cloud Protected
Architecture Same App Other Apps Same OS Other VMs Hypervisor HW attacks Mgr. Entity

C I C I C I C I C I C I C I

H
ar

d
w

ar
e

AEGIS [16] No No Yes Yes No No n-a n-a n-a n-a n-a n-a n-a n-a Data+App

XOM [15] No No Yes Yes Yes Yes n-a n-a n-a n-a n-a n-a n-a n-a App

SP [13], [14] Yes Yes Yes Yes Yes Yes n-a n-a n-a n-a n-a n-a n-a n-a Data+TSM

Bastion [12] Yes Yes Yes Yes Yes Yes Yes Yes No No Yes Yes No No Data+TSMs

DataSafe [19] Yes Yes Yes Yes Yes Yes Yes Yes No No No No No No Data

H-SVM [11] No No No No No No Yes Yes Yes Yes No No No No Full VM

HyperWall [8] No No No No No No Yes Yes Yes Yes No No No No Full VM

S
o
ft

w
ar

e NoHype [7], [27] No No No No No No Yes Yes No* No* No No No No Full VM

Overshadow [9] No No Yes Yes No No n-a n-a n-a n-a No No No No Data+App

HyperSafe [10] No No No No No No Yes Yes No No No No No No Full VM

C
o
m

m
. TPM [20] No Yes Yes Yes No No n-a n-a n-a n-a No No No No Data+App

Cell Prssr. [21] No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No n-a n-a Data+App

IBM 4758 [22] No Yes Yes Yes No No n-a n-a n-a n-a Yes Yes n-a n-a Data+App

C. Collecting Server Capabilities

Once a customer’s security request is clearly represented

in terms of the Security Request Matrix shown in Table II,

a cloud provider can appropriately allocate servers that can

satisfy the requirements. The cloud provider keeps an updated

table of Server Security Capabilities (Table III) which it can

match with the customer’s Security Request (Table II).

1) Classifying Secure Server Solutions: Cloud providers

can incrementally add servers with different security features

in our Security on Demand framework. Whenever a new

server type is added to the cloud provider’s infrastructure, its

security capabilities and the threat model it defends against is

added to the Server Security Capabilities table, as shown in

Table III. Table III allows our security on demand software

to find out which of the various security architectures are

appropriate to use in a given scenario. The focus of the table

is on presenting which entities (last column) are protected

from various other entities in the cloud environment (middle

columns). Because each architecture (first column) has been

designed with a different threat model and assumptions, the

table is a necessary simplification and does not capture all

aspects of the architectures. Some architectures pre-date the

“cloud” computing paradigm and hence do not provide virtual

machine and cloud abstractions (as indicated by n-a in the

corresponding table entries). The table’s purpose is to illustrate

how to map the architectures to the protections they offer.

Such a table needs to be filled in by architects for their

respective architectures. Table III has been filled based on

descriptions in publications describing the architectures. Each

row shows whether (or not), the given architecture protects

confidentiality (represented by ‘C’) and integrity (represented

by ‘I’) from the column entity. The three categories of attacker

entities (groups of columns in Table III) are: VM-level entities,

server-level entities and cloud-level entities, as in Table II.
Hardware architectures have traditionally focused on adding

new hardware to create isolated execution environments where

trusted software modules (TSMs) could execute safely [12]–

[18]. More recently, architectures have aimed to extend the

protections to entire virtual machines [7], [8], [11], [27]. This

is especially interesting given the contemporary interest in

cloud computing where the basic unit of computation is the

virtual machine. Also, software-hardware architectures like

DataSafe [19], for protecting sensitive data used by unvetted

applications, can provide Security Option 7 (Section III-B).
Software security architectures focus on using existing

facilities and innovative software engineering techniques to

protect the code and data [7], [9], [10], [27]. These can

be implemented today on commodity hardware making them

most likely to be the first to be deployed.
Commercial manufacturers also have deployed a number

of systems [20]–[22] which can provide extra protections for

software through dedicated hardware. These are either a co-

processor such as TPM or the IBM 4758 crypto cards, or

processors with built-in security features such as the Cell

Broadband Engine’s security vault architecture.
2) Trust Monitor: We introduce a Trust Monitor which

collects, monitors and maintains the servers’ current security

capabilities. One of its roles is to maintain the equivalent of

Table III for the provider’s infrastructure.
A trust monitor needs to securely collect information about

the properties of different servers and attest their capabilities in
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enforcing protections. Security architectures such as TPM [20]

or Bastion [12], [28] already support such type of attestations.

Furthermore, architectures such as HyperWall [8], [29] provide

trust evidence attestation that the hardware protections are in-

deed in force during runtime. The Trust Monitor also monitors

dynamic changes in the security capabilities of the servers.

If any of these attestations fail, the trust monitor informs

the Policy Validation module accordingly to take appropriate

action.

The Trust Monitor can be realized as a module of a

cloud management software, for example OpenStack [30]. In

OpenStack, all modules are self-contained and can run on the

same or a different server. We propose that a specialized trust

monitor overlooks and monitors a particular type of servers

using custom attestation protocols. Such a distributed approach

of collections of trust monitors will also address the issues of

a single point of failure. All trust monitors then report to the

policy validation module via a standard interface and protocol.

D. Policy Validation and Secure VM-Server Allocation

We also introduce the Policy Validation module which

ensures that virtual machines are running on servers which

satisfy their security requirements. The Policy Validation mod-

ule takes inputs from the trust monitors on the one hand

(based on Table III), the VM security policy specification

from the cloud customer on the other hand (Table II), and

determines an appropriate server for the VM. The inputs

from the trust monitor are the available servers and any trust

evidence information about them. The inputs from the cloud

customer have been mapped into a row of Table II that specify

the protections the customer requested.

The Policy Validation module runs in two modes: deploy-

ment mode, and relocation mode. During the deployment

mode, the Policy Validation module takes in a new request

for a virtual machine from the cloud customer, and determines

the servers that satisfy the security requirements of the virtual

machine. Once the set of servers is determined, the Policy

Validation module requests the Deployment module to deploy

the virtual machine on the selected set of servers. Relocation

mode is used when a decision is made to relocate a virtual

machine from its present server or set of servers.

Relocation is triggered either by some fault in the server or

a change in its properties, as a result of which it no longer

can satisfy the security requirements of a virtual machine it is

running. It can also be triggered by a change in the type of

security requested by the customer for the virtual machine. In

either case, the Policy Validation module remaps the virtual

machine to other servers that satisfy the security requirements

of the virtual machine. This process is carried out throughout

the lifetime of the virtual machine.

E. Enforcing Protections

In order to ensure lifetime protection, we propose to use

virtual machine migration [31]. If the customer’s requirements

change, or attacks or other factors change the protections that

can be provided by the server on which the virtual machine

is currently running, the virtual machine needs to be relocated

to a different server that meets the security requirements.

Various forms of migration, such as live migration [32],

[33] are commonly supported by cloud management soft-

ware such as OpenStack. Our security on demand framework

adds software to determine when the migration is triggered.

Our security-focused SLAs create new reasons for migration:

change in customer security requirements or change in secu-
rity state of the servers.

An additional trigger and strategy for migration that we

propose is based on the ”moving target defense”. Virtual

Machines are moved to other servers every now and then so

that attackers cannot try to co-locate their malicious VMs on

the same physical server, as in [34]

While live VM migration can counter against outside at-

tacks, attacks from within a VM can be defeated using VM

introspection (VMI) methods which typically make use of

a trusted hypervisor [35]. Hence, a customer choosing such

protections (e.g., options 5 and 6 in Section III-B) cannot also

choose option 2.

IV. IMPLEMENTATION ON OPENSTACK ESSEX

We implemented the security on demand framework on the

OpenStack Essex platform. We modified the existing Nova

modules and datapaths, as shown in Figure 2, to add the

features of the security on demand framework; We had to make

four major changes to the existing Nova implementation:

1) enable security policy specification for the VM via

Dashboard,

2) store the VM policy and server properties in Nova

Database (nova.db),

3) collect server properties from Nova-Compute and send

them to the Nova-Schedule (the VM scheduler), and

4) add a policy-based filter to Nova-Schedule

In order to specify the VM policy, we modified the Dash-

board to include a security policy when a user requests a new

VM. The customer is now allowed to choose from different

security packages described in Section III-B. The security

policy information is sent to the scheduler and the database

along with other specification parameters in the VM request.

The security request specification is then stored in the database

nova.db. The security policy is stored as a key-value pair in

the instance metadata table of the database nova.db.

The Policy Validation Module (PVM) and the Deployment

and Migration Module (DMM) were added to the scheduler

to enable policy-specific VM deployment and a live VM

migration response mechanism against security attacks. The

PVM consists of a custom policy-based filter mechanism to

allocate servers to the VMs. The filter carries out the task

of mapping the security requirements of the VMs stored

in the instance metadata table to the security properties of

the servers stored in the compute node table of nova.db.

The DMM module subsequently starts or migrates VMs to

appropriate servers.

The Trust Monitor is split across the Nova-Compute nodes

(TMc) and the Nova-Schedule module (TMs). In the current
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implementation, we simulate different compute nodes to act

as some of the security servers described in Table III. To this

effect we added a simulator, which acts as a part of the Trust

Monitor on the compute nodes (TMc), to the underlying KVM

hypervisor, to provide server properties to the Nova Database

on bootup, and trust evidence while the server is running.

Server properties are stored in the compute node table of

nova.db for each compute node. The server properties are

passed on along with the other properties such as running vms,
current workload, cpu info, etc. At present the server security

properties include architecture type and trust evidence. The

architecture type information is sent on the server bootup,

while trust evidence information is sent at regular intervals.

In the present implementation we support architecture types:

TPM, DataSafe and HyperWall, while trust evidence is sent

only for the Hperwall architecture type in the form of the num-

ber of memory violations. The Trust Monitor implementation

within the scheduler (TMs) collects these properties from the

database and supplies them to the PVM.

V. SECURITY DISCUSSION

The Security on Demand framework enables customers to

select security options to customize the security requirements

for their leased VMs. However, it is important that the op-

eration of the framework is secure, and critical modules are

protected. We assume the Cloud Manager is trusted (hence

Option 4 in Section III-B is not currently supported). Beyond

this, the framework needs to be secured for three additional

aspects: 1) secure collection and servicing of the customer

VM requests, 2) security of the process for establishing server

security capabilities, and 3) secure execution of the response

mechanism.

A customer must be able to request and change VM

security in a secure manner, and it must be possible to

collect, store and service these requests securely. Secure VM

requests can be managed via authentication and authorization

of cloud customers. The database where VM security requests

are stored needs to be protected against unauthorized access

and modifications. OpenStack currently provides both these

features, along with access control to the Nova database via

the OpenStack Identity Service (Keystone). Furthermore, the

control module responsible for processing and enforcing VM

security requests (i.e. the Nova-Schedule module), needs to

be protected against illegal modifications compromising the

integrity of its code. It is possible to secure the Nova-Schedule

module code by running it on a server supported by a Trusted

Platform Module (TPM), which can verify the code integrity

during startup.

The process for establishing server security capabilities

needs to ensure that the server properties are provided back to

the scheduler via trustworthy attestation mechanisms and pro-

tocols. We envision these properties are collected at the startup

from different servers by means of a security-focussed power-

on self test (POST). Also, each security architecture provides

its runtime security health, via trust evidence mechanisms.

The live VM migration process itself needs to be secured to

guarantee data confidentiality and integrity to the user. In order

to secure the VM migration process, the control mechanism

handling the VM migration protocols, the communication

channel between the servers, and the migration modules need

to be protected against attacks. Finally, we assume that all the

Nova-Compute modules along with our SoD modifications are

securely started and provided with runtime integrity protec-

tions.

VI. PERFORMANCE MEASUREMENTS

The key performance issue is to see whether VM migration

is feasible as a real-time security response mechanism. Hence,

we now study the time required to migrate a VM from one

host to another. The act of carrying this out with negligible

downtime is known as Live VM Migration. VMs use network-

attached storage (NAS) devices for secondary storage, which

does not have to be migrated with the VM. Live VM migration,

thus, boils down to transferring VM memory state from one

host to another. We will focus on the pre-copy algorithm

because it is the one used by most commodity hypervisors

to carry out live migration of VMs, including VMware, Xen,

KVM, VirtualBox, Microsoft Hyper-V and OpenVZ.

The pre-copy algorithm proposed by [36] uses an iterative

push phase, where dirty (i.e. modified) pages are transferred

from the source to the destination machine iteratively, followed

by a minimal stop-and-copy phase. In the stop and copy phase,

the VM is stopped and the CPU state and any remaining

modified pages are sent to the destination VM, leading to a

fully consistent state.

To test the live VM-migration performance, we have se-

lected a range of 7 different types of commonly used dat-

acenter applications as listed in Table IV [37]. Our test

bed is comprised of two hosts with identical hardware and

software configurations. Each host comes with dual quad-

core Intel Nehalem CPUs (1.6GHz), on top of which a KVM

hypervisor is running. The Host OS is Ubuntu 12.04 LTS with

kernel version 2.6.38.8, and the network connecting both hosts

376

Authorized licensed use limited to: Nanyang Technological University. Downloaded on January 23,2022 at 09:14:05 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV
DATA CENTER WORKLOADS

Workload Benchmark
Mail
Server

mstone [38] as remote SMTP client; smtp-sink [39]
as SMTP server inside VM

App Server Faban Benchmarking Framework [40] as remote
client; Glassfish Server [41] with sample Java EE
application inside VM

File Server Dbench [42] inside VM

Web
Server

Faban Benchmarking Framework [40] as remote
client; Apache HTTP Server [43] inside VM

DB Server Sysbench [44] inside VM

Stream
Server

VideoLAN [45] inside VM; Wireshark [46] capturing
stream packets remotely

Idle Server No workload

supports 1Gbps speeds. The VMs being migrated come with

1 GB of dedicated RAM and 1 CPU core. They run Ubuntu

12.04 LTS Server Edition, and their secondary storage disk

images are roughly 5GB in size after installing all benchmarks.

For each workload, we ran 2-minute long benchmarks

and performed migrations at five different migration points

within that 2-minute interval (t=0, t=24s, t=48s, t=72s and

t=96s). Such a multi-interval approach ensures fairness in the

observed results and addresses the problem of the migration
point described in [37]. We then averaged those results to

get an overall measurement for metrics associated with each

workload.

Table V gives performance measurements for the total time,

downtime and data sent throughout the migration process for

each type of application. The total time is the time elapsed

between the moment when the migrate command is issued

and the instant when the VM is resumed at the destination

host after the stop-and-copy phase of the pre-copy algorithm.

The downtime is a measure of liveliness and corresponds to

the time taken by the stop-and-copy operation, which is when

incoming packets are lost and no computational tasks are

scheduled due to the fact that both the source and destination

VMs are paused. The data sent column presents the amount

of migration-related data that was transferred from one host

to the other during the migration process.

Table V shows that live VM migration takes between 7

and 9 seconds to complete depending on the workload, which

serves as evidence of how effective this reactive mechanism

can be. With the exception of the Application Server, all

workloads experience sub-second downtimes, so the amount

of packets lost is negligible. Application Servers are excep-

tionally bad for live migration, since they have large page

dirtying rates while leaving little spare bandwidth for migra-

tion purposes. These live VM migration tests were carried

out in a non-OpenStack environment. Within an OpenStack

implementation, migration triggering caused an additional

average delay of 2.33 seconds, which increased the total live

VM migration times by that amount, while the downtimes

remained the same.

VII. RELATED WORKS

Today’s SLAs are focused on performance metrics [1]–

[3]. They lack flexible security specification features and the

TABLE V
MIGRATION PERFORMANCE WITH DATA CENTER WORKLOADS

Benchmark Total Time(s) Downtime(ms) Data Sent(MB)
Mail Server 8.9 300 800.39

App Server 7.5 4050 728.21

File Server 7.2 250 697.87

Web Server 7.2 250 645.33

DB Server 7.4 450 717.52

Stream Server 8.0 650 716.21

Idle Server 2.6 200 212.34

security features which are included in them are static, rigid

and limited to a small set of features [4].

Providers try to keep a high standard of protection by

ensuring proper procedures are taken when handling customer

code and data, access controls are in place, counter measures

such as network monitoring are active, etc. [5], [6]. Such

security guarantees in cloud computing offerings, however, are

often applied to all customers equally. By employing Security

on Demand as presented in this paper, different providers

could differentiate themselves based on security offerings. The

simple set of options (e.g. encryption or no encryption [6])

supported by some providers could be gainfully expanded.

We illustrate our Security on Demand framework (see

Table III) using the different security architectures proposed

in the academia, each focussing on specific security features

and threat models [7]–[16], [19], [27]. Also, commercially,

a few architectures are [20]–[22], or may soon be [17], [18]

available.

We enhanced past work in virtual machine migration [31],

especially live migration [32], to enable dynamic security

provisioning in our SoD framework. As security breaches will

likely affect many virtual machines at a time (e.g., all virtual

machines on a server under attack), past work on gang virtual

machine migration [33] will also be useful.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our vision for Security on

Demand for cloud computing and presented a framework for

realizing it. At the heart of our framework lies our compre-

hensive threat model for VMs in Cloud Computing, which

forms the basis for understanding and analyzing cloud security

from both the customer’s perspective and the perspective

of server security architectures. The framework builds on a

detailed mapping of various hardware and software security

architecture’s properties to cloud security features expected

by customers. Not only are the mappings central in realizing

security-focused SLAs, but they will also help security archi-

tects explore new combinations of security features (possibly

not available today) that customers desire – thus driving the

design of new security architectures.

We have a prototype implementation of part of our frame-

work on OpenStack, an open source cloud management soft-

ware. We will extend OpenStack with a more sophisticated

Trust Monitor Module and Policy Validation Module. We also

plan to extend existing SLA frameworks to support customers’

security requests.
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